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Abstract: This paper examines the supply chain resilience of Taiwan Semiconductor 

Manufacturing Co. (TSMC) using a Bayesian network (BN) model developed from the Supply 

Chain Operations Reference (SCOR) framework. This hybrid model allows for an integrated 

analysis of various key performance indicators (KPIs) across TSMC’s supply chain, providing 

a comprehensive view of its resilience. By simulating multiple disruption scenarios, the study 

captures the dynamic interactions and cascading effects of disruptions, such as inventory 

shortages, transportation delays, and labor cost fluctuations. This approach offers a quantitative 

analysis of TSMC’s resilience under varied scenarios, revealing critical strengths, such as 

flexibility in resource allocation, as well as vulnerabilities, particularly in response to high-

impact events like geopolitical tensions and natural disasters. Insights from this model 

highlight the areas where strategic improvements can further strengthen resilience. Overall, the 

research demonstrates the applicability of Bayesian networks as a powerful tool for resilience 

assessment, not only in TSMC’s context but also as a scalable solution for other high-

complexity, high-dependency supply chains within the semiconductor industry. This study 

contributes valuable knowledge to the broader field of supply chain resilience and advances 

the methodologies available for industry practitioners and researchers alike. 

Keywords: Bayesian network; supply chain resilience; SCOR framework; key performance 

indicators; semiconductor manufacturing industry 

1. Introduction 

The semiconductor manufacturing industry has faced significant disruptions in 

recent years, ranging from global supply chain (SC) bottlenecks due to the COVID-

19 pandemic to geopolitical tensions affecting key supply routes. These challenges 

have highlighted the vulnerability of even the most advanced supply chains, as 

evidenced by the widespread chip shortages that impacted various industries 

worldwide. The ripple effects of these disruptions have underscored the critical need 

for robust supply chain resilience strategies. The semiconductor manufacturing 

industry is a critical pillar of the global economy, underpinning innovations in 

technology, telecommunications, and automotive sectors, among others. Central to 

this industry is Taiwan Semiconductor Manufacturing Company (TSMC), the world’s 

largest dedicated semiconductor foundry. TSMC plays a pivotal role in supplying 

high-performance chips to global tech giants. However, the semiconductor supply 

chain is highly complex, spanning multiple stages of design, production, and 

distribution, and is vulnerable to disruptions from geopolitical tensions, natural 

disasters, and market volatility. Supply chain resilience, defined as the capacity to 
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absorb, recover from, and adapt to disruptions, has emerged as a key strategic priority 

for firms like TSMC [1]. Recent research highlights the importance of dynamic 

simulations and predictive modeling, such as Bayesian Networks (BNs), to evaluate 

and strengthen supply chain resilience in volatile environments [2]. By applying these 

methods, organizations can mitigate risks and ensure business continuity in the face 

of unforeseen challenges.  

The main contributions of this paper are as follows: 

1) Development of a hybrid Bayesian network model: A hybrid BN model is 

constructed, based on the SCOR (Supply Chain Operations Reference) concept, 

to simulate and analyze the resilience of TSMC’s supply chain. The model 

captures the complex interdependencies among suppliers, manufacturers, and 

distributors across multiple tiers, combining SCOR’s process-oriented approach 

with probabilistic analysis. 

2) Dynamic time-series analysis integration: The model integrates dynamic time-

series analysis to simulate and evaluate how various disruptions propagate 

through the supply chain over time. 

3) Scenario analysis and quantitative insights: Scenario analysis is employed to 

simulate disruptions and assess their impacts on TSMC’s supply chain. The 

analysis provides quantitative insights into the system’s vulnerabilities and 

strengths, offering actionable recommendations to enhance overall supply chain 

resilience. 

