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Abstract: The optimal size of a military force to send to the battle field is determined. The 

objective function includes the cost of deployment, the cost of the time it takes to win the battle, 

and the costs of killed and wounded soldiers with equipment. The cost of deployment is an 

explicit function of the number of deployed troops and the value of a victory with access to a 

free territory, is a function of the length of the time it takes to win the battle. The cost of lost 

troops and equipment, is a function of the size of the reduction of these lives and resources. An 

objective function, based on these values and costs, is optimized, under different parameter 

assumptions. The battle dynamics is modeled via the Lanchester differential equation system 

based on the principles of directed fire. First, the deterministic problem is solved analytically, 

via derivations and comparative statics analysis. General mathematical results are reported, 

including the directions of changes of the optimal deployment decisions, under the influence 

of alternative types of parameter changes. Then, the first order optimum condition from the 

analytical model, in combination with numerically specified parameter values, is used to 

determine optimal values of the levels of deployment in different situations. A concrete 

numerical case, based on the Battle of Iwo Jima, during WW Ⅱ, is analyzed, and the optimal 

deployment decisions of the attacker, BLUE, are determined under different assumptions. The 

known attrition coefficients of both armies, BLUE, and the defender, RED, and the initial size 

of the RED force, are parameters. The optimal solutions are found via Newton- Raphson 

iteration. Finally, a stochastic version of the optimal deployment problem is defined, where the 

attrition parameters are considered as stochastic, before the deployment decisions have been 

made. 

Keywords: Lanchester equations; attrition parameters; differential equation system; numerical 

iteration 

1. Introduction 

There are many wars and battles in our world, now, in the past and almost surely 

also in the future. The analytical and numerical methods and general findings 

developed in this text, are relevant to battles now and in the future, wherever they 

occur and whatever the conditions may be. This study also contains a test case and 

illustration, based on one specific battle during WW Ⅱ. 

Competition can be observed in many different areas. In the domain of 

economics, we find competition between nations, in international trade theory, 

between companies, in market theory, and between individuals, in labor economics. 

Shatz [1] gives a wide perspective on connected issues. Biological theory includes 

models of competition between different species, including many types of animals and 

plants. Compare the field covered by Ianelli and Pugliese [2]. Competition between 

nations and coalitions can also lead to wars and other conflicts. Relevant mathematical 

theories and examples are found in Washburn and Kress [3]. In all these kinds of 

competition, we find several interesting and relevant scientific questions, such as: How 
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do the different parties in the competition affect the other parties? How will the system 

develop over time? Can some actors influence these competition situations and may 

optimal strategies be derived? 

When scientific models are developed to describe, analyze, and manage the 

competition situations in economics, biology, and war science, it often turns out that 

the mathematical structure is very similar. In this study, we will focus on typical 

military problems. The general results and approaches can however be expected to be 

useful also in the fields of biology and economics. Wars are military conflicts, usually 

between nations. Sometimes, the participants belong to, or are cooperating with, other 

nations or coalitions. A recent study of how such wars can be modelled, and the 

strategies optimized, using optimal control theory, is Lohmander [4]. Key ingredients 

in that study are differential equations that show how the involved parties influence 

each other, via attrition warfare, and how the total war system can be controlled and 

optimized via external arms support. Wars can also be studied at lower levels of 

command and within more constrained geographical regions. Lohmander [5] and 

Lohmander [6] are two such examples. 

In military operations research, the famous article by Lanchester [7] is often used 

as a mathematical foundation. There, the general idea is that the sizes of two opposing 

forces, X and Y, change over time, according to principles expressed as two 

differential equations. One of these differential equation systems based on the 

principles of directed fire, which has often been found to fit empirical time series data 

from real battles, very well, states that the time derivative of the size of force X, is 

negative and proportional to the size of force Y. Furthermore, the time derivative of 

the size of force Y, is negative and proportional to the size of force X. In battles with 

aimed fire, the attrition of a force can under simplified assumptions be shown to be 

proportional to the number of enemies. Lanchester models for aimed fire are 

differential equation systems that can be applied to describe and derive the dynamics 

of such battles. Estimations of attrition coefficients, the force reductions per time unit, 

per unit of the enemy force, have been reported in the literature, based on time series 

data from historical battles. Engel [8]; Bracken [9]; Tam [10]; Hung et al. [11] and 

Stymfal [12] include such applications and estimations of the Lanchester models based 

on real military time series from different battles. Braun [13] describes some of the 

applied differential equations and approaches. Lohmander [14] shows how a 

Lanchester differential equation model can be estimated with very high precision, to 

reproduce the battle dynamics from the island Iwo Jima, in the Pacific Ocean, during 

World War Ⅱ. The parameter estimation procedure is based on full system fix point 

iteration. 

Relevant empirical data would ideally contain complete time series of the 

numbers of units of both forces. Sometimes, the time series are incomplete, and only 

the time series of one force is known. In some cases, the time series of one force is 

completely known, but only the initial and the final sizes of the enemy force are 

known. In earlier research, estimations of attrition coefficients have sometimes been 

made in discrete time, based on the observed time series data of one force, X, and the 

assumed and calculated time path of the size of the other force, Y. Such estimations 

have been made in several steps. 



Mathematics and Systems Science 2025, 3(1), 3055. 
 

3 

Mostly, deterministic models are approximations of a reality that is not perfectly 

predictable. Of course, this is true also in the present area of analysis. Rothschild and 

Stiglitz [15,16] define risk, and increasing risk, in mathematically convenient ways, 

which makes it possible to study how stochastic parameter variations affect variables, 

systems, and optimal decisions. Lohmander [17] combines and applies the risk 

definitions of Rothschild and Stiglitz [15,16] with the famous Jensen’s inequality, 

Jensen [18], biological production functions, and price series of natural resources, via 

analytical stochastic dynamic programming, to show how increasing risk in market 

prices and growth processes dynamically affect optimal decision in biological 

production. In a similar way, stochastic parameters should be expected to influence 

the decisions and outcomes of dynamic competition, battles, and wars. This is also 

investigated and reported in this paper. 

The literature related to the Lanchester differential equations, contains 

generalizations and modifications in different directions. Often, the motivation is 

rational decision support, such as determination of the optimal size of some military 

force. Some of these studies concern general mathematically derived principles and 

results, and other articles have real military decision problems in mind. An early article 

in this class is Taylor [19]. He investigates the initial force commitment problem in 

battles governed by Lanchester equations. He defines three different decision criteria, 

or objective functions, namely the victor’s loss, the loss ratio, and the loss difference. 

The analysis is based on general qualitative comparative statics methods, and the 

determination of the signs of partial derivatives. He finds that the optimal initial force 

commitment decision is sensitive to the decision criterion. From the perspective of 

economic theory, the conclusion that objective functions influence the optimal 

decisions, are not surprising. However, from an economic perspective, the articles 

choice of objective function seems arbitrary. If military missions should be 

economically rational, it is important to define costs and revenues as functions of 

possible military decisions, and to let these functions be used to define the objective 

function that governs the military decisions. The models and analyses in this this paper 

are created to optimize strategic decisions problems with explicit economic objectives 

in mind. 

Another author that studies the optimal force structure, is Chan [20]. He focuses 

on the Lanchester square law, general findings from the battle of Trafalgar, and the 

quality and quantity of the Singapore defense forces. A key conclusion is that it is 

necessary to maintain high quality of the forces in peace time, since possible 

opponents may have large numbers of attacking units. Minguela-Castro et al. [21] 

present a multi stage decision support model, for strategic military decision making. 

With such a structure, it is possible to adapt the forces to new information about the 

actions taken by the enemy and other possible events. The Battle of Crete, during 

World War Ⅱ, is discussed in relation to the dynamic model. The objective function is 

based on the expected value of battle casualties and the fulfillment of the mission. 

Exactly how these objectives are combined is not clear to the reader. Obviously, the 

objective function is not defined in economic terms. Lystopadova and Khalaim [22] 

give a general introduction to Lanchester differential equations and include some 

examples from the war during the years 2022 to 2024 in Ukraine. They write that 
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dynamic force predictions can be made, based on the fire powers of the Russian and 

Ukrainian armies. 

Some studies extend the Lanchester model system to cover multi front problems, 

optimal dynamic reinforcements, international cooperation, and combinations of units 

from the army, the navy and/or the air force. The optimal partitioning of available 

military defense resources to counter attacks in different fronts, with Lanchester 

dynamics, is studied by Sheeba and Ghose [23]. The decision problem is defined as a 

Time-Zero-Allocation problem, and analytical and numerical solutions are given. 

Chen and Qui [24] investigate the optimal reinforcement problem. They apply 

Lanchester dynamics within a differential game model and derive optimal 

reinforcement strategies. Algorithm convergence results and numerical examples are 

included. 

The Lanchester model can also be extended to handle cooperation between 

different players and endogenously optimized intelligence levels. This is done, via 

optimal control, by Hy et al. [25], in a study on optimal counter terrorism. Kostic and 

Jovanovic [26] is a promising study from a methodological point of view. Different 

kinds of forces, such as air force and army, cooperate. During different phases of a 

war, they can cooperate in several ways. The system of differential equations is 

governed by Lanchester equations, but the set of equations changes at different points 

in time. This way, rather complicated dynamic strategies that involve different kinds 

of forces can be defined, studied, and rapidly optimized, with a simple mathematical 

structure and limited numerical and computational efforts. Of course, a sufficiently 

simple model structure, that makes it possible to easily communicate the general 

model ideas and results to the involved parties, and that also makes it quite clear how 

an objective function can be developed to cover the essential costs and revenues of the 

system, are all important to successful applications. 

