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Abstract: Research objective: to prove the feasibility of forming a problem-oriented array 

under complex conditions of uncertainty by using different options for modeling decision-

making and selecting the optimal model. Formation, description, and intellectual analysis of a 

complex data set, which is an example of a problem-oriented library-museum-archival-

information array on nobelistics, are carried out under conditions of uncertainty due to the 

ambiguity of attribution of each element to this array. The possibility of modeling decision-

making in these conditions is shown, the best of which is the optimal formation, description, 

and intellectual analysis of a complex array of problem-oriented data. A typical information 

situation is used for modeling when the decision-making body has knowledge of the a priori 

probability distribution on the state elements of the data array. For each of the seven variants 

of information situations, a set of criteria for making optimal decisions is selected; each 

criterion is mathematically described. The real functioning subject-oriented library-museum-

archive-information data array on nobelistics of the International Nobel Information Center, 

consisting of the Nobel Scientific Library, the Museum of the Nobel Family and Nobel Prize 

Laureates, the Archive of the Nobel Family and Nobel Prize Laureates, and electronic 

databases on nobelistics, was used. 

Keywords: formation; description and intellectual analysis of data; library-museum-archival-

information array on nobelistics; uncertainty conditions; decision-making; models 

1. Introduction 

The peculiarity of decision-making processes is to take into account the presence 

of a person, a collective of persons, or a decision-making body that seeks to achieve 

some goal on the basis of their preferences about values and with the help of automated 

decision support systems. In the theory of decision-making, the most preferable 

solution is considered to be the one that is consistent with the structure of preferences 

of the decision-making body, as well as with the information it has about the decision-

making problem. In this case, the theory makes it possible to build normative 

procedures that help the decision-making body to formalize its preferences, and 

decision-making is reduced to a comparison of those properties of the solutions that 

are the basis for evaluating [1–3]. Several models of decision-making are well known: 

the rational model, the intuitive model, the Vroom-Yetton model, the bounded 

rationality model, the game theory model, the neurobiological model, and others [4–

6]. 

The quality of the decision-making process is in direct dependence on the 

completeness of taking into account all the factors that are essential for the 

consequences of the decisions made. Often these factors are subjective in nature, 

inherent in both the decision maker and any decision-making process. Hence the 
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conditions of uncertainty in decision-making: the decision-making body has less 

information than is necessary for the expedient organization of its actions in the 

decision-making process. Directly with the conditions of uncertainty we face when it 

is necessary to carry out the formation, description, and intellectual analysis of data 

representing a complex problem-oriented library-museum-archive-information array 

(LMAIA) on nobelistics, functioning in real time [7–13]. Uncertainty arises due to the 

ambiguity of attributing each element of nobelistics to this array. 

Our experience allows us to propose the following classification of uncertainties: 

1) essence uncertainty (lies in the essence of the studied objects and/or processes); 

2) uncertainty generated by the total number of objects (elements, processes) 

included in the situation under study; 

3) uncertainty caused by the lack of information and data on its reliability due to 

technical, social, or other reasons; 

4) uncertainty caused by too high or inaccessible payment for certainty; 

5) uncertainty generated by the decision-making body due to its lack of experience 

and knowledge of factors affecting decision-making; 

6) uncertainty related to limitations in the decision-making situation (limitations on 

time and space elements of parameters characterizing decision-making factors); 

7) uncertainty caused by the behavior of the environment influencing the decision-

making process. 

Thus, in decision-making processes there are a number of situations that have a 

certain degree of uncertainty and require for their description such a mathematical 

apparatus, which would a priori include the possibility of formalizing uncertainties 

and would allow performing the actions necessary to achieve the goal [10–13].  

Historically, the first was the apparatus of probability theory, according to which 

the uncertainty of a situation is described by some normalized measure characterizing 

the possibility of occurrence of predetermined random outcomes (elements or subsets 

of some set). 

A natural continuation of probabilistic methods for describing uncertain 

situations was game theory [14–17], in which uncertainty was generated by conflict 

and opposing interests of players bound by the rules of the game, and statistical 

decision theory [17], in which a passive environment or “nature” was chosen as one 

of the players, whose behavior was characterized by given laws of probability 

distribution. These theories are extreme cases of different degrees of uncertainty 

gradation or information situations. 

Another class of uncertain situations is based on the concept of a vague (fuzzy) 

set introduced by Zadeh [18]. This apparatus is adequate for describing such situations 

that do not have strictly defined boundaries, so it is used for the work of artificial 

intelligence. Schemes for constructing a general mathematical apparatus describing a 

wide class of uncertain situations are given in [19–21]. A widely known and 

widespread model is the static model of decision-making based on the game-theoretic 

concept [22], applicable in many real situations of ad hoc selection of options, plans, 

tuples, actions, alternatives, strategies, etc., associated with the uncertain influence of 

the environment on the situation of their selection by the decision-making body. 
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2. Library-museum-archival-information array on nobelistics 

Data in the local LMAIA on nobelistics, belonging to the International Nobel 

Information Center (INIC) [23], are presented in the following quantity: about 10 

thousand books and brochures in the Nobel Scientific Library, more than 6 thousand 

exhibits in the Museum of the Nobel Family and Nobel Prize Laureates, more than 

100 thousand sheets of documents in the Archive of the Nobel Family and Nobel Prize 

Laureates, and 20 databases of electronic documents on nobelistics with a volume of 

2 terabytes. This is more than enough to form an information problem-oriented system 

with a high level of accuracy and completeness of search in all areas of nobelistics.  

To form precise queries on nobelistics, a special thesaurus was initially 

developed, the terms of which are easily converted into keywords entered in a search 

query. Other keywords are not perceived by the system. In the description of each 

element of the system (book, brochure, museum exhibit, archival document, etc.), a 

specially developed classification technology is used, the main parameter of which is 

the surname (and names) of each of thousands of Nobel Prize winners. Any new 

element is placed in the system according to this parameter; it must necessarily be 

associated with at least one surname of a Nobel laureate. 