Including the current section, the paper structure contains a total of 6 sections. A 

brief literature review makes up section 2, while in section 3 the basic theories of the 

proposed methodology are discussed, i.e., Bayesian networks and SCOR. The 

construction of the dynamic model is covered in the next section, detailing the merging 

of the two concepts in building the model as well as incorporating the dynamic effect 

into the supply chain model. Section 5 outlines the comprehensive quantitative 

analysis of the simulations before the paper then concludes with the key findings and 

limitations faced during the study. 

2. Materials and methods 

Dubey et al. [3] carried out an extensive study of the literature on managing 

supply chain risks globally. They looked at different approaches to risk management 

and emphasized that in order to improve supply chain resilience, firms must 

proactively identify, evaluate, and reduce risks. A workable supply chain model that 

incorporates resilience, agility, and sustainability viewpoints was put forth by Ivanov 

[4]. His study highlighted the value of creative technology and flexible approaches in 

creating robust supply chains that can function in changing and unpredictable 

conditions. Ivanov and Dolgui [1] analyze the weaknesses made apparent by the recent 

pandemic and suggest methods to strengthen resilience, such as supplier 

diversification, digitization, and cooperation amongst supply chain participants. 

Another study, Chhimwal et al. [5] employed a BN approach to investigate how risk 

propagation occurs in a circular supply chain network of an automobile business. The 

concept of adopting circularity in the supply chain is unique and dynamic in nature, 

and it carries certain risks. Jeff et al. [6] touch on the development of non-probabilistic 
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resilience measures that can take dynamics into account, the extension of current 

bottleneck detection techniques to the network environment, and the more complex 

balancing of efficiency and resilience as examples of interesting research paths. Liu et 

al. [7] used a robust dynamic BN model with a bounded deviation budget for 

disruption risk evaluation because dynamic Bayesian networks, when combined with 

probability intervals, are a valid tool to estimate the risk of disruptions propagating 

along the supply chain (SC) under data scarcity. Recent studies are seeing BNs 

combined with other techniques, such as the Monte Carlo simulation, in which the 

integrated techniques would enable Qazi et al. [8] to capture the Risk Network Value 

at Risk (RNVaR). Jamil and Asrol [9] used the analytical hierarchy process (AHP) on 

the SCOR-associated metrics of assets, cost, reliability, responsiveness, and agility, 

enabling the study of the supply chain performance of the palm oil industry in 

Indonesia. 

Propagation in Bayesian networks is generally conducted through forward, 

backward, and mixed (bidirectional) mechanisms, which allow evidence to spread 

through both direct and indirect dependencies. The study by Liu et al. [10] emphasizes 

how minimal strong triangulation supports propagation computation, especially in 

mixed BNs with both discrete and continuous variables. This approach ensures that 

the network remains computationally efficient while accurately representing 

dependencies through triangulated junction trees, which are instrumental in managing 

propagation across complex BNs. Another approach to enable efficient propagation in 

BNs is max-product belief propagation. Dedieu et al. [11] introduce max-product 

belief propagation as an alternative to variational inference, particularly for noisy-OR 

BNs. By adopting parallelized computations, max-product algorithms scale well with 

large datasets, providing faster and more accurate propagation outcomes compared to 

traditional variational inference methods. Propagation is highly relevant in real-world 

applications such as risk analysis in supply chains. For example, Bugert and Lasch 

[12] explore propagation in supply networks using BNs to assess both upstream and 

downstream risk flows. This study combines Bayesian networks with agent-based 

modeling, allowing the simulation of dynamic interactions within supply chains and 

addressing propagation’s bidirectional effects. Their work provides quantitative 

insights into how disruptions can cascade through network layers, influencing both 

direct and indirect risk factors. Constantinou [13] further discusses how full 

propagation of evidence can be achieved in BNs, with an emphasis on structure 

learning algorithms that maintain network connectivity under constraints. By adopting 

a hybrid learning algorithm, BNs can maximize evidence propagation, facilitating 

robust inference and enabling applications across domains where evidence consistency 

is critical. Bayesian networks’ propagation mechanisms are also applied in the 

robustness certification of Bayesian neural networks (BNNs). Adams et al. [14] 

present BNN-DP, a dynamic programming approach designed to ensure BNN 

robustness through bound propagation techniques. By interpreting BNNs as dynamic 

systems, this framework supports rigorous evaluation of risk propagation bounds, 

which is vital in scenarios where adversarial attacks could alter inference outcomes. 