In several mathematical models, with fundamental links to the classical 

Lanchester system, partly new assumptions are introduced. The classical ordinary 

differential equations are replaced by partial differential equations and more 

dimensions, the number of parties in the conflicts increases, networks are introduced 

and perhaps even deterministic chaos appears. With such adjusted model assumptions, 

it is sometimes possible to illustrate, discuss and highlight several principles from 

classical military strategy. Often, however, such model developments make it difficult 

or impossible to find closed form solutions. Still, qualitative analysis may lead to some 

general qualitative results, and particular numerical specifications and iteration can be 

used to create examples and illustrations of typical solutions. Spradlin and Spradlin 

[27] move away from the ordinary Lanchester differential equations to partial 

differential equations. With this approach, they do not only investigate the 

development of the system over time. The spatial distributions of the armies over the 

battlefield are simultaneously studied. Numerical simulations with this approach are 

reported. 

Lanchester models usually handle two party conflicts. Kress et al. [28], however, 

extend the analysis to three party conflicts. The motivation includes conflicts in Syria, 

where, as they write, several parties have been involved. The results are reported in 

phase portraits, that show regions where different parties can win the war. It is 

important to be aware that the study and the results are based on fixed force allocations. 
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It is quite clear that other results can be obtained in case the different parties are 

allowed to adaptively change the behavior over time, as the situation develops. The 

authors conclude that, the possibility of temporary cooperation would lead to many 

challenges in a differential game setup. This is certainly true. It is also true that such a 

development of the dynamic multiplayer games seems necessary, if we are interested 

to understand and control the real and highly complicated conflicts in the region. 

Sometimes, it is interesting and important to generalize the Lanchester system to cover 

more strategy dimensions. Kalloniatis et al. [29] do that, via the development of a 

networked Lanchester model, with fire integration and manoeuvres. McCartney [30] 

studies repeated battles with reinforcements. The reinforcements follow different 

principles, that can give different outcomes. With nonlinear reinforcements, we may 

obtain quasi-periodic behavior, deterministic chaos, and fractal partitioning. In our 

present world, the situation can in many regions be interpreted as chaotic. Maybe, 

models of this type are useful to model such phenomena. 

The Lanchester differential equation system is a highly relevant and useful basis 

for qualified strategy optimization. Fundamental facts, such as sizes of forces and 

attrition coefficients, that determine the outcomes of conflicts, are used in a 

mathematically straight forward way. Without fundamental mathematical descriptions 

of the forces in action, logically defendable alternatives simply do not, and cannot, 

exist. 

This study: This study has the ambition to determine the optimal size of the 

military force to send to the battle field. This decision is optimized, based on an 

objective function, that considers the costs of deployment, the cost of the time it takes 

to win the battle, and the costs of killed and wounded soldiers with equipment. The 

optimal decisions are determined via analytical and numerical methods. 

Step 1: First the deterministic optimization problem is defined and solved, based 

on an economically specified objective function and explicit general solution of the 

ordinary Lanchester differential equation system. Comparative statics analysis, via 

differentiation, determines how the optimal decisions change under the influence of 

parameter changes. Then, the first order optimum condition and the Newton-Raphson 

method, are used to determine the optimal decisions, in a set of numerically specified 

cases. The method is illustrated via empirically estimated parameters from the Battle 

of Iwo Jima, during WW Ⅱ. 

Step 2: Stochastic attrition coefficients are introduced, since these coefficients 

cannot generally be assumed to be perfectly known before battles start. The expected 

value of the total result, in economic terms, is optimized. Optimal decisions are 

determined, with consideration of the stochastic attrition parameters, in different 

numerically specified cases. The outcomes of the battles, such as the numbers of killed 

and wounded soldiers, and the time it takes before one party wins the battle, are 

affected by the stochastic attrition parameters, and cannot be perfectly predicted. It is 

important to be aware that, even if the optimal number of soldiers is sent to the battle, 

it is possible that the enemy wins the victory. It would simple be too costly to make 

sure that, whatever happens and whatever the attrition parameter values turn out to be, 

you will always win a possible battle. For this reason, a relevant objective function 

must be defined and calculated as a function of different kinds of decision dependent 

stochastic outcomes, including a decision dependent probability to win the battle. 
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2. Materials and methods 

This study concerns optimization of strategical military decisions. The 

perspective on the topic is as general as possible and the analysis is based on the 

famous Lanchester differential equations under the influence of directed, or aimed, 

fire, as illustrated in Equation (1). There we see how the state of the system, (𝑥, 𝑦), 

representing the sizes of two opposing forces, changes over time, 𝑡,  0 ≤ 𝑡 ≤ 𝑇 < ∞. 

The two parameters, (𝑎, 𝑏), are called attrition coefficients. Newtonian notation, with 

time derivatives marked by dots, is used. 

(1. )
0, 0, 0, 0

(1. )

x ay a
a b x y

y bx b


= −

   
 = −

 (1) 

In the later sections of this paper, general analytical methods are used to analyze 

and solve this equation system and the more complicated problem, where the solutions 

of the differential equation system (1) are used as subproblems within general strategy 

optimization problems. Since the differential equation system is a central component 

of the relevant strategy optimization problems, we start with a briefing on the 

properties of the system (1), based on fundamental methods, including qualitative 

analysis and simulation. 

From Equation (1), we construct Equation (2). 

(2. )

0, 0, 0, 0

(2. )

x ay
a

x x
a b x y

y bx
b

y y


− =


   

 −
=



 (2) 

Consider this special case: The time derivatives of the sizes of the resources, 

divided by the sizes of that resources, are equal. In such a case, the time path of (x, y) 

should follow a straight line in the first quadrant, moving towards origo. This is seen 

below. From Equation (2) we get Equation (3). 

x y ay bx

x y x y

 
 − − =  = 

   
 

 (3) 

Equation (3) can be rewritten as Equation (4). 

bx ay

y x
=  (4) 

From Equation (4) we derive Equation (5), which is consistent with the famous 

Lanchester square law. Compare Lanchester [7]. 

2 2bx ay=  (5) 

From Equation (5) we get Equation (6), which leads to Equations (7) and (8). 
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2 2a
x y

b
=  (6) 

a
x y

b
=  (7) 

b
y x

a
=  (8) 

Figure 1 shows the time path of (x, y) in the special case, when Equation (5) 

holds. Note that (x, y) follows the time path in the direction of the arrows. The lengths 

of these arrows indicate how rapidly (x, y) moves. The arrows get shorter as we move 

towards origo. The reason is that the time derivative of x is proportional to −y, and the 

time derivative of y is proportional to −x. Compare Equation (1). Hence, x and y are 

strictly decreasing functions of time. In fact, since (x, y) moves slower and slower, and 

the speed approaches zero, as (x, y) approaches origo, (x, y) never reaches origo. 

Compare Equations (9) and (10). 

( ) ( )
2 2

lim 0 , ( ) ( )
t

x b x t a y t
→

= =  (9) 

( ) ( )
2 2

lim 0 , ( ) ( )
t

y b x t a y t
→

= =  (10) 

 
Figure 1. The time path of (x, y) in the special case, when bx2 = ay2. 

In Figure 2, we find the time path of (x, y) in the special case, when bx2 = ay2, as 

a function of the ratio b/a. The coefficients a and b may change for many different 

reasons. We may consider the following cases: 

Case 1: A force with x units defends an area and another force with y units attacks 

the same area. If the defender prepares the defense efficiently, it is more difficult to 

reduce x, and easier to reduce y. In other words, a decreases and b increases. Compare 

the differential Equation (1). This means that the ratio b/a increases. Then, as Figure 

2 shows, the time path of the special case shifts from the black dotted line to red dotted 

line. 
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Case 2: A force with y units defends an area and another force with x units is 

attacking the same area. If the defender prepares the defense efficiently, it is more 

difficult to reduce y, and easier to reduce x. This means that one parameter, a, increases 

and the other, b, decreases. Compare the differential Equation (1). This means that the 

ratio b/a decreases. Then, as Figure 2 shows, the time path of the special case moves 

from the black dotted line to the blue dotted line. 

 

Figure 2. The time path of (x, y) in the special case, when bx2 = ay2, is a function of 

the ratio b/a.  

The graph shows how the time path changes if the ratio b/a increases or decreases. 

Deviations from the line 𝑦 = √
𝑏

𝑎
𝑥, imply that (x, y) will not converge towards origo. 

This is shown in Figure 3. If we start at a point on the original time path (yellow), and 

let the value of x increase, we move to the blue point. Then, the adjusted time path of 

(x, y) will later reach a point on the x-axis, x1. There, x > 0 and y = 0. If we start at a 

point on the original time path (yellow), but let the value of y increase, we move to the 

red point. Then, the new time path of (x, y) will reach a point on the y-axis, y1. There, 

x = 0 and y > 0. 

The results found in Figure 4 follow from Figure 3. T is the point in time when 

x or y equals zero. If (x, y) at some point in time, t, such that t < T, is found in the blue 

sector, then x(T) > 0 and y(T) = 0. If (x, y) at some point in time, t, such that t < T, is 

found in the red sector, then x(T) = 0 and y(T) > 0. 
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Figure 3. Deviations from the line 𝑦 = √
𝑏

𝑎
𝑥, imply that (x, y) will not converge to 

origo. 