3. Initial conditions of modeling 

When studying static models of decision-making under uncertainty, we proceed 

from the scheme assuming the presence of: 1) the control body U has a set of mutually 

exclusive decisions Ф = {φ1,…,φm}, one of which it needs to make; 2) the environment 

C has a set of mutually exclusive states Θ = {θ1,…,θn}, but in which particular state 

the environment C is (or will be) the control body U does not know; 3) the control 

body U is evaluated by a functional F = {fjk} characterizing its “gain” or “loss” when 

choosing a decision φk ∈ Ф if the environment C is (or will be) in the state θj ∈ Θ. In 

our case, the environment C is a complex array of data LMAIA, and we consider the 

optimal formation, description, and intelligent analysis of data as a gain. 

Under this scheme, the quantitative side of the theory of decision-making in 

conditions where the environment “behaves” in an antagonistic way with respect to 

the choice of decisions by the control body U (state of uncertainty) is usually called 

game theory [22]. In the case of “passive” environment (“passive nature”), about 

which the control body U knows the probability distribution p = {p1,…,pn} on Θ = 

{θ1,…,θn}, it is accepted to call games with nature or static decisions. These cases of 

environmental behavior can be called extreme cases. In the general case, there is a 

significant gradation of situations that determine the strategy of behavior of the 

environment C. 

The definition and classification of these situations form the basis of the theory 

of decision-making under uncertainty, since they partially allow us to solve the well-

known problem of choosing a decision-making criterion by developing for each 

situation a set of such criteria. 

Our approach to the process of decision-making by the control body U consists 

of 1) forming a set of decisions Ф and a set of states of the environment Θ; 2) defining 

and setting the main efficiency and utility indicators included in the calculation of the 

evaluation functional F = {fjk}; 3) defining by the control body U the situation 
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characterizing the strategy of behavior of the environment C; 4) choosing a decision-

making criterion from the set of criteria characterizing the situation defined by the 

control body U; 5) making an optimal decision according to the chosen criterion or 

correcting it (if the optimum decision is optimal); 6) choosing a decision-making 

criterion from the set of criteria characterizing the situation defined by the control body 

U; 7) making an optimal decision according to the chosen criterion or correcting it (if 

the optimum decision is optimal). 

The formal component of the decision-making process under conditions of 

uncertainty consists of the production of calculations of performance indicators 

included in the definition of the evaluation functional F = {fjk} and in the production 

of calculations to find the optimal solution φ0 ∈ Ф (or a set of such solutions Φ̅ ∈ Φ) 

according to a given decision-making criterion. Algorithms for the calculation of 

efficiency indicators and decision-making criteria with the use of modern computer 

systems constitute the mathematical support of the static process of decision-making 

under conditions of uncertainty. Algorithms of formation on the basis of application 

of information means and modern computer systems of the information picture in the 

control body U, characterizing the strategy of behavior of the environment C, and 

providing the definition of the situation constitute the information support of the static 

process of decision-making in conditions of uncertainty. 

Let us define the basic elements of static models of decision-making processes. 

Under the situation of decision-making we understand {Ф, Θ, F}, where Ф = 

{φ1,…,φm} is the set of decisions of the control body U; Θ = {θ1,…,θn} is the set of 

states of the environment C, which can be in one of the states θj ∈ Θ; and F = {fjk} is 

the evaluation functional (matrix of the evaluation functional) defined on Θ × Ф and 

taking values from R1, at that fjk = f(θj, φk). In the extended form, the situation of 

decision-making is characterized by a matrix, the elements of which fjk are quantitative 

evaluations of the taken decision φk ∈ Ф under the condition that the environment C is 

in the state θk ∈ Θ: 

𝜑1 … 𝜑𝑘 … 𝜑𝑚
𝜃1 𝑓11 … 𝑓1k … 𝑓1m
… … … … … …
𝜃𝑗 𝑓𝑗1 … 𝑓𝑗𝑘 … 𝑓𝑗𝑚
… … … … … …
𝜃𝑛 𝑓𝑛1 … 𝑓𝑛𝑘 … 𝑓𝑛𝑚

 

Such concepts as efficiency, utility, losses, risk, etc., are closely related to the 

category of estimated function. The choice of the form of expression of the evaluative 

function depends on the purpose and objectives of the management of the object O, 

the availability of methods for obtaining and calculating the effectiveness of tasks 

solved by the management object O and the management body U, the time of the 

process of preparation and decision-making, etc. Most often, two forms of expression 

of the evaluation function are used: F, defining utility, value, etc., or losses, damages, 

risk, etc. The evaluative function F has a positive ingredient if the decision-making 

body U proceeds from the condition of achieving max
𝜑𝑘∈Φ

 {𝑓𝑗𝑘}. In this case, for the 

positive ingredient, we will use the notation 𝐹 = 𝐹+{𝑓𝑗𝑘
+}. For a negative ingredient F, 
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the governing body U assumes the condition of achieving 𝑚𝑖𝑛
𝜑𝑘∈Φ

 {𝑓𝑗𝑘} when making the 

decision. In this case, 𝐹 = 𝐹−{𝑓𝑗𝑘
−}. 

The identification of positive and negative ingredients is characteristic of actively 

directed systems. These are the systems that provide the solution to the problems of 

attributing each element of nobelistics to LMAIA. We can note a number of interesting 

situations in which, for example, the ingredient of a passively directed system can be 

determined from the condition of reaching 𝜆min
𝜑𝑘∈Φ

 {𝑓𝑗𝑘} + (1 − 𝜆)max
𝜑𝑘∈Φ

 {𝑓𝑗𝑘}(0 ≤ 𝜆 ≤

1), and at 𝜆 = 0 we have 𝐹 = 𝐹+, and at 𝜆 = 1 we have 𝐹 = 𝐹−. 

The definition of the evaluative function in the form of 𝐹+, is usually used to 

express the categories of utility, gain, efficiency, probabilities of achieving target 

events, etc.; in contrast, 𝐹− is used to express loss, regret, damage, risk, etc. Note that 

when forming the evaluation functional, the expression of the ingredient is determined 

by the management and decision-making purpose of the U body. It is clear that the 

positive form of expression of the ingredient of the evaluation function is more often 

used (𝐹+). However, in some cases a negative value is necessary. 