The reviewed literature emphasizes the significance of probabilistic models, 

particularly Bayesian networks, in supply chain resilience analysis due to their ability 

to capture both static and dynamic disruptions. Prior studies have demonstrated the 
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effectiveness of BNs for modeling uncertainty and risk propagation across complex 

systems. However, a noticeable gap persists in the integration of dynamic simulation 

techniques with standardized supply chain performance metrics such as the SCOR 

framework. To address this limitation, this study develops a hybrid BN model 

grounded in the SCOR framework. This model introduces dynamic time-series 

analysis, enabling a more detailed examination of how supply chain disruptions evolve 

over time and impact key performance indicators. Limited studies have explored the 

combination of SCOR with dynamic BNs for supply chain resilience analysis. This 

allows not only the assessment of disruptions but also tracking their temporal 

progression and cascading effects. The main innovation lies in this combination of 

SCOR and BNs. This approach offers both theoretical advancements and practical 

tools for resilience assessment in complex supply chains, as demonstrated through the 

case of Taiwan Semiconductor Manufacturing Company (TSMC). 

3. Theory and methodology 

3.1. Bayesian networks 

Using a directed acyclic graph (DAG), Bayesian networks are graphical models 

that display a set of potential variables along with their conditional dependencies. 

Variables are represented by nodes in the network. These variables may be 

unidentified parameters, concealed variables, or observable quantities. Dependencies 

are shown by the edges between the nodes in the network. Every node has a probability 

function that is made up of conditional probabilities relating to various combinations 

of parent nodes or initial probabilities for root nodes (nodes without parents), well 

described by Jensen and Nielsen [15]. As Neapolitan [16] highlighted, BNs facilitate 

decision-making under uncertainty by representing and quantifying probabilistic 

relationships within a system [16]. Bayes’ theorem describes how the dependent 

variables relate to one another. The hypothesis of the Bayes theorem is given an 

estimated number following observations, based on probabilistic knowledge of the 

hypothesis prior to any observations. Bayes theory is expressed as seen in Equation 

(1): 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻) ∙ 𝑃(𝐻)

𝑃(𝐸)
, 𝑃(𝐸) ≠ 0 (1) 

For data E and variable 𝐻, 𝑃(𝐻|𝐸) is the posterior probability of 𝐻 in light of the 

observed data 𝐸, 𝑃(𝐻|𝐸) is the likelihood function of the probability of new data 𝐸 

given 𝐻, 𝑃(𝐻) is the prior (unconditional) probability distribution of parameter H, and 

P(E) is marginal likelihood (evidence). With the use of Bayes’ rule and in light of the 

data, we are able to update our beliefs about the variable H to a posterior belief. BNs 

can be used for representing the impact of evidence on existing data through 

probabilistic expressions describing the causal relationship among variables, as seen 

in an extension by Murphy [17]. 

3.2. Supply chain operations reference 

The Supply Chain Operations Reference (SCOR) model is a globally recognized 

framework that provides a standardized methodology for evaluating and improving 
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supply chain performance. Developed by the Supply Chain Council, SCOR serves as 

a comprehensive tool to map, measure, and optimize supply chain processes. It 

categorizes the supply chain into five primary processes: Plan, Source, Make, Deliver, 

and Return. These processes encompass the entire flow of goods and services, from 

the procurement of raw materials to the final delivery of products to the customer. At 

the first level of the Supply Chain Operations Reference model, companies define 

fundamental strategic objectives for their operational areas, setting the overall scope 

and framework for their supply chain. At this level, competitive performance targets 

are established while considering the five primary processes as shown in Figure 1. 