 

Figure 4. Deviations from the line 𝑦 = √
𝑏

𝑎
𝑥, imply that (x, y) will not converge to 

origo. 

T is the point in time when x or y equals zero. If (x, y) at some point in time, t, such that t < T, is found 

in the blue sector, then x(T) > 0 and y(T) = 0. If (x, y) at some point in time, t, such that t < T, is found in 

the red sector, then x(T) = 0 and y(T) > 0. 

Now, we will investigate the dynamics of (x, y) when we use some well 

documented empirically determined parameters from a real case. Compare the studies 

of the battle of Iwo Jima, by Engel [8]; Braun [13]; Washburn and Kress [3] and by 

Stymfal [12]. In this study, we consider the data and dynamics from day D + 6, when 

all the BLUE troops had landed on Iwo Jima, according to the definitions in Stymfal 

[12]. According to the empirical data, x0 = 66,150 and y0 = 18,000. In the different 

studies, the attrition coefficient estimates differ marginally. Here, we use these figures, 

very close to all reported estimates: a = 0.05347 and b = 0.01045. In this paper, x0 is 

treated as a decision variable. Different ways to optimize x0, and the optimal values of 

x0 in different situations, will be determined. In the graph in Figure 5, x0 is assumed 

to be 65,000. 
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Figure 5. x(t) and y(t), for t = 0, 1, …, 31. t = time (days), (x0, y0) = (65,000, 18,000). 

a = 0.05347 and b = 0.01045. The graph is constructed via a discrete time 

approximation of the differential equation system (1). each time step represents one 

day (24 h). time t = 0 corresponds to time D + 6, when all BLUE troops had landed 

on Iwo Jima, in Stymfal [12]. 

Figure 6 shows the positions of (x, y) in the beginnings of each day, during the 

battle. In Figure 7, the same values of (x, y) have been used to construct a continuous 

function. 

 
Figure 6. (x(t), y(t)), for t = 0, 1, …, 31, in case (x0, y0) = (65,000, 18,000), a = 

0.05347 and b = 0.01045. the graph is constructed via a discrete time approximation 

of the differential equation system (1). each time step represents one day (24 h). note 

that the distances between the neighbor points decreases as T increases. 
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Figure 7. Continuous time path of (x(t), y(t)). 

(x0, y0) = (65,000, 18,000), a = 0.05347 and b = 0.01045. The graph is constructed via a discrete time 

approximation of the differential equation system (1). 

Now, let us determine the initial value of x, x0, that leads to the special case, bx2 

= ay2, based on the initial value of y, y0 = 18,000, and the parameters a = 0.05347 and 

b = 0.01045. See Equation (11). With that value of x0, the time derivatives of the size 

of the resources, divided by the sizes of the resources, are equal. In that case, the time 

path of (x, y) follows a straight line in the first quadrant, moving towards origo. 

0 0

0.05347
18000 40716

0.01045

a
x y

b
= =    (11) 

In Figure 8 we see how x(t) and y(t) develop over time, in case x0 = 40,716. The 

attrition coefficients have the same values as in Figure 5. Note, in Figure 8, how both 

resources decrease over time, and that the ratio x/y remains constant. In Figure 5, y 

was reduced to zero at t = 31. Figure 8, shows x and y during the first 100 days. They 

both approach zero, but will never reach zero. The conflict will continue forever. 

 
Figure 8. x(t) and y(t), for t = 0, 1, …, 100. t = time (days), (x0, y0) = (40,716, 

18,000). a = 0.05347 and b = 0.01045. the graph is constructed via a discrete time 

approximation of the differential equation system (1). each time step represents one 

day (24 h). 
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In Figures 9 and 10, we see that the point (x, y) really moves in a straight line 

towards origo, during the first 100 days. The sequence of points shows that the speed 

slows down. Consequently, (x, y) never reaches origo. The conflict continues forever. 

 
Figure 9. (x(t), y(t)), for t = 0, 1, …, 100. t = time (days), (x0, y0) = (40,716, 18,000). 

a = 0.05347 and b = 0.01045. the graph is constructed via a discrete time 

approximation of the differential equation system (1). each time step represents one 

day (24 h). 

 
Figure 10. A continuous time approximation of (x(t), y(t)), for 0 < t < 100. 

t = time (days), (x0, y0) = (40,716, 18,000). a = 0.05347 and b = 0.01045. 

If x0 is reduced to 30,000, which is less than 40,716, as derived in Equation (11), 

the system develops quite differently. The Figures 11–13 show how x reaches zero 

when y still has a value close to 12,000. 
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Figure 11. x(t) and y(t), for t = 0, 1, …, 39. t = time (days), (x0, y0) = (30,000, 

18,000). a = 0.05347 and b = 0.01045. the graph is constructed via a discrete time 

approximation of the differential equation system (1). 

 
Figure 12. (x(t), y(t)), for t = 0, 1, …, 39. (x0, y0) = (30,000, 18,000). a = 0.05347 

and b = 0.01045. the graph is constructed via a discrete time approximation of the 

differential equation system (1). 

 
Figure 13. A continuous time approximation of (x(t), y(t)), for 0 < t < 39. 

t = time (days), (x0, y0) = (30,000, 18,000). a = 0.05347 and b = 0.01045. The graph is constructed via a 

discrete time approximation of the differential equation system (1). 
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Clearly, we have seen that the initial value of x, x0, strongly influences several 

things of importance to the decision makers. Consider two decision makers, BLUE 

and RED. BLUE is the commander of the x resources, and RED commands the y 

resources. BLUE is the defender and RED is a potential attacker. Figure 4 can be used 

to determine the lowest value of x0 that makes it possible to get a solution such that 

BLUE wins a potential conflict, in the sense that BLUE will have a strictly positive 

value of x after a conflict where RED has lost all resources, which means that y is zero. 

BLUE can also use Equation (7) directly, to determine a value of x, conditional on the 

observed value of y. Then, if x is marginally increased, BLUE will not be completely 

out of x resources after a potential conflict, as seen in Figure 3. Hopefully, from the 

BLUE perspective, this fact can also stop RED from attacking BLUE. 

In principle, it is possible to determine x0 this way: Estimate the values of y, a 

and b. Then, use Equation (7) to determine a value of x, called x2, that makes sure that 

we have a point on the time path leading to origo, found in Figure 1. Then, let the 

value of x0 be x2 + x3, where x3 > 0 makes sure that we are in the safe BLUE region, 

according to Figure 4. Of course, if we increase x3, this generally costs money. During 

peace time, it is economically tempting to reduce the value of x3 as much as possible. 

This has also been seen in several countries, during the period after World War Ⅱ. 

It is important to be aware that the reduction of x3 does not only reduce the 

defense budget. The estimates of y, a and b may be too optimistic from the BLUE 

perspective. Then, with a too low value of x3, and the true values of y, a and b, the 

system may move to the red region in Figure 4. In other words, the probability that 

BLUE would not survive a possible war with RED increases, if a low value of x3 is 

selected. 

However, it is not likely that BLUE is only interested to “win” a possible war in 

the sense that some small number of the units x can survive a possible attack. The 

Figures 5–13 have clearly shown that BLUE can adjust the time it takes for a conflict 

to end, via the selection of x0. The time it takes to stop a possible attack from RED is 

important in several ways. If a war goes on for a long time, this negatively influences 

the economically profitable production and trade. Furthermore, during a war, 

infrastructure and the environment are destroyed. Civilians are killed and wounded. 

Hence, it is important to determine how BLUE can reduce the time to stop the war, 

via the selection of x0. 

The number of killed and wounded soldiers should also be considered. It is 

important to determine how BLUE can reduce the number of destroyed resources, x, 

such as killed and wounded soldiers, via the selection of x0. 

In the later parts of this paper, detailed analytical and numerical investigations of 

these effects and decisions are included. Here, some introductory simple examples are 

given, with different values of x0. They show the time it takes to end a possible war, 

and the size of force reductions. In five different cases, found in Figure 14, x0 takes 

the values 30,000, 40,716, 45,000, 52,500 or 65,000. 
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Figure 14. (x(t), y(t)), for t = 0, 1, …, T. t = time (days), T is the point in time when 

one of the variables x or y, takes the value zero. a = 0.05347 and b = 0.01045. y0 = 

18000. In the five different cases, x0 takes the value 30,000, 40,716, 45,000, 52,500 

or 65,000. the graph is constructed via a discrete time approximation of the 

differential equation system (1). 

Note, in Figure 14, that it is possible to calculate the total number of lost x 

resources, at different points in time. That kind of information is shown in Figure 15. 

The total number of lost y resources, at different points in time, is shown in Figure 16. 

 
Figure 15. KIAx denotes the total number of lost x resources, at different points in 

time, t, until t = T. T is the point in time, when y(T) = 0. KIAx(x0/1000) = x0 ‒ x(t). a 

= 0.05347 and b = 0.01045. y0 = 18000. in the four different cases, x0 takes the value 

45,000, 65,000, 85,000, or 105,000. the graph is constructed via a discrete time 

approximation of the differential equation system (1). 
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Figure 16. KIAy is the total number of lost y resources, at different points in time, t, 

until t = T. T is the point in time when y(T) = 0. KIAy(x0/1000) = y0 ‒ y(t). a = 

0.05347 and b = 0.01045. In all cases, y0 = 18000. in the four different cases, x0 takes 

the value 45,000, 65,000, 85,000, or 105,000. the graph is constructed via a discrete 

time approximation of the differential equation system (1). 