The regret function is a linear transformation of a positive or negative value of 

an ingredient of the evaluation functional to relative units. Such transformation sets 

the origin of the evaluation functional “zero” for each state of the environment θj: 1) 

for 𝐹+, the case of a fixed state of the environment θj ∈ Θ, the value 𝑙𝑗 = max
𝜑𝑘∈Φ

 𝑓𝑗𝑘
+ is 

found, and the regret function is defined in the form 𝑟𝑗(𝜙𝑘) = 𝑙𝑗 − 𝑓𝑗𝑘
+; 2) for 𝐹−, the 

case of a fixed state of the environment θj ∈ Θ, the value 𝐿𝑗 = min
𝜑𝑘∈Φ

 𝑓𝑗𝑘
− is found, and 

the regret function is defined in the form 𝑟𝑗(𝜙𝑘) = 𝑓𝑗𝑘
− − 𝐿𝑗. 

The regret function has a negative form of the evaluation functional 𝐹− , 

𝑟𝑗(𝜙𝑘) ≥ 0, and 𝑟𝑗 = 0 for at least one solution 𝜙𝑘 at ∀θj ∈ Θ. 

4. Information situations and decision-making criteria 

Let us introduce decision-making situations, which are formalized by the model 

in the form of a tuple {Ф, Θ, F}, which makes it possible to define various information 

situations. By an information situation I we understand a certain degree of uncertainty 

in the choice of the environment C of its states from a given set Θ, which is available 

to the control body U at the time of decision-making. Let us define a classifier of 

information situations that characterize the “behavior” of the environment C in the 

decision-making process when choosing its states θj ∈ Θ. 

Let’s introduce 7 information situations: 

I1 is the first information situation characterized by a given distribution of a priori 

probabilities on the elements of the set Θ; 

I2 is the second information situation characterized by a given probability 

distribution with unknown parameters; 

I3 is the third information situation characterized by the given systems of linear 

relations of orders on the components of the a priori distribution of states of the 

environment C; 

I4 is the fourth information situation characterized by an unknown probability 

distribution on the elements of the set Θ; 
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I5 is the fifth information situation characterized by antagonistic interests of the 

environment C in the decision-making process; 

I6 is the sixth information situation characterized by “intermediate” between I1 

and I5 cases of the environment’s choice of its states; 

I7 is the seventh information situation characterized by a fuzzy set of states of the 

environment C. 

These situations are generalized characteristics of the uncertainty levels of the 

states of the environment C. Different gradations of uncertainty in each information 

situation are used in the study of decision criteria. 

Under the decision criterion 𝜒 ∈ 𝐾 , we will understand an algorithm that 

determines for each decision-making situation {Ф, Θ, F} and information situation I 

the only optimal solution φ0 ∈ Ф or a set of such solutions Φ̅ ⊂ Φ, which we will call 

equivalent according to the given decision criterion. The decision criterion can be 

considered as a preference operation on the set of solutions Ф, taking into account the 

element of uncertainty of the possible states θj ∈ Θ of the environment C, ordering the 

set of solutions Ф into a transitive sequence in the order of preference. 

Thus, any information situation I is characterized by a set of decision criteria 

𝐾𝐼𝑖 = {𝜒𝑠𝑖} (I = 1,…,7). For example, for the first information situation, the composite 

criteria are Bayesian, maximum likelihood, modal, minimum variance, etc. (Table 1). 

Table 1. Correspondence of decision-making criteria to information situations. 

No Characterization information situation Decision-making criteria 

1 
A distribution of a priori probabilities on the elements 

of the set Θ is given 

1. Bayes criterion 

2. Maximum likelihood criterion 

3. modal criterion 

4. Minimum variance criterion 

5. Criterion of minimum entropy of mathematical expectation 

6. Modified criterion 

2 
A probability distribution with unknown parameters is 

given 

1. Parametric Bayes criterion 

2. Parametric criterion of maximum likelihood of the estimated functional (EF) 

3. Parametric criterion of minimum variance of the EF 

4. Parametric modal criterion 

5. Parametric criterion of maximum entropy of the mathematical expectation of 

the EF 

3 

A system of linear order relations on the components 

of the a priori distribution of the state of the medium 

is specified 

Determines the type of order relationship, set by the decision-making body U 

based on the information at its disposal, its experience, the situation, and the 

conditions of the decision-making environment 

4 
We do not know the probability distribution on the 

elements of the set Θ 

1. Criterion for maximal measures of Bayesian sets 

2. Maximum of the integral Bayesian value of the EF 

3. largest integral potential 

4. Bernoulli-Laplace criterion 

5. Khomenyuk criterion 

6. Gibbs-Janes criterion 
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Table 1. (Continued). 

No Characterization information situation Decision-making criteria 

5 Antagonistic interests of environment C in the decision-making process 

1. Wald criterion 

2. Savage’s criterion 

3. Uncertainty function 

6 Intermediate cases of environment C’s choice of its states 

1. Hurwitz criterion 

2. Hodges-Lehmann criterion 

3. Menges criterion 

4. Schneeweiss criterion 

7 Fuzzy set of environment states 

1. Bringing the subjective probability distribution of 

the values of the components of the belonging 

function components 

2. Criterion of the type of probability distribution 

type of the EF values 

3. Criterion of type of dispersion of EF values 

4. Modal type criterion 

In a given situation {Ф, Θ, F}, the decision-making problem is that the decision 

authority U must choose one decision that is optimal according to the chosen criterion. 

The axiomatic decision-making problem is characterized mainly by three factors: {I, 

KI, A}, where I is the information situation, KI is the set of decision criteria 

corresponding to the information situation I, and A is the system of axioms for 

analyzing decision criteria. The axiomatic approach in the analysis of decision-making 

criteria is understood as a method of selecting the most acceptable axioms (postulates), 

which allow the management body U to investigate the problems of decision-making 

in the uncertainty of finding a suitable decision-making criterion. Decision-making in 

this situation {Ф, Θ, F} is largely facilitated by the possibility of determining the 

information situation I, as well as the establishment of a system of axioms for selecting 

the criterion 𝐾𝐼𝑖 = {𝜒𝑠𝑖} (i = 1,…,7). 