 

Figure 1. SCOR performance targets. 

SCOR offers a common language for organizations to assess their supply chains 

and identify areas for improvement, allowing for better alignment of operational 

strategies with business goals. The model is designed to help companies streamline 

their processes, reduce costs, enhance customer satisfaction, and adapt to changing 

market conditions. One of its strengths is its versatility. It can be applied to different 

industries and across various sectors of the supply chain, making it an essential tool 

for both manufacturers and service providers. SCOR breaks down supply chain 

performance into measurable components, known as performance attributes, which 

are critical to achieving operational excellence. These five key attributes are: Asset 

management efficiency, cost, agility, responsiveness, and reliability. These attributes 

help organizations focus on the most important aspects of their supply chain 

performance and provide a structured way to assess how well they are managing 

resources, meeting customer needs, controlling costs, and adapting to disruptions or 

changes in demand. The model is classified into 3 levels, one to three, respectively, 

with each level defined by its own metrics, as can be seen in Figure 2. The first level 

(highest level), defined by m0 metrics, evaluates the performance of the organization 

as a whole and represents the overall effectiveness of its supply chain. These metrics 

are known as the internal-facing metrics. The m2 metrics assess the performance of 

individual Level 2 processes within the supply chain, such as the source, make, and 

deliver processes. Lastly, m3 metrics evaluate specific activities or sub-processes 

within a Level 2 process, providing a detailed view of individual components within 

each major process. 
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Figure 2. SCOR performance attributes. 

In total, SCOR includes over 250 distinct metrics, each of which can be traced 

back to one of these five primary attributes, providing companies with detailed insights 

into their supply chain operations and enabling them to track and improve performance 

at a high level. In the following sections, the methodology approach will see these two 

theories and concepts merged to build a model that represents the research objectives. 

This approach leverages Bayesian inference, updating probabilities across the network 

as new evidence is introduced, thus providing a dynamic tool for simulating and 

analyzing potential outcomes. The insights gained offer valuable decision support for 

risk mitigation and identifying areas of vulnerability or strength within the supply 

chain, contributing to a deeper understanding of its adaptive capacity in the face of 

uncertainties. [18]. 

4. Proposed BN-SCOR hybrid model 

4.1. Problem description 

The semiconductor industry, particularly the supply chain of Taiwan 

Semiconductor Manufacturing Company (TSMC), is a highly complex, 

interdependent system where disruptions can propagate through multiple tiers of 

suppliers, manufacturers, and distributors. These disruptions, whether natural or man-

made, introduce significant risks to the stability of the system. The challenge lies in 

understanding how disruptions propagate structurally and temporally through the 

supply chain and in quantifying the likelihood of these cascading failures. In this 

research, the interdependencies within TSMC’s supply chain are modeled using a 

hybrid BN, where each node 𝑋𝑖 represents a supply chain entity, and the directed edges 

represent conditional dependencies between these nodes. The probabilistic 

relationships are defined as: 

𝑃(𝑋𝑖|Parents(𝑋𝑖)) = 𝑃(𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑛) (2) 

where 𝑃(𝑋𝑖|Parents(𝑋𝑖))  denotes the conditional probability of node 𝑋𝑖  being 

affected, given the state of its parent nodes 𝑋1, 𝑋2, … , 𝑋𝑛. This enables the calculation 

of the joint probability distribution over the entire network: 
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𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|Parents(𝑋𝑖))
𝑛

𝑖=1
 (3) 

This formulation allows us to model how disruptions propagate through the 

system, capturing both direct and indirect effects across multiple tiers of the supply 

chain. Additionally, the time aspect is incorporated using dynamic time-series 

analysis, where disruptions evolve over time. The state of each node at time 𝑡, 𝑋𝑖(𝑡), 

is dependent not only on its current conditions but also on its previous states: 

𝑋𝑖(𝑡) = 𝑓(𝑋𝑖(𝑡 − 1), 𝜖𝑡) (4) 

where 𝜀𝑡  represents a stochastic term accounting for random fluctuations or 

unforeseen events. This dynamic relationship allows for the modeling of disruption 

propagation across both time and space, providing insights into how quickly and to 

what extent disruptions spread through the network. By integrating these probabilistic 

and temporal components, the research quantifies both the structural and temporal 

resilience of TSMC’s supply chain. 