In Figure 17, we see how the time of termination of a conflict, the point in time 

when the attacker RED has no more resources available, is affected by the value of x0. 

Clearly, a conflict stops more rapidly in case BLUE selects a larger value of x0. 

In Figure 18, we see how the number of lost resources, x, at the time of 

termination of a conflict, is affected by the value of x0. Obviously, the number of 

resources, x, that are lost during the war, decreases if BLUE selects a larger value of 

x0. 

 

Figure 17. T, the time of termination, is the point in time, when y(T) = 0. a = 

0.05347 and b = 0.01045. y0 = 18,000. in the four different cases, x0 takes the value 

45,000, 65,000, 85,000, or 105,000. the graph is constructed via a discrete time 

approximation of the differential equation system (1). 
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Figure 18. KIAx at termination is the total number of lost x resources, at time t = T. 

T is the point in time, when y(T) = 0. a = 0.05347 and b = 0.01045. y0 = 18000. in the 

four different cases, x0 takes the value 45,000, 65,000, 85,000, or 105,000. the graph 

is constructed via a discrete time approximation of the differential equation system 

(1). 

2.1. Formal analysis 

Briefing on this section 

The complete dynamics of the battle in continuous time is determined. First, the 

general solution to the Lanchester differential equation system, which is a 

homogenous second order differential equation system, is derived. This may be 

interpreted as a 2-dimensional Two Point Boundary Value Problem (TPBVP). 

Equation (12) corresponds to Equation (1), but also includes initial conditions. 

We study the differential equation system (12). The state of the system, 

(𝑥(𝑡), 𝑦(𝑡)), representing the sizes of the two opposing forces, changes over time, 

𝑡,  0 ≤ 𝑡 ≤ 𝑇 < ∞ . The two parameters, (𝑎, 𝑏) , are called attrition coefficients. 

Newtonian notation, with time derivatives marked by dots, is used. 

0 0

(12. )
0, 0, (0) 0, (0) 0

(12. )

x ay a
a b x x y y

y bx b


= −

  =  = 
 = −

 (12) 

From Equation (12a), we get Equation (13). 

1y a x−= −  (13) 

Differentiation of Equation (13) with respect to time, gives Equation (14). 

1y a x−= −  (14) 

Equations (14) and (12b) give Equation (15). That can be rewritten as Equations 

(16) and (17), which is a homogenous second order differential equation. 

1a x bx−− = −  (15) 
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1 0a x bx− − =  (16) 

0x abx− =  (17) 

Let us assume that the functional form Equation (18) is relevant. The parameters 

(𝑚, 𝜆) are assumed to be strictly different from zero. 

( ) , 0, 0,0tx t me m t T =       (18) 

Then, the following procedure can be used to determine the state variable as an 

explicit function of time. Equations (17) and (18) give Equation (19). 

2 0t tme abme  − =  (19) 

Equation (19) can be simplified to Equation (20). 

( )2 0tab me − =  (20) 

Equations (18) and (20) imply Equation (21). 

2 0ab − =  (21) 

From the quadratic Equation (21), we obtain the solution Equation (22). 

ab =   (22) 

Let 𝑟 be defined according to (23). 

r ab=  (23) 

Clearly, two solutions exist. 

1 r = −  (24) 

2 r =  (25) 

2.2. Observation 

𝑎 > 0 ∧ 𝑏 > 0, as we see in Equation (12), which means that there are two real 

roots. These roots have different values. Hence, the general solution of the differential 

equation is: 

1 2( ) rt rtx t m e m e−= +  (26) 

Furthermore, from Equation (13) we already know that: 
1y a x−= − . 

As a result, we get Equation (27). 

( )1

1 2( ) rt rty t a rm e rm e− −= − − +  (27) 

The Equation (27) may be rewritten as Equation (28). 
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1 2( ) rt rtr r
y t m e m e

a a

−= −  (28) 

Hence, the solution to the differential equation system (12) is given in Equation 

(29). 

1 2

1 2

( )

( )

rt rt

rt rt

x t m e m e

r r
y t m e m e

a a

−

−

 = +



= −


 (29) 

To determine the time path (𝑥(𝑡), 𝑦(𝑡)) we need to know the four parameters 

(𝑚1, 𝑚2, 𝑎, 𝑟). We already know the initial value of 𝑦,  𝑦(0) = 𝑦0. In this study, we 

are interested to determine the optimal value of 𝑥0. We want to be sure that we will 

win the battle, which means that 𝑥(𝑇) > 0 and 𝑦(𝑇) = 0 at a point in time, 𝑇. This 

point in time, when the enemy has no more available resource, is denoted the terminal 

time. 

From Equation (29), the initial conditions Equations (30) and (31) follow: 

1 2 0(0)x m m x= + =  (30) 

1 2 0(0)
r r

y m m y
a a

= − =  (31) 

The terminal conditions, Equations (32) and (33), are also derived from Equation 

(29): 

1 2( ) rT rT

Tx T m e m e x−= + =  (32) 

1 2( ) rT rT

T

r r
y T m e m e y

a a

−= − =  (33) 

The nonlinear simultaneous equation system (34) must be satisfied. We assume 

that a feasible solution exists and that this solution is unique. 

1 2 0

1 2

1 2 0

1 2

(34. )

(34. )

(34. )

(34. )

rT rT

T

rT rT

T

m m x a

m e m e x b

r r
m m y c

a a

r r
m e m e y d

a a

−

−

+ =


+ =


 − =



− =


 (34) 

Determination of (𝑚1,𝑚2): 

01

02

1 1 xm

yms s

   
=    

−     
 (35) 
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r ab b
s

a a a
= = =  (36) 

1 1
2D s

s s
= = −

−
 (37) 

From Cramer’s rule, we get: 

0

0 0 0
1

1

2

x

y s sx y
m

D s

− − −
= =

−
 

(38) 

1 0 0
0 0

1
2 2

a
x y

x s y b
m

− +
+

= =  
(39) 

10 0
1 0 ,

2

x vy a
m v s

b

−+
=  = =  (40) 

0

0 0 0
2

1

2

x

s y y sx
m

D s

−
= =

−
 

(41) 

0 0
0 0

2
2 2

a
x y

x vy b
m

−
−

= =  
(42) 

2
2 20 0

2 0 02

0 0

0

0

0

x xa a
m bx ay

y b y b

          
       
=  =  =  =       
                 

 (43) 

2.3. Observations 

Two different proofs are given in the end of this paper that show that 𝑥(𝑇) =

√
𝑏𝑥0

2−𝑎𝑦0
2

𝑏
. 

If 𝑏𝑥0
2 > 𝑎𝑦0

2, then 𝑦(𝑡) reaches zero when 𝑥(𝑡) > 0. In that case, 𝑚2 > 0. 

If 𝑏𝑥0
2 < 𝑎𝑦0

2, then 𝑥(𝑡) reaches zero when 𝑦(𝑡) > 0. In that case, 𝑚2 < 0. 

If 𝑏𝑥0
2 = 𝑎𝑦0

2 (which is extremely unlikely), then 𝑥(𝑡) and 𝑦(𝑡) both converge 

to zero. Then, 𝑚2 = 0. 

The case when 𝑏𝑥0
2 = 𝑎𝑦0

2  is not further studied in this paper, since the 

probability of that case is practically zero. 
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2.4. Determination of T 

From now on, we only consider the case where 𝑏𝑥0
2 > 𝑎𝑦0

2 . Consequently, 

𝑦(𝑡) reaches zero when 𝑥(𝑡) > 0 and 𝑚2 > 0. Let us determine 𝑇 as the point in time 

when 𝑦(𝑇) = 𝑦𝑇 = 0. 

1 2 0rT rT

Ty sm e sm e−= − =  (44) 

( )1 2 0

0 0

rT rTs m e m e− − =

 =
 (45) 

( )1 2 0rT rTm e m e− − =  (46) 

( )2

1 2 0

0 0

rT rTe m m e− − =

 =
 (47) 

2

2 1

rTm e m=  (48) 

2 1

2

rT m
e

m
=  (49) 

1

2

2
m

rT LN
m

 
=  

 
 (50) 

0 0

0 0

0 0
0 0

2 2

a
x y

bLN
x vy aLN x y
x vy b

T
r ab

 
+ 

 
 +  

−   −   = =  

(51) 

In Figure 19, we see how the terminal time T is affected by the initial sizes of the 

two forces, when the attrition coefficients from Iwo Jima are used. In Figure 20, it is 

demonstrated that the terminal time T is reduced, in case the attrition coefficient b 

increases. 
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Figure 19. T(x0, y0). a = 0.05347, b = 0.01045. compare Equation (51). 

 
Figure 20. T(x0, y0). a = 0.05347, b = 0.01045. (yellow and green). T(x0, y0). a = 

0.05347, b = 0.02045. (purple and turquoise). compare Equation (51). 