To date, axiom systems do not exist for all information situations, and the choice 

of criterion in a given information situation I based on the existing axiom system can 

be ambiguous. The ambiguity of criterion selection is determined by the 

incompleteness of the axiom system. Despite the presence of these features that hinder 

the resolution of the decision-making problem, we note that each of the information 

situations under consideration is characterized by a “potential” criterion that reflects 

the main tendencies of decision-making in this or that information situation. 

The main tendency of researching the problem of decision-making consists in 

detailing and classifying information situations, on the one hand, and in developing 

criteria for these information situations with some elements of researching their 

positive and negative sides in the issues of efficiency of functioning of the 

management object O and the management body U. 

5. Models for the first information situation 

The information situation I1 characterizes the case when the decision-making 

body U has knowledge of the a priori probability distribution p={p1,…,pn}, pj = P{θ 
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= θj}, ∑
𝑗=1

𝑛

𝑝𝑗 = 1 on the elements θj ∈ Θ of the states of the environment C. This 

situation is the most common information situation identifying the “behavior” of the 

environment C in most practical decision-making tasks under “risk” conditions. Its 

introduction into the decision-making processes allowed for effectively using 

constructive methods of probability theory in the development of statistical decision 

theory. 

In practical problems, the calculation of a priori distribution of medium states C 

is carried out either by processing extensive statistical material or by analytical 

methods based on the formulation of hypotheses of medium behavior with the 

subsequent use of basic axioms, theorems, and methods of probability theory. Both 

ways are approximate, because in practice, due to a number of limitations (in terms of 

cost, expenses, time, and space), there are difficulties in obtaining and processing 

statistical material, the formulated system of hypotheses of the behavior of the medium 

is inherently incomplete, and when using “working” hypotheses, it is necessary to 

make appropriate assumptions (for example, about the independence of events) to the 

detriment of the physics of the process in order to carry out the calculation p. Among 

the various concepts of probability, such an a priori distribution p is commonly 

referred to as an objective probability. 

However, in a number of statistical decision-making processes, due to the 

complexity of the “behavior” of the environment C, the lack of collection and 

processing of statistical material, the use of analytical methods, etc., the decision-

making body U, relying on its experience or on the opinion of a group of experts, 

prefers to use the concept of probability p, developed on the basis of the idea of the 

degree of certainty about a given factor, feature, or symptom characterizing the 

properties of the “behavior” of the environment. This definition of a priori distribution 

p, which made the concept of probability a matter of opinion, was called subjective 

probability. This is what happens every time a staff member introduces a new element 

into one of the LMAIA structures. 

On the basis of taking into account possible errors and inaccuracies, as well as 

the ambiguity of opinions of the group of experts when calculating the a priori 

distribution, we synthesize optimal decisions on the a priori distribution p = {p1,…,pn}, 

taking values from a flat set of 𝛥𝑛 = {𝑝:0 ≤ 𝑝𝑗 ≤ 1, ∑
𝑗=1

𝑛

𝑝𝑗 = 1}. 

Let us consider the basic criteria for decision-making in an information situation 

𝐼1 characterized by the probability distribution pj = P{θ = θj}, ∑
𝑗=1

𝑛

𝑝𝑗 = 1 of the states 

θj ∈ Θ of the environment C. Let a decision situation {Ф, Θ, F} be given in which the 

evaluation functional F = {fjk} belongs to the class 𝐹− or 𝐹+, and sets Ф and Θ are 

given in the form of Φ = {𝜑1,..., 𝜑𝑚}, and Θ = {𝜃1,..., θ𝑛}. 

1) Bayes criterion. The essence of this criterion is to maximize the mathematical 

expectation of the estimated functional, transforming the formulas of a priori 

probabilities into a posteriori ones. Optimal solutions φko ∈ Ф (or a set of such optimal 

solutions) are those solutions for which the mathematical expectation of the estimated 

functional reaches the largest possible value: 



Mathematics and Systems Science 2025, 3(2), 3053.  

9 

𝐵+(𝑝, 𝜑𝑘) = max
𝜑𝑘∈Φ

𝐵+(𝑝, 𝜑𝑘) = max
𝜑𝑘∈Φ

[∑𝑝𝑗

𝑛

𝑗=1

𝑓𝑗𝑘
+] =∑𝑝𝑗

𝑛

𝑗=1

𝑓𝑗𝑘𝑜
+ . 

If the maximum is achieved on several solutions of Ф, the set of which we denote 

by Φ̅, then such solutions will be called equivalent. 

The value 𝐵+(𝑝, 𝜑𝑘) = ∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+ is called the value of the Bayes estimator for the 

solution 𝜑𝑘. The great popularity of this criterion in the information situation I1 is 

explained by the fact that the Bayes criterion is closely related to the axioms of utility 

theory (axiom of Nyman and Morgenstern), in which the total utility is defined as the 

mathematical expectation of private utilities. If the valuation functional is given in the 

form of 𝐹− , then min is used instead of the operation max of the mathematical 

expectation. If the valuation functional is given in regret or risk, the corresponding 

value 𝐵−(𝑝, 𝜑𝑘) is usually called the Bayesian risk for the solution 𝜑𝑘 ∈ Ф. 

2) Criterion for maximizing the probability of distribution of the estimated 

functional. Fix the value α, satisfying the inequalities α1 < α < α2, where 𝛼1 =

min
𝑘

min
𝑘
𝑓𝑗𝑘
+, 𝛼2 = max

𝑘
max
𝑘
𝑓𝑗𝑘
+, (j = 1,...,n; k = 1,...,m).  

For each solution φk ∈ Ф, let us determine the probability 𝑃(𝑓𝑗𝑘
+ ≥ 𝛼) that the 

value of the evaluation functional is not less than α for the state of the environment θj 

∈ Θ and the solution φk ∈ Ф. The essence of this criterion is to find a solution φko ∈ Φ 

(or a set of such solutions Φ̅) for which 𝑃(𝑓𝑗𝑘
+ ≥ 𝛼) = max

𝜑𝑘∈Φ
𝑃(𝑓𝑗𝑘

+ ≥ 𝛼). When using 

this criterion, the control body U proceeds from a specific value of α and considers as 

optimal those solutions φko ∈ Φ for which this condition is met. 

For fixed α and φk, the inequality 𝑓𝑗𝑘
+ ≥ 𝛼  defines the set of states of the 

environment Θ𝛼,𝑘. Then the probability 𝑃(𝑓𝑗𝑘
+ ≥ 𝛼) is 

𝑃(𝑓𝑗𝑘
+ ≥ 𝛼) = 𝑃(𝜃 ∈ Θ𝛼,𝑘) = ∑ 𝑝(𝜃 = 𝜃𝑗)

𝜃𝑗∈Θ𝛼,𝑘

. 

In this criterion, the magnitude α is given by the control U. Therefore, the set Φ̅ 

depends on α, i.e., Φ̅ = Φ̅(𝛼). For two values of 𝛼* and 𝛼** such that 𝛼1 ≤ 𝛼
* ≤ 𝛼2, 

𝛼1 ≤ 𝛼
** ≤ 𝛼2 , and 𝛼* ≤ 𝛼** , we have Φ̅(𝛼**) ⊆ Φ̅(𝛼*) . Furthermore, 𝑃(𝑓𝑗𝑘

+ ≥

𝛼*) ≥ 𝑃(𝑓𝑗𝑘
+ ≥ 𝛼**). 

If the evaluation functional is given in the form of 𝐹 = 𝐹−, then for each decision 

φk ∈ Ф, the probability of 𝑃(𝑓𝑗𝑘
− ≤ 𝛽) is defined, and the application of the criterion 

consists in selecting decisions φko or Φ̅(𝛽), for which 𝑃(𝑓𝑗𝑘
− ≤ 𝛽) = max

𝜑𝑘∈Φ
𝑃(𝑓𝑗𝑘

− ≤ 𝛽), 

where the value of 𝛽, such that 𝛼1 ≤ 𝛽 ≤ 𝛼2, is given by the decision authority U. 

3) Criterion of minimum variance of the estimated functional. For each solution 

φk ∈ Ф, we define the mean value 𝐵+(𝑝, 𝜑𝑘) of the evaluation functional and the 

variance 𝜎𝑘
2 in the form of 𝐵+(𝑝, 𝜑𝑘) = ∑

𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+, namely 
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𝜎𝑘
2 = 𝜎2(𝑝, 𝜑𝑘) =∑[𝑓𝑗𝑘

+ − 𝐵+(𝑝, 𝜑𝑘)]
2

𝑛

𝑗=1

𝑝𝑗. 

Dispersion 𝜎𝑘
2 characterizes the dispersion of a random variable of the value of 

the estimated functional for the solution 𝜑𝑘 with respect to the mean value 𝐵+(𝑝, 𝜑𝑘). 

The essence of this criterion is to find a solution φko (or a set of solutions Ф) for which 

𝜎2(𝑝, 𝜑𝑘) = min
𝜑𝑘∈Φ

𝜎2(𝑝, 𝜑𝑘). 

The main disadvantage of this criterion is that the variance at the solution φk1 ∈ 

Ф may be smaller than at the solution φk2 ∈ Ф, i.e., 𝜎𝑘1
2 ≤ 𝜎𝑘2

2 , while 𝐵+(𝑝, 𝜑𝑘1) <

𝐵+(𝑝, 𝜑𝑘2). This suggests that the criterion of minimum variance of the estimated 

functional, on the one hand, is in a sense an auxiliary criterion, and on the other hand, 

if it is accepted, it is necessary to further define this criterion by slightly modifying the 

form of 𝜎𝑘
2, for example, in one of the following ways: 

𝜎(𝑝,𝜑𝑘)
2 =∑[𝑓𝑗𝑘

+ − max
𝜑𝑠∈Φ

𝐵+(𝑝, 𝜑𝑠)]
2

𝑛

𝑗=1

𝑝𝑗 , 

𝜎(𝑝,𝜑𝑘)
2 =∑[𝑓𝑗𝑘

+ −
1

𝑚
∑𝐵+(𝑝, 𝜑𝑠)

𝑚

𝑠=1

]

2𝑛

𝑗=1

𝑝𝑗 . 

If the evaluation functional is given in the form 𝐹 = 𝐹−, then the solution φko to 

the minimum of the evaluation functional is found from the condition 𝜎2(𝑝, 𝜑𝑘𝑜) =

min
𝜑𝑘∈Φ

𝜎2(𝑝, 𝜑𝑘). where the value 𝜎2(𝑝, 𝜑𝑘𝑜) is determined in one of the following ways: 

𝜎2(𝑝, 𝜑𝑘) = ∑
𝑗=1

𝑛

[𝑓𝑗𝑘
− − 𝐵−(𝑝, 𝜑𝑘)]

2
𝑝𝑗 , 𝜎2(𝑝, 𝜑𝑘) = ∑

𝑗=1

𝑛

[𝑓𝑗𝑘
− − min

𝜑𝑠∈Φ
𝐵−(𝑝, 𝜑𝑠)]

2

𝑝𝑗 , 

𝜎2(𝑝, 𝜑𝑘) = ∑
𝑗=1

𝑛

[𝑓𝑗𝑘
− −

1

𝑚
∑
𝑠=1

𝑚

𝐵−(𝑝, 𝜑𝑠)]
2

𝑝𝑗. 

4) Modal criterion. The essence of this criterion is that the control body U 

proceeds from the most probable state of the environment. Suppose that there is a 

single value of 𝑝𝑗1 = max
𝜃𝑗∈Θ

𝑃(𝜃 = 𝜃𝑗). 

Using this criterion, the control body U assumes that the environment is in the 

state 𝜃𝑗1 ∈ Θ , and the optimal φko or Φ̅  is determined from the condition 𝑓𝑗1𝑘0

+ =

max
𝜑𝑘∈Φ

𝑓𝑗1𝑘
+ . If it turns out that the maximum 𝑃(𝜃 = 𝜃𝑗)  is achieved at a priori 

probabilities 𝑝𝑗1 , 𝑝𝑗2 ,..., 𝑝𝑗s, then the optimal solution φko (or Φ̅) is determined from the 

condition 
1

𝑠
∑
𝛾=1

𝑠

𝑓𝑗𝛾𝑘0
= max
𝜑𝑘∈Φ

1

𝑠
∑
𝛾=1

𝑠

𝑓𝑗𝛾𝑘
+ . 