2.5. Determination of the derivative of T with respect to x0 

( )
( ) ( )

( )

1 0 0 0 00 0

2

0 0 0 0 0

1 1
2

x vy x vyx vydT
r

dx x vy x vy

−
  − − +  −

=    + −  

 (52) 

( )
( )( )

1 0

0 0 0 0 0

2
2

vydT
r

dx x vy x vy

− −
=

+ −
 (53) 

( )( )
0

0 0 0 0 0

vydT

dx r x vy x vy

−
=

+ −
 (54) 
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( )
0

2 2 2
0 0 0

vydT

dx r x v y

−
=

−
 (55) 

0

2 20
0 0

a
y

dT b

adx
ab x y

b

−

=
 

− 
 

 (56) 

0

2 20
0 0

ydT

adx
b x y

b

−
=

 
− 

 

 
(57) 

0

2 2

0 0 0

0
ydT

dx bx ay

−
= 

−
 (58) 

2.6. Determination of the second derivative of T with respect to x0 

( )

( )

2
0 0

22 2 2
0 0 0

2y bxd T

dx bx ay

− −
=

−
 (59) 

( )

2

0 0

22 2 2
0 0 0

2
0

bx yd T

dx bx ay
= 

−
 (60) 

2.7. Determination of xT via the function x(t) and the value of T when yT = 

0 

1 2( ) rT rT

Tx T m e m e x−= + =  (61) 

0 0 0 0( )
2 2

rT rTx vy x vy
x T e e−+ −   

= +   
   

 (62) 

0 0 0 0

0 0 0 0

2 2

0 0 0 0( )
2 2

x vy x vy
LN LN

x vy x vy
r r

r r

x vy x vy
x T e e

      + +
      

− −      
−    
   
   
   

+ −   
= +   
   

 
(63) 

0 0 0 0

0 0 0 0

2 2

0 0 0 0( )
2 2

x vy x vy
LN LN

x vy x vy

x vy x vy
x T e e

      + +
      

− −      
−   
   
   
   

+ −   
= +   
   

 
(64) 
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0 0 0 0 0 0 0 0

0 0 0 0

( )
2 2

x vy x vy x vy x vy
x T

x vy x vy

+ − − +   
= +   

+ −   
 (65) 

0 0 0 0 0 0 0 0
( )

2 2

x vy x vy x vy x vy
x T

+ − − +
= +  (66) 

0 0 0 0( )x T x vy x vy= + −  (67) 

( ) ( )( )
2

0 0 0 0( )x T x vy x vy= + −  (68) 

( )
2 2 2 2

0 0( )x T x v y= −  (69) 

2 2 2

0 0( )x T x v y= −  (70) 

2 2

0 0( )
a

x T x y
b

 
= − 

 
 (71) 

2 2

0 0( )
bx ay

x T
b

−
=  (72) 

2.8. Alternative method to determine xT 

dx
ay

dt

dy
bx

dt


= −


 = −


 (73) 

dx ay

dy bx

−
=
−

 (74) 

bx dx ay dy=  (75) 

0 0

T Tx y

x y

bx dx ay dy=   (76) 

0 0

2 2

2 2

T Tx y

x y

x y
b a
   

=   
   

 (77) 
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2 22 2

0 0

2 2 2 2

T T
x yx y

b a
   

− = −   
   

 (78) 

( ) ( )2 2 2 2

0 0T Tb x x a y y− = −  (79) 

( ) ( )2 2 2

0 0 , 0T Tb x x a y y− = − =  (80) 

2 2 2

0 0 , 0T Tbx bx ay y= − =  (81) 

2 2
2 0 0 , 0T T

bx ay
x y

b

−
= =  (82) 

2 2

0 0 , 0T T

bx ay
x y

b

−
= =  (83) 

Q.E.D. 

In Figure 21, we see how the size of the x force at the terminal time T is affected 

by the initial sizes of the two forces, when the attrition coefficients from Iwo Jima are 

used. 

 
Figure 21. xT(x0, y0). a = 0.05347, b = 0.01045. compare Equation (83). 

In Figure 21, we see the number of killed or wounded soldiers from the x force 

at the terminal time T, as a function of the initial sizes of the two forces, when the 

attrition coefficients from Iwo Jima are used. 

In Figure 22, we see the number of killed or wounded soldiers from the x force 

at the terminal time T, as a function of the initial sizes of the two forces, when the 

attrition coefficients from Iwo Jima are used. In Figure 23, we also see how the 

number of killer or wounded soldiers from the x force at the terminal time T, for 
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different combinations of the initial sizes of the two forces, is affected in case the 

attrition coefficient b increases. If the coefficient b increases, a smaller number of 

soldiers from the x force are killed or wounded. 

 
Figure 22. K(x0, y0) = x0 ‒ xT(x0, y0). a = 0.05347, b = 0.01045. compare Equation 

(83). 

 
Figure 23. K(x0, y0) = x0 ‒ xT(x0, y0). a = 0.05347, b = 0.01045. (purple). compare 

Equation (83).  

2.9. Determination of the derivative of xT with respect to x0 when yT = 0 

2 2

0 0 , 0T T

bx ay
x y

b

−
= =  (84) 

( )
1 1

2 22 2
0 0 , 0T Tx b bx ay y

−

= − =  (85) 

( ) ( )
1 1

2 22 2
0 0 0

0

1
2

2

Tdx
b bx ay bx

dx

− − 
= − 

 
 (86) 
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( )
1 1

2 22 2
0 0 0

0

0Tdx
b bx ay x

dx

−

= −   (87) 

0

2 2
0 0 0

0T
b xdx

dx bx ay
= 

−
 (88) 

2.10. Determination of the second derivative of xT with respect to x0 when 

yT = 0 

( ) ( )
1 3 12

2 2 2 2 22 2 2
0 0 0 0 02

0

1
2

2

Td x
b bx ay bx bx ay

dx

− − 
= − − + − 

 
 (89) 

( ) ( )
1 3 12

2 2 2 2 22 2 2
0 0 0 0 02

0

Td x
b bx ay bx bx ay

dx

− − 
= − − + − 

 
 (90) 

( ) ( )( )
1 12

1
2 2 2 2 22 2

0 0 0 0 02

0

1Td x
b bx ay bx ay bx

dx

− −

= − − − +  (91) 

( )
1 212

2 2 02 2
0 02 2 2

0 0 0

1T
bxd x

b bx ay
dx bx ay

−  −
= − + 

− 
 (92) 

( ) ( )
1 12

2 2 2 2 22 2
0 0 0 0 02 2 2

0 0 0

1Td x
b bx ay bx bx ay

dx bx ay

−  
= − − + − 

− 
 (93) 

( ) ( )
1 32

2 2 22 2
0 0 02

0

Td x
b bx ay ay

dx

−

= − −  (94) 

( )

22

0

32
2 20 2

0 0

0T
a byd x

dx
bx ay

−
= 

−

 
(95) 

2.11. Summary of important results 

0 0

0 0

2

a
x y

bLN
a

x y
b

T
ab
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2.12. Economic optimization in the deterministic case 

Economic optimization of the deployment decision, is based on an objective 

function. This objective function is the sum of the possible revenues minus the 

different costs, that are consequences of the decision. In the first version of this 

optimization problem, the revenue associated with an instant victory, is denoted G. 

The maximization of such an objective function, denoted 𝜋, is presented in general 

form in Equation (102). The decision variable is the initial size of force x. The listed 

parameters are the attrition coefficients, a and b, the marginal cost of the time of the 

victory, 𝑐𝑇, the marginal cost of killed or wounded soldiers with equipment, 𝑐𝑥𝑇, and 

the initial size of force y. 

( )
0

0 0max ; , , , , ,
TT x

x
x a b c c G y  (102) 

A more explicit form of the objective function is found in Equation (103). 𝐶(𝑥0) 

is the total cost of the 𝑥0 soldiers with equipment, sent to the battle field. It is important 

to be aware that this total cost includes the costs of military education, transport, and 

possible alternative values of utilization of the deployed soldiers. For instance, the 

soldiers could probably also have been used in industrial production, or in some other 

way, if they would not have been sent to this particular battle field. Furthermore, it 

could also have been possible to send some of them to some other battle field. 

( ) ( ) ( )( )
0

0 0 0 0 0 0max , , , , , ,
TT x T

x
C x G c T x y a b c x x x y a b = − + − − −  (103) 

Equation (104) is an even more explicit form of the objective function. 
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The Figures 24 and 25 illustrate the objective function in Equation (104) as a 

function of the initial sizes of the two forces. The functions and values in Figure 24 

are: C(x0) = 1000 + 1x0, G = 200,000, cT = 730 and cxT =2. a = 0.05347, b = 0.01045. 

The attrition coefficients are collected from the empirical estimations based on the 

Battle of Iwo Jima. Compare Figure 5 and Stymfal [12]. 

2.13. Motivation for the introduced parameter values, used in CASE 0 

The two parameters in the function C(x0), G, cT and cxT have no documented 

empirical background. In fact, it is not even clear that these parameter values have 

ever been empirically determined, decided, or documented in connection to the real 

battle. Still, since the values of these parameters are necessary to know, in case we 

should be able to optimize the deployment decision x0, in a logically defendable 

manner, with consideration of the economically relevant conditions present in the 

objective function in Equation (104), these numerically specified parameter values are 

now suggested. We assume that the unit of the objective function is M$US, in the price 

level of 2024. 

First, we should be aware that fix costs and fix revenues do not affect the optimal 

deployment decision, as long as the optimal deployment decision is strictly positive. 

The fix cost parameter in 𝐶(𝑥0) is 1000, which represents 1billion $US. The marginal 

cost of one soldier in 𝐶(𝑥0) is 1 M$US, which may be reasonable with consideration 

of the fact that the economic value of alternative use of one person in the labor force, 

plus several other costs, may be considerable. The value of G, 200 billion $US, 

represents the value of instant access to the island Iwo Jima, during the end of WW Ⅱ. 