The main drawback of this criterion is the possibility that if we take two solutions 

φk1 and φk2, for which 𝑓𝑗1𝑘1
+ 𝑓𝑗1𝑘2

+ , then according to this criterion the solution φk1, i.e., 

φk1 > φk2, is preferred. However, it may turn out that 𝐵+(𝑝, 𝜑𝑘1) < 𝐵
+(𝑝, 𝜑𝑘2). 

The main advantages of this criterion are 1) sufficiency of identifying only the 

most probable states of the environment, and it is not necessary to know the 

quantitative values of the probabilities of realization of these states, and 2) 

determination (calculation) of the estimated functional only for the most probable 
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states of the environment, which increases the speed of decision-making many times. 

It should be noted that when setting the estimated functional F in the form 𝐹−, the 

operation max is replaced by min. 

5) Criterion of minimum entropy of the mathematical expectation of the estimated 

functional. Suppose that 𝑓𝑗𝑘
+ > 0  for all j and k. Let us define the entropy of the 

mathematical expectation of the estimated functional for the solution φk ∈  Ф as 

follows: 

H(𝑝, 𝜑𝑘) = −∑

(

 
𝑝𝑗𝑓𝑗𝑘

+

∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+

)

 

𝑛

𝑗=1

ln

(

 
𝑝𝑗𝑓𝑗𝑘

+

∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+

)

 . 

The essence of this criterion consists in finding a solution φko (or Φ̅) from the 

condition H(𝑝, 𝜑𝑘𝑜) = min
𝜑𝑘∈Φ

H(𝑝, 𝜑𝑘) . In case of non-fulfillment of the condition 

𝑓𝑗𝑘
+ > 0 for all j and k, the transition from the values 𝑓𝑗𝑘

+ of the estimated functional to 

the risk (regrets, losses) of the form 

𝑓𝑗𝑘
−
∽

= max

𝜃𝑗 ∈ Θ

𝜑𝑘 ∈ Φ

𝑓𝑗𝑘
+ − 𝑓𝑗𝑘

−

, is made, and the solution φko is found 

from the condition φk ∈ Ф of entropy minimum of the mathematical expectation of the 

estimated functional of the form 𝐻(𝑝, 𝜙𝑘𝑜) at 𝑓𝑗𝑘
−
∽

> 0: 

H(𝑝, 𝜑𝑘) = −∑

(

 
𝑝𝑗𝑓𝑗𝑘

−
∽

∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
−
∽

)

 

𝑛

𝑗=1

ln

(

 
𝑝𝑗𝑓𝑗𝑘

−
∽

∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
−
∽

)

 . 

6) Modified criterion. We fix the value of 𝜆, satisfying the condition 0 ≤ 𝜆 ≤ 1. 

For each of them φk ∈ Ф, we define the value of 𝜒(𝑝, 𝜑𝑘) = (1 − 𝜆)[𝐵
+(𝑝, 𝜑𝑘)]

2 −

𝜆𝜎2(𝑝, 𝜑𝑘) , where denotes 𝐵+(𝑝, 𝜑𝑘) = ∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+ , 𝜎2(𝑝, 𝜑𝑘) = ∑

𝑗=1

𝑛

[𝑓𝑗𝑘
+ −

𝐵+(𝑝, 𝜑𝑘)]
2
𝑝𝑗. 

The essence of the modified criterion is to find a solution φko (or a set of solutions 

Φ̅) from the condition 𝜒(𝑝, 𝜑𝑘𝑜) = max
𝜑𝑘∈Φ

𝜒(𝑝, 𝜑𝑘). 

Note that in two special cases, 𝜆 = 0 and 𝜆 = 1. This criterion coincides with the 

Bayes criterion and with the criterion of minimum variance of the evaluation 

functional. 

Let us introduce two quantities 

𝜆* = min
𝜑𝑘∈Φ

[ ∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+]

2

∑
𝑗=1

𝑛

𝑝𝑗(𝑓𝑗𝑘
+)
2
, 𝜆** = max

𝜑𝑘∈Φ

[ ∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+]

2

∑
𝑗=1

𝑛

𝑝𝑗(𝑓𝑗𝑘
+)
2
. 

Obviously, the values of 𝜆*, and 𝜆** are such that the inequalities are satisfied 

0 ≤ 𝜆* ≤ 𝜆** ≤ 1. 
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Lemma 1. If a quantity 𝜆 satisfies the condition 0 ≤ 𝜆 ≤ 1, then 𝜒(𝑝, 𝜑𝑘𝑜) ≥ 0 for 

any φk ∈ Ф. 

The proof of this statement follows from the fact that  

𝜒(𝑝, 𝜑𝑘) = (1 − 𝜆) [∑𝑝𝑗𝑓𝑗𝑘
+

𝑛

𝑗=1

]

2

− 𝜆∑[𝑓𝑗𝑘
+ −∑𝑝𝑙𝑓𝑙𝑘

+

𝑛

𝑙=1

]

2𝑛

𝑗=1

𝑝𝑗

= [∑𝑝𝑗𝑓𝑗𝑘
+

𝑛

𝑗=1

]

2

− 𝜆∑𝑝𝑗(𝑓𝑗𝑘
+)
2

𝑛

𝑗=1

≥ 0,

 

since 𝜆 ≤ [ ∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+]

2

/ ∑
𝑗=1

𝑛

𝑝𝑗(𝑓𝑗𝑘
+)

2
 for any solution φk ∈ Ф at 𝜆 ∈ [0,𝜆*].  

As a corollary to the lemma, we obtain that (1 − 𝜆)[𝐵+(𝑝, 𝜑𝑘)]
2 ≥ 𝜆𝜎2(𝑝, 𝜑𝑘) 

at 𝜆 ∈ [0,𝜆*], i.e., at these values of 𝜆, the modified criterion is more sensitive to the 

Bayesian criterion of maximizing the average payoff 𝐵+(𝑝, 𝜑𝑘) than to the criterion 

of minimizing the variance 𝜎2(𝑝, 𝜑𝑘). 

Lemma 2. If a quantity 𝜆 satisfies the condition 𝜆** ≤ 𝜆 ≤ 1, then 𝜒(𝑝, 𝜑𝑘𝑜) ≤ 0 for 

any φk ∈ Ф. 