This island was very important during the final part of the war, but the economic value 

G was probably never calculated. The parameter cT shows how rapidly the value of 

access to the island declines, per day, when we wait for the victory. With the suggested 

parameter value, the economic value of access to the island would be 0 after 274 days, 

or 9 months. Hence, each month, the economic value of access to the island falls with 

approximately 11% of the value of instant access to the island. The economic value of 

each lost killed or wounded soldier, with equipment, cxT, is assumed to be set to 2 

M$US. Such economically defined values, of lost lives, are almost never reported. 

Still, such values are necessary parameters, when the optimal deployment problem 

should be solved. The reader is encouraged to search for empirically estimated 

parameters of the types that now have been introduced. If new values are found, the 

updated complete analysis may be repeated. 
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Figure 24. The objective function in Equation (104), as a function of the initial sizes 

of the two forces. 

Parameters: C(x0) = 1000 + 1x0, G = 200,000, cT = 730 and cxT =2. a = 0.05347, 

b = 0.01045. The graph illustrates that the optimal value of x0 is an increasing function 

of y0. Furthermore, the optimal value of the objective function of the commander of 

force x, is a decreasing function of the initial size of the force y. Clearly, if the value 

y0 would have a much larger value than 20,000, as illustrated in the graph, the 

maximum of the objective function value, would be strictly negative. Then, the 

optimal decision of the commander of the x forces would be not to participate in the 

battle at all. 

In Figure 25, we see how the objective function in Equation (104) is affected, in 

case the attrition coefficient b increases. Then, the objective function of the x force 

commander, increases. Furthermore, the optimal value of x0 decreases. 

 
Figure 25. The objective function in Equation (104), as a function of the initial sizes 

of the two forces, with alternative values of the attrition coefficient “b”. 

Attrition coefficients: Yellow: a = 0.05347, b = 0.01045, Turquoise: a = 0.05347, 

b = 0.02045. Other functions and parameters: C(x) = 1000 + 1x, G = 200,000, cT = 730 

and cxT =2. The graph illustrates that the objective function value of the commander of 

the x forces is an increasing function of the attrition coefficient b, and that the optimal 
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number of units x to send to the battle field is a decreasing function of b, for all possible 

sizes of the enemy force, if the optimal decision x0 is strictly positive. 

2.14. A unique maximum 

First order optimum condition: 
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0
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Hence, the solution of the first order optimum condition represents a unique 

maximum of the objective function. 

2.15. Comparative statics analysis 

Now, we determine how parameter changes affect the optimal deployment 

decision: 

With comparative statics analysis, we see how the optimum is maintained when 

different possible parameter changes take place. First, the cost per day of the battle is 

adjusted. The first order optimum condition is differentiated with respect to the 

optimal value of 𝑥0, denoted 𝑥0
∗, and 𝑐𝑇: 
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Hence, if the cost per day before the victory increases, then the optimal 

deployment level increases. This is understandable, since the process will end more 

rapidly if the initial number of units is larger. 
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The result shows that if the cost per unit of killed or wounded troops with 

equipment increases, then the optimal deployment level increases. This is 

understandable, since the number of surviving units is an increasing function of the 

initial number of units. 
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Hence, if the attrition coefficient a increases, then the optimal deployment 

increases. 
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Hence, if the attrition coefficient b increases, then the optimal deployment 

decreases. This is also illustrated in Figure 25. 

3. Results 

Numerical results are reported from two alternative optimization models. Both 

models are documented in the Appendix. 

3.1. Numerical model 1 

Continuous optimization model with Newton Raphson iteration: This model, 

directly based on the analytical derivations presented in the earlier sections, 

determines the optimal decisions and consequences, via the Newton- Raphson method 

applied to the first order optimization condition. Table 1 contains the output from the 

model when the Case 0 parameters are used. In the first and second rows, the 

parameters are shown. x0_0 is the initial value of x0, when the iteration method starts. 

Then, the steps of the iteration are listed. The table shows the number of the iteration, 

n, the value of the deployment, x0, the time of the victory, T (days), the number of 

killed and wounded soldiers, K, and the change of x0, dx0. The iterations stop when 

dx0 is sufficiently close to zero. The optimal results are found in the last row. Table 1 

and the Figures 26–28, show the optimal results in different cases. Table A1 in the 

Appendix includes numerical information. 

Table 1. Output from Numerical model 1, case 0. 

F cx0 G cT cK 

1000 1 200,000 730 2 

a b y0 x0_0  

0.05347 0.01045 18,000 90,000  

n x0 T K dx0 

0 90,000    

1 75,787 25.395 11,866 −14213.5 

2 71,793 27.214 12,662 −3993.16 

3 69,728 28.277 13,123 −2065.42 

4 65,658 30.68 14,149 −4069.85 

5 66,147 30.366 14,016 488.7715 

6 66,156 30.36 14,014 9.613701 

7 66,156 30.36 14,014 0.003585 

8 66,156 30.36 14,014 0 
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Figure 26. The optimal values of x0, according to numerical model 1, in alternative 

cases. 

 
Figure 27. The optimal values of T, the day of the victory, according to numerical 

model 1, in alternative cases. 

 
Figure 28. The optimal values of K, the number of killed and wounded soldiers, 

according to numerical model 1, in alternative cases. 
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3.2. Numerical model 2 

Discrete optimization model with stochastic attrition coefficients: This model, 

partly based on the analytical derivations presented in the earlier sections, determines 

the optimal decisions and consequences, via numerical calculations, for alternative 

deployment levels. The optimal value of the objective functions is defined as the 

highest value of the investigated alternatives. 

Table 2 contains the output from the model when the Case 0 parameters are used. 

The cases and parameters are not all identical as in the Numerical model 1. R_Wx1 is 

the value of instant access to the island, and corresponds to G. R_tF corresponds to 

cTX. R_x0 corresponds to the marginal cost of C(x) multiplied by −1. R_KIAx 

corresponds to cxT. a_mean and b_mean are the expected values of the attrition 

coefficients a and b. a_sigma and b_sigma are the relative standard deviations of the 

attrition coefficients a and b. E_xF and E_yF are the expected numbers of soldiers, x 

and y, that are still alive after the battle. E_KIAx and E_KIAy are the expected 

numbers of killed or wounded soldiers in the two armies, after the battle. E_Wx is the 

probability that the army with the x resources wins the battle and E_Wy is the 

probability that the army with the y resources wins the battle. E_tF is the expected time 

(Day) when one of the armies wins the battle. E_Rx and E_Ry are the expected 

objective function values of the two armies, in the unit billion $US. (The details of 

E_Ry are not of relevance here. More details may be found in the Appendix.) In the 

final two rows, the optimal deployment decision, x0, and the optimal objective function 

value, E_Rx, are presented. Table 2 and the Figures 29–31, show the optimal results 

in different cases. Table A2 in the Appendix includes numerical information. 

Table 2. Output from Numerical model 2, case 0. 

Parameter R_Wx1 R_Wx2 R_tF R_x0 R_KIAx a_mean b_mean a_sigma b_sigma  

Value 300,000 0 0 −2 0 0.0544 0.0106 0.2 0.2  

x0 y0 E_xF E_yF E_KIAx E_KIAy E_Wx E_Wy E_tF E_Rx E_Ry 

0 21,500 0 21,500 0 0 0 1 1 0 −6 

5000 21,500 0 21,354 5000 146 0 1 5 −10 −7 

10,000 21,500 0 20,967 10,000 533 0 1 10 −20 −7 

15,000 21,500 0 20,326 15,000 1174 0 1 14 −30 −8 

20,000 21,500 0 19,402 20,000 2098 0 1 20 −40 −9 

25,000 21,500 0 18,148 25,000 3352 0 1 26 −50 −10 

30,000 21,500 0 16,469 30,000 5031 0 1 33 −60 −11 

35,000 21,500 123 14,130 34,877 7370 0.0123 0.9877 42 −66 −15 

40,000 21,500 1260 10,888 38,740 10,612 0.1011 0.8989 54 −50 −27 

45,000 21,500 5027 7082 39,973 14,418 0.3218 0.6782 65 7 −59 

50,000 21,500 12,269 3772 37,731 17,776 0.5579 0.4421 67 67 −106 

55,000 21,500 21,773 1601 33,227 19,899 0.8164 0.1836 61 135 −161 

60,000 21,500 31,313 580 28,687 20,920 0.9244 0.0756 53 157 −203 

65,000 21,500 40,071 174 24,929 21,326 0.9807 0.0193 46 164 −236 

70,000 21,500 47,937 36 22,063 21,464 0.9961 0.0039 40 159 −260 

75,000 21,500 55,101 3 19,899 21,497 1 0 35 150 −279 
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Table 2. (Continued). 

Parameter R_Wx1 R_Wx2 R_tF R_x0 R_KIAx a_mean b_mean a_sigma b_sigma  

Value 300,000 0 0 −2 0 0.0544 0.0106 0.2 0.2  

x0 y0 E_xF E_yF E_KIAx E_KIAy E_Wx E_Wy E_tF E_Rx E_Ry 

80,000 21,500 61,776 0 18,224 21,500 1 0 32 140 −295 

85,000 21,500 68,129 0 16,871 21,500 1 0 29 130 −308 

90,000 21,500 74,259 0 15,741 21,500 1 0 27 120 −320 

95,000 21,500 80,225 0 14,775 21,500 1 0 25 110 −331 

100,000 21,500 86,064 0 13,936 21,500 1 0 24 100 −340 

105,000 21,500 91,800 0 13,200 21,500 1 0 23 90 −348 

110,000 21,500 97,454 0 12,546 21,500 1 0 21 80 −356 

115,000 21,500 103,040 0 11,960 21,500 1 0 20 70 −363 

120,000 21,500 108,567 0 11,433 21,500 1 0 19 60 −368 

125,000 21,500 114,044 0 10,956 21,500 1 0 18 50 −375 

130,000 21,500 119,481 0 10,519 21,500 1 0 18 40 −380 

135,000 21,500 124,878 0 10,122 21,500 1 0 17 30 −385 

140,000 21,500 130,247 0 9753 21,500 1 0 16 20 −389 

145,000 21,500 135,583 0 9417 21,500 1 0 16 10 −394 

150,000 21,500 140,899 0 9101 21,500 1 0 15 0 −398 

Opt_x0 65,000  Opt_E_Rx 164       

 
Figure 29. The optimal values of x0, according to numerical model 2, in alternative 

cases. 
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Figure 30. The optimal expected values of E(T), the day of the victory, according to 

numerical model 2, in alternative cases. 

 
Figure 31. The optimal expected values of K, (= KIAx), the number of killed and 

wounded soldiers, according to numerical model 2, in alternative cases. 

4. Discussion 

The decision problem studied in this paper, to determine the optimal size of a 

military force to send to the battle field, is based on several assumptions. We should 

be aware that, in many conflicts, the objective function is not mathematically defined. 

There may be several reasons for this fact. Maybe, the decision maker simply does not 

know the potential value of a victory, the costs of different possible delays of a victory, 

the true costs of deployment of different numbers of soldiers, the costs of killed and 

wounded soldiers and destroyed equipment, and the attrition coefficients. Maybe the 

knowledge of mathematics is not sufficient. The analysis and optimization in this 

paper has shown that the optimal size of the deployed force is strongly dependent on 

the listed parameters. If the value of a potential victory is not sufficiently high, the 

optimal decision may be to avoid the battle completely. Then, in a formal analysis, the 

optimal objective function would be negative. This way, the costs of deployment, 

delays, killed and wounded soldiers and destroyed equipment, can all be avoided. 

Clearly, without an objective function that covers all relevant costs and revenues, with 

numerically specified cost and revenue functions and parameters, it is not possible to 

observe and react on such possible negative values, before it is too late. In the case of 
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the Battle of Iwo Jima, the value of a potential victory is a function of the properties 

of the general strategy plans in the Pacific Ocean and connected areas, during WW Ⅱ. 

Hence, it would have been necessary to investigate and optimize the complete strategic 

plan, with or without access to the island Iwo Jima, to be able to determine an 

approximate value of a potential victory at Iwo Jima. Furthermore, to be able to 

determine the costs of different possible time delays before access to the island would 

be possible, several alternative general strategies in the Pacific would have to be 

developed. Obviously, such analyses could have been very difficult and time 

consuming, at the time of the battle, partly because of the lack of modern computers. 

Nowadays, however, the computational capacity provides no relevant constraints to 

this kind of analysis. In the analysis in this paper, it has been demonstrated that the 

optimal size of the deployed force, and the expected numbers of killed or wounded 

soldiers, are strongly dependent on the marginal cost of potential delays of a victory. 

In the deterministic case, if the marginal cost of waiting for a victory doubles, the 

optimal size of the deployed force increases by almost 10,000 soldiers. Then, the 

victory appears 4 days earlier and the number of killed or wounded soldiers decreases 

by more than 2000. In one of the stochastic cases, if the marginal cost per killed or 

wounded soldier increases by 5 M$US, the optimal size of the deployed force increases 

by 10,000 soldiers. Then, the expected victory occurs 11 days earlier and the expected 

number of killed or wounded soldiers decreases by more than 5000. Hence, if we are 

truly interested to develop the optimal strategic plan, and care about the lives of 

soldiers, we simply must define the objective function correctly and perform the 

relevant optimization. 

5. Conclusions 

This study focuses on the optimal deployment problem, and determines the 

optimal size of a military force to send to the battle field. The decision is optimized, 

based on an objective function, that considers the cost of deployment, the cost of the 

time it takes to win the battle, and the costs of killed or wounded soldiers and 

equipment. The cost of deployment is modeled as an explicit function of the number 

of deployed troops and the value of a victory with access to a free territory, is modeled 

as a function of the length of the time it takes to win the battle. The cost of lost troops 

and other equipment, is a function of the size of the reduction of these lives and 

resources. An objective function, based on these values and costs, is optimized, under 

different parameter assumptions. The battle dynamics is modeled via the Lanchester 

differential equation system based on the principles of directed fire. First the 

deterministic problem is solved analytically, via derivations and comparative statics 

analysis. General mathematical results are reported, including the directions of 

changes of the optimal deployment decisions, under the influence of alternative types 

of parameter changes. Then, the first order optimum condition from the analytical 

model, in combination with numerically specified parameter values, is used to 

determine optimal values of the levels of deployment in different situations. A 

concrete numerical case, based on documented facts from the Battle of Iwo Jima, 

during WW Ⅱ, is analyzed, and the optimal BLUE deployment decisions are 

determined under different assumptions. The known attrition coefficients of both 
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armies, BLUE and RED, and the initial size of the RED force, are parameters. The 

analysis is also based on some parameters without empirical documentation, that are 

necessary to include to make optimization possible. The optimal solutions are found 

via Newton Raphson iteration. Finally, a stochastic version of the optimal deployment 

problem is defined. The attrition parameters are considered as stochastic, before the 

deployment decisions have been made. The attrition parameters of the two armies have 

the same expected values as in the deterministic analysis, are independent of each 

other, have correlation zero, and have relative standard deviations of 20%. All possible 

deployment decisions, with 5000 units intervals, from 0 to 150,000, are investigated, 

and the optimal decisions are selected. The analytical, and the two numerical, methods, 

all show that the optimal deployment level is a decreasing function of the marginal 

deployment cost, an increasing function of the marginal cost of the time to win the 

battle, an increasing function of the marginal cost of killed and wounded soldiers and 

lost equipment, an increasing function of the initial size of the opposing army, an 

increasing function of the efficiency of the soldiers in the opposing army and a 

decreasing function of the efficiency of the soldiers in the deployed army. The 

stochastic model also shows that the probability to win the battle is an increasing 

function of the size of the deployed army. When the optimal deployment level is 

selected, the probability of a victory is usually less than 100%, since it would be too 

expensive to guarantee a victory with 100%. Some of many results of relevance to the 

Battle of Iwo Jima, are the following: In the deterministic Case 0 analysis, the optimal 

BLUE deployment level is 66,200, the time to win the battle is 30 days and 14,000 

BLUE soldiers are killed or wounded. If the marginal cost of the time to wait for a 

victory doubles, the optimal deployment increases to 75,400, the time to win is 

reduced to 26 days, and less than 12,000 soldiers are killed or wounded. In the 

stochastic Case 0 analysis, the optimal BLUE deployment level is 65,000, the expected 

time to win the battle is 46 days and almost 25,000 BLUE soldiers are expected to be 

killed or wounded. If the cost per killed or wounded soldier increases by 5 M$US, the 

optimal deployment level increases to 75,000. Then, the victory is expected to appear 

after 35 days and 19,900 BLUE soldiers are expected to be killed or wounded. 
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Appendix 

Ⅰ. Numerical model 1 

Continuous optimization model with Newton Raphson iteration: 

Table A1. Optimal results from numerical model 1, in different cases. 

Case Case  x0 T K 

0 Case 0 66,156 30.36 14,014 

1 cx0 = 2 54,281 41.17 18,384 

2 cT = 1460 75,419 25.551 11,935 

3 cK = 4 77,210 24.81 11,608 

4 y0 = 23000 81,670 31.862 18,716 

5 a = 0.033470 56,857 34.353 10,006 

6 b = 0.02045 47,292 21.703 10,018 

Software developed in the computer language QB64: 

Algorithm 1 Numerical Model 1 

1: Rem 

2: Rem OptStrat_240114_1950 

3: Rem Peter Lohmander 

4: Cls 

5: Open "AOpt_Out.txt" For Output As #1 

6: DefDbl A-Z 

7: F = 1000 

8: cx0 = 1 

9: G = 200000 

10: cT = 730 

11: cK = 2.0 

12: a = 0.05347 

13: b = 0.01045 

14: y0 = 18000 

15: x0 = 90000 

16: dx0 = 1 

17: dPdx0 = 0 

18: d2Pdx02 = 0 

19: T = 0 

20: K = 0 

21: Print "       F     cx0       G       cT      cK" 

22: Print Using "########"; F; 

23: Print Using "####.###"; cx0; 

24: Print Using "########"; G; 

25: Print Using "#####.###"; cT; 

26: Print Using "####.###"; cK 

27: Print "" 

28: Print "         a         b       y0     x0_0" 

29: Print Using "###.######"; a; b; 

30: Print Using "#########"; y0; 

31: Print Using "#########"; x0 

32: Print "" 

33: Print "  n      x0       T       K           dx0" 

34: Print #1, "       F     cx0       G       cT      cK" 
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Algorithm 1 (Continued) 

35: Print #1, Using "########"; F; 

36: Print #1, Using "####.###"; cx0; 

37: Print #1, Using "########"; G; 

38: Print #1, Using "#####.###"; cT; 

39: Print #1, Using "####.###"; cK 

40: Print #1, "" 

41: Print #1, "         a         b       y0     x0_0" 

42: Print #1, Using "###.######"; a; b; 

43: Print #1, Using "#########"; y0; 

44: Print #1, Using "#########"; x0 

45: Print #1, "" 