The proof of this statement follows from the fact that 

𝜒(𝑝, 𝜑𝑘) = (1 − 𝜆) [∑𝑝𝑗𝑓𝑗𝑘
+

𝑛

𝑗=1

]

2

− 𝜆∑[𝑓𝑗𝑘
+ −∑𝑝𝑙𝑓𝑙𝑘

+

𝑛

𝑙=1

]

2𝑛

𝑗=1

𝑝𝑗

= [∑𝑝𝑗𝑓𝑗𝑘
+

𝑛

𝑗=1

]

2

− 𝜆∑𝑝𝑗(𝑓𝑗𝑘
+)
2

𝑛

𝑗=1

≤ 0,

 

since 𝜆 ≤ [ ∑
𝑗=1

𝑛

𝑝𝑗𝑓𝑗𝑘
+]

2

/ ∑
𝑗=1

𝑛

𝑝𝑗(𝑓𝑗𝑘
+)

2
 for any solution φk ∈ Ф at 𝜆 ∈ [0,𝜆*]. 

As a corollary to the lemma, we obtain that(1 − 𝜆)[𝐵+(𝑝, 𝜑𝑘)]
2 ≤ 𝜆𝜎2(𝑝, 𝜑𝑘) at 

𝜆 ∈ [𝜆**,1], i.e., at these values 𝜆, the modified criterion is more sensitive to the 

variance minimization criterion 𝜎2(𝑝, 𝜑𝑘)  than to the Bayesian criterion for 

maximizing the average gain. 

If the value of 𝜆 ∈ [𝜆*, 𝜆], then the values 𝜒(𝑝, 𝜑𝑘𝑜) are sign-variable at φk ∈ Ф, 

i.e., we cannot speak about the priority of the Bayes maximization criterion 𝐵+(𝑝, 𝜑𝑘) 

or the minimization criterion 𝜎2(𝑝, 𝜑𝑘). 

The following point estimates can be proposed for selection 𝜆 in the interval 𝜆 ∈

[0,𝜆*]: �̂�𝛼
* (𝑝) = (

𝑛

𝑛−1
)

𝛼

2
𝜆∗𝜌𝛼(𝑝). Here, 𝛼 is an arbitrary non-negative number; 𝜌(𝑝) 

is the distance from 𝑝 = (𝑝1,..., 𝑝𝑛)  to the midpoint (
1

𝑛
,...,

1

𝑛
)  of the flat set 𝛥𝑛 =

{𝑝:0 ≤ 𝑝𝑗 ≤ 1 (𝑗 = 1,..., 𝑛),  ∑
𝑗=1

𝑛

𝑝𝑗 = 1} , equal to 𝜌(𝑝) = [ ∑
𝑗=1

𝑛

(𝑝𝑗 −
1

𝑛
)
2
]

12

=

( ∑
𝑗=1

𝑛

𝑝𝑗 −
1

𝑛
)

12

. The point estimates �̂�𝛼
* (𝑝)  satisfy the following two axioms: 1) 

�̂�𝛼
* (𝑝0) = 0 at 𝜌(𝑝0) = 0, i.e., in the case of uniform distribution 𝑝0 = (

1

𝑛
,...,

1

𝑛
), the 
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modified criterion coincides with Bayes’ criterion; 2) �̂�𝛼
* (𝑝*) = 𝜆*  at 𝜌(𝑝*) =

max
𝑝∈𝛥𝑛

 𝜌(𝑝) = (
𝑛−1

𝑛
)
12

, i.e., in the case of degenerate distribution 𝑝*  (one of the 

components of which is equal to one and the rest are zero), the variance 𝜎2(𝑝, 𝜑𝑘) =

0 for any φk ∈ Ф. 

Thus, if decision authority U believes that the value 𝜆 in the modified criterion 

𝜒(𝑝, 𝜑𝑘𝑜) satisfies the inequalities 0 ≤ 𝜆 ≤ 𝜆*, then using the point estimate �̂�𝛼
* , a 

decision is made from the maximum 𝜒(𝑝, 𝜑𝑘𝑜) over condition φk ∈ Ф for 𝜆 = �̂�𝛼
* (𝑝). 

Partial cases of point estimates �̂�*(𝑝) at 𝛼 = 0,1,2 are the values of �̂�0
*(𝑝) = 𝜆, 

�̂�1
*(𝑝) = √

𝑛

𝑛−1
𝜌(𝑝)𝜆*, �̂�2

*(𝑝) =
𝑛

𝑛−1
𝜌2(𝑝)𝜆*. 

For selection 𝜆 ∈ [𝜆**,1], are used point estimates of the form �̂�𝛼
**(𝑝) = 1 −

(
𝑛

𝑛−1
)
2
𝜌𝛼(𝑝)(1 − 𝜆**) with non-negative 𝛼. The values �̂�𝛼

**(𝑝) satisfy the following 

two axioms: 1) �̂�𝛼
**(𝑝0) = 1 at 𝜌(𝑝0) = 0, i.e., in the case of uniform distribution 

𝑝0 = (
1

𝑛
,...,

1

𝑛
), the modified criterion coincides with the minimum variance criterion; 

2) �̂�𝛼
**(𝑝 ∗) = 𝜆**  at 𝜌(𝑝*) = max

𝑝∈𝛥𝑛
 𝜌(𝑝) = (

𝑛−1

𝑛
)
12

, i.e., in the case of degenerate 

distribution 𝑝*, the variance 𝜎2(𝑝*, 𝜑𝑘) = 0 for any φk ∈ Ф, and the optimal decision 

is made by Bayes’ criterion. 

Thus, if decision authority U believes that the value 𝜆 in the modified criterion 

𝜒𝛥(𝑝, 𝜑𝑘) satisfies the inequalities 𝜆** ≤ 𝜆 ≤ 1, then using the point estimate �̂�𝛼
**(𝑝), 

a decision is made from the maximum 𝜒(𝑝, 𝜑𝑘) over condition φk ∈ Ф for 𝜆 = �̂�𝛼
**(𝑝). 