46: Print #1, "  n      x0       T       K           dx0" 

47: For n = 0 To 20 

48:     Print Using "###"; n; 

49:     Print #1, Using "###"; n; 

50:     If n = 0 GoTo 2 

51:     Print Using "########"; x0; 

52:     Print Using "####.###"; T; 

53:     Print Using "########"; K; 

54:     Print Using "#######.######"; dx0 

55:     Print #1, Using "########"; x0; 

56:     Print #1, Using "####.###"; T; 

57:     Print #1, Using "########"; K; 

58:     Print #1, Using "#######.######"; dx0 

59:     GoTo 3 

60:     2 Rem 

61:     If n > 0.1 Then GoTo 3 

62:     Print Using "########"; x0 

63:     Print #1, Using "########"; x0 

64:     3 Rem 

65:     dx02 = (dx0 * dx0) ^ .5 

66:     If dx02 < 0.000001 Then GoTo 4 

67:     dPdx0 = -cx0 - cT * (-y0 / (b * x0 * x0 - a * y0 * y0)) - cK * (1 - ((b ^ .5) * x0 / ((b * x0 * x0 - a * y0 * y0) ^ .5))) 

68:     d2Pdx02 = -cT * (2 * b * x0 * y0) / ((b * x0 * x0 - a * y0 * y0) ^ 2) - cK * (a * (b ^ .5) * y0 * y0) / ((b * x0 * x0 - a * y0 

* y0) ^ (3 / 2)) 

69:     dx0 = (-1) * dPdx0 / d2Pdx02 

70:     Rem Convergence stabilizer 

71:     dx0_test = (dx0 * dx0) ^ 0.5 

72:     If dx0_test > 5000 Then dx0 = dx0 * 0.3 

73:     x0 = x0 + dx0 

74:     T = Log((x0 + ((a / b) ^ .5) * y0) / (x0 - ((a / b) ^ .5) * y0)) / (2 * (a * b) ^ .5) 

75:     K = x0 - ((b * x0 * x0 - a * y0 * y0) / b) ^ .5 

76: Next n 

77: 4 Rem 

78: Close #1 

79: End 

Ⅱ. Numerical model 2 

Discrete optimization model with stochastic attrition coefficients: 
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Table A2. Output from numerical model 2, case 0. 

Case Case  x0 T K 

0 Case 0 65,000 46 24,929 

1 R_KIAx = −3 70,000 40 22,063 

2 R_KIAx = −5 75,000 35 19,899 

3 R_tF = −2000 75,000 35 19,899 

4 R_tF = −4000 85,000 29 16,871 

Software developed in the computer language QB64: 

Algorithm 2 Numerical Model 2 

1: Rem 

2: Rem STBLPL_230919_2053_r 

3: Rem Peter Lohmander 

4: DefDbl A-Z 

5: Dim m_value(11), m_freq(11), n_value(11), n_freq(11), a_value(11), b_value(11) 

6: Screen _NewImage(1000, 1000, 256) 

7: Cls 

8: Rem Open "C:\Users\Peter\OneDrive\Desktop\STBLPL\STBLPL_Out.txt" For Output As #2 

9: y0 = 21500 

10: R_Wx1 = 300000 

11: R_Wx2 = 0 

12: R_tF = 0 

13: R_x0 = -2 

14: R_KIAx = 0 

15: a_mean = 0.0544 

16: b_mean = 0.0106 

17: a_sigma = 0.2 

18: b_sigma = 0.2 

19: c_value = (18 / 105) ^ 0.5 

20: Print "" 

21: Print "     RESULTS FROM STBLPL 230919_2044 by Peter Lohmander" 

22: Print "" 

23: Print "       PARAMETERS = " 

24: Print "         R_Wx1   = "; R_Wx1 

25: Print "         R_Wx2   = "; R_Wx2 

26: Print "         R_tF    = "; R_tF 

27: Print "         R_x0    = "; R_x0 

28: Print "         R_KIAx  = "; R_KIAx 

29: Print "         a_mean  = "; a_mean 

30: Print "         b_mean  = "; b_mean 

31: Print "         a_sigma = "; a_sigma 

32: Print "         b_sigma = "; b_sigma 

33: Print "" 

34: Rem Values of m(i) and n(i) 

35: For i = 1 To 11 

36:     m_value(i) = (i - 6) * c_value * a_sigma 

37:     n_value(i) = (i - 6) * c_value * b_sigma 

38: Next i 

39: Rem Relative Frequences of m(i) and n(i) 

40: For i = 1 To 6 

41:     m_freq(i) = i / 36 

42:     n_freq(i) = i / 36 

43: Next i 

44: For i = 7 To 11 
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Algorithm 2 (Continued) 

45:     m_freq(i) = (12 - i) / 36 

46:     n_freq(i) = (12 - i) / 36 

47: Next i 

48: Rem Values of a and b 

49: For i = 1 To 11 

50:     a_value(i) = a_mean * (1 + m_value(i)) 

51:     b_value(i) = b_mean * (1 + n_value(i)) 

52: Next i 

53: GoTo 100 

54: Rem Optional tests of distributions (if the line before this line is removed) 

55: E_m = 0 

56: E_m2 = 0 

57: E_n = 0 

58: E_n2 = 0 

59: For i = 1 To 11 

60:     E_m = E_m + m_freq(i) * m_value(i) 

61:     E_m2 = E_m2 + m_freq(i) * (m_value(i)) ^ 2 

62:     E_n = E_n + n_freq(i) * n_value(i) 

63:     E_n2 = E_n2 + n_freq(i) * (n_value(i)) ^ 2 

64: Next i 

65: Print "  E_m = "; E_m; "  E_m2 = "; E_m2 

66: Print "  E_n = "; E_n; "  E_n2 = "; E_n2 

67: Print "" 

68: Rem Tests of a and b values 

69: For i = 1 To 11 

70:     Print " i = "; i; " a_value(i) = "; a_value(i); "  b_value(i) = "; b_value(i) 

71: Next i 

72: 100 Rem 

73: Opt_x0 = 0 

74: Opt_E_Rx = -99999999 

75: Print "      x0      y0    E_xF    E_yF  E_KIAx  E_KIAy    E_Wx    E_Wy    E_tF    E_Rx    E_Ry" 

76: For x0_index = 0 To 150 Step 5 

77:     x0 = x0_index * 1000 

78:     Rem The expected values of the result variables are set to zero before the (a,b) loop begins. 

79:     E_xF = 0 

80:     E_yF = 0 

81:     E_KIAx = 0 

82:     E_KIAy = 0 

83:     E_Wx = 0 

84:     E_Wy = 0 

85:     E_tF = 0 

86:     E_Rx = 0 

87:     E_Ry = 0 

88:     Rem Loop with alternative values of a and b 

89:     For m_index = 1 To 11 

90:         For n_index = 1 To 11 

91:             Prob = m_freq(m_index) * n_freq(n_index) 

92:             Rem Engel coefficients 

93:             a = a_value(m_index) 

94:             b = b_value(n_index) 

95:             x = x0 

96:             y = y0 

97:             For t = 1 To 100 

98:                 xt = x 

99:                 yt = y 

100:                 x = xt - a * yt 
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Algorithm 2 (Continued) 

101:                 y = yt - b * xt 

102:                 If x < 1 Then GoTo 2 

103:                 If y < 1 Then GoTo 2 

104:            Next t 

105:             2 Rem 

106:             tF = t 

107:             xF = x 

108:             yf = y 

109:             If xF < 0 Then xF = 0 

110:             If yf < 0 Then yf = 0 

111:             Wx = 0 

112:             Wy = 0 

113:             If xF > yf Then Wx = 1 

114:             If xF < yf Then Wy = 1 

115:             KIAx = x0 - xF 

116:             KIAy = y0 - yf 

117:             If KIAx > x0 Then KIAx = x0 

118:             If KIAy > y0 Then KIAy = y0 

119:             Rx = (R_Wx1 * Wx * Exp(R_Wx2 * tF) + R_tF * tF + R_x0 * x0 + R_KIAx * KIAx) / 1000 

120:             Ry = (-500000 * Wx * Exp(-.02 * tF) - .3 * y0 - 1 * KIAy) / 1000 

121:             E_xF = E_xF + Prob * xF 

122:             E_yF = E_yF + Prob * yf 

123:             E_KIAx = E_KIAx + Prob * KIAx 

124:             E_KIAy = E_KIAy + Prob * KIAy 

125:             E_Wx = E_Wx + Prob * Wx 

126:             E_Wy = E_Wy + Prob * Wy 

127:             E_tF = E_tF + Prob * tF 

128:             E_Rx = E_Rx + Prob * Rx 

129:             E_Ry = E_Ry + Prob * Ry 

130:         Next n_index 

131:     Next m_index 

132:     Print Using "########"; x0; y0; E_xF; E_yF; E_KIAx; E_KIAy; 

133:     Print Using "###.####"; E_Wx; E_Wy; 

134:     Print Using "########"; E_tF; E_Rx; E_Ry 

135:     If E_Rx > Opt_E_Rx Then Opt_x0 = x0 

136:     If E_Rx > Opt_E_Rx Then Opt_E_Rx = E_Rx 

137: Next x0_index 

138: Print "" 

139: Print "              Optimal value of x0 = Opt_x0 = "; Opt_x0 

140: Print "          Optimal value of E_Rx = Opt_E_Rx = "; Opt_E_Rx 

141: Print "" 

142: 3 Rem 

143: Rem Close #2 

144: End 

 