Particular cases of point estimates �̂�𝛼
**(𝑝)  at 𝛼 = 0,1,2  are �̂�𝛼

**(𝑝*) = 𝜆** , 

�̂�1
**(𝑝) = 1 − √

𝑛

𝑛−1
𝜌(𝑝)(1 − 𝜆**), �̂�2

**(𝑝) = 1 −
𝑛

𝑛−1
𝜌2(𝑝)(1 − 𝜆**). 

The following point estimates can be suggested for selection 𝜆 ∈ [𝜆*, 𝜆**]: 1) 

�̂�𝛼(𝑝) = 𝜆
* + (

𝑛

𝑛−1
)

𝛼

2
𝜌𝛼(𝑝)(𝜆** − 𝜆*), where 𝛼 ≥ 0, and the point estimates satisfy 

the following two axioms: 1) �̂�𝛼(𝑝
0) = 𝜆* at 𝜌(𝑝0) = 0, i.e., in the case of uniform 

distribution 𝑝0 = (
1

𝑛
,...,

1

𝑛
) , in the modified criterion, the Bayes criterion is given 

greater preference; 2) �̂�𝛼(𝑝
*) = 𝜆**  at 𝜌(𝑝*) = max

𝑝∈𝛥𝑛
 𝜌(𝑝) = (

𝑛−1

𝑛
)

12

, i.e., in the 

modified criterion, greater preference is given to the criterion of minimum variance 

𝜎2(𝑝, 𝜑𝑘), and 𝜎2(𝑝*, 𝜑𝑘) = 0 for any φk ∈ Ф, and the decision is made by the Bayes 

criterion. 

Thus, if decision-making body U considers that the value of 𝜆 ∈ [𝜆*, 𝜆**], then 

according to the modified criterion a decision is made from the condition of maximum 

𝜒(𝑝, 𝜑𝑘) at 𝜆 = �̂�𝛼(𝑝). 

Particular cases of point estimates �̂�𝛼(𝑝) at 𝛼 = 0,1,2 are �̂�0(𝑝) = 𝜆
**, �̂�1(𝑝) =

𝜆* +√
𝑛

𝑛−1
𝜌(𝑝)(𝜆** − 𝜆*), �̂�2(𝑝) = 𝜆

* +
𝑛

𝑛−1
𝜌2(𝑝)(𝜆** − 𝜆*). 
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The derivation of the above point estimates is based on the use of the estimate 

𝛽 + 𝛾𝜌𝛼(𝑝)(𝛿0 + 𝛿1 + 𝛿2𝜆
**), whose coefficients are chosen in such a way that the 

above axioms are satisfied for each of the three cases of location. 

7) Conditional Decisions. Let us compare the set 𝐾𝐼  of previously considered 

decision-making criteria 𝐾𝐼 = {𝜒1
1,..., χ

1
𝑟1} to the information situation 𝐼1. From the set 

of decision criteria, the control body U selects one criterion, which is conditionally 

called the main criterion, and restrictions are imposed on the other decision criteria. 

Therefore, the decision made by the control body U according to the main criterion 

under given constraints on the other criteria from the set 𝐾𝐼, let us call it a conditional 

decision. Both for optimization problems and for decision-making, it is typical to set 

constraints either in the form of inequalities 𝑐1
𝑙 ≤ 𝜒1

𝑙 ≤ 𝐶1
𝑙, or in the form of equalities 

𝜒1
𝑙 = 𝑐1

𝑙 . 

It should be noted that since the search for an optimal solution is reduced to a 

finite number of options, setting a constraint in the form of an exact equality is in most 

cases not quite correct and leads to the absence of a conditional solution. In contrast, 

constraints in the form of inequalities are more natural and allow the decision-making 

body to conduct a kind of analysis to establish “reasonable” limits of 𝑐1
𝑙  values and of 

𝐶1
𝑙 values from lower and upper limits of values of the criterion 𝜒1

𝑙 . For example, a 

book can be included in the LMAIA only if it mentions at least one Nobel Prize winner 

or member of the Nobel family (lower criterion). 

Thus, if 𝜒1
𝑠 ∈ 𝐾𝐼 is the main criterion, the conditional solutions are found from 

the following problem: 𝜒1
𝑠(𝜑𝑘𝑜) = opt

𝜑𝑘∈Φ
𝜒1
𝑠(𝜑𝑘), 𝑐1

𝑙 ≤ 𝜒1
𝑙 ≤ 𝐶1

𝑙, (𝑙 = 1,..., 𝑟; 𝑙 ≠ 𝑠). A 

special case of the formulated problem of finding conditional solutions is the case 

considering a subset 𝐾𝐼̅̅ ̅ ⊂ 𝐾𝐼 instead of a set 𝐾𝐼. 

Example 1. Let 𝐾𝐼̅̅ ̅ = {𝜒1
1, 𝜒1

2} , where 𝜒1
1 = 𝐵+(𝑝, 𝜑𝑘) , 𝜒1

2 = 𝜎2(𝑝, 𝜑𝑘) , and the 

vector of a priori distribution 𝑝 = (𝑝1,..., 𝑝𝑛) is given, and a 𝜒1
1 is the main criterion. 

The bounded solution φko is found from the condition 𝐵+(𝑝, 𝜑𝑘𝑜) = max
𝜑𝑘∈𝛷

𝐵+(𝑝, 𝜑𝑘𝑜), 

𝑐1 ≤ 𝜎
2(𝑝, 𝜙𝑘) ≤ 𝐶1, where 𝑐1 and 𝐶1 are given positive constants. Note that it is 

possible to define the class of conditional solutions without distinguishing the main 

decision criterion directly as a solution of the system of inequalities 𝑐1
𝑙 ≤ 𝜒1

𝑙(𝜑𝑘) ≤

𝐶1
𝑙 (𝑙 = 1,..., 𝑟1). 

6. Conclusion 

The obvious statement is that decision-making in each static information 

situation leads to the necessity to develop targeted methods depending on the 

considered criteria.  

Thus, we have proved that it is possible to form a problem-oriented array under 

complex conditions of uncertainty by means of different variants of decision modeling 

and selection of an optimal model. Such an optimal model was tested on the local 

LMAIA on nobelistics of the International Nobel Information Center (INIC) and 

showed that it is possible to accurately and completely form the array under 

uncertainty. 

This does not apply to the issues of decision-making in dynamics. 
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