4.2. Simulation model 

When combined with BNs, the SCOR model enhances the ability to simulate 

various operational scenarios and their impacts on supply chain resilience, enabling a 

more robust evaluation of potential risks and the development of strategies to mitigate 

them. The SCOR model acts as the foundational structure of the BN, providing a 

comprehensive framework to model the complexities of the supply chain. It allows for 

a standardized approach to evaluating performance across various dimensions of 

supply chain management. By breaking the supply chain into key attributes, SCOR 

offers a holistic view of the operational processes that affect both upstream and 

downstream activities. In the established model, the SCOR elements serve as the 

central or “middle” nodes in the network because they bridge the gap between the key 

performance indicators (KPIs) at the top level and the overall resilience at the base. 

These nodes are essentially the “body” of the network, ensuring that every action or 

event in the supply chain is captured, processed, and reflected in the overall resilience 

of the network. The BN allows for probabilistic reasoning of all the metrics necessary 

to achieve the desired objectives. 

In this BN, the resilience of TSMC’s semiconductor supply chain is 

conceptualized through the integration of three key capacities. Absorptive, adaptive, 

and restorative, each influencing the overall resilience of the system. These capacities 

are represented by parent nodes that encapsulate the supply chain’s ability to absorb, 

adapt, and recover from various disruptions. Each capacity functions in binary states, 

i.e., True (positive outcome) or False (negative outcome), to denote whether TSMC’s 

supply chain is effectively managing disruptions or failing to do so. Key performance 

indicators (KPIs), such as inventory cost, labor cost, and lead time shortness, serve as 

critical inputs to these capacities. Each KPI is categorized into three states: low, 

medium, and high, to quantify the performance levels and their impact on the supply 

chain’s resilience. The three capacities are modeled to interconnect and influence 

overall resilience, with the understanding that under normal or disrupted conditions, 
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the states of these KPIs directly inform the supply chain’s ability to either continue 

operations smoothly or to recover post-disruption. 

The absorptive capacity refers to the ability of TSMC’s supply chain to withstand 

disruptions without significant degradation in performance. It is primarily determined 

by asset management efficiency and total cost, both of which are influenced by KPIs 

like inventory days, warranty cost, and cash cycle time. The more efficiently TSMC 

manages its assets and keeps costs low, the higher the absorptive capacity will be, and 

the system is more likely to remain in a positive state (True) despite external 

disruptions. Absorptive capacity, as discussed by Sheffi [19], plays a foundational role 

in building a resilient supply chain that can maintain steady-state operations even 

under stress.  

The adaptive capacity of the network represents TSMC’s ability to adjust or 

respond to unexpected changes, which is crucial in maintaining operational fluidity in 

the face of volatile supply and demand conditions. Adaptive capacity is informed by 

flexibility, responsiveness, and delivery reliability, which are derived from KPIs such 

as processing speed, order completeness, and filling order accuracy. Notably, while 

delivery reliability could be associated with both adaptive and restorative capacities, 

it is modeled as part of the adaptive capacity in this network because of its direct 

influence on TSMC’s ability to adjust and respond in real time to disruptions. This 

decision aligns with Ponomarov and Holcomb’s framework [20], which emphasizes 

the necessity for flexibility and quick response as part of adaptive resilience.  

The restorative capacity, which measures TSMC’s ability to recover from 

disruptions and return to normal operations, is defined by the parameters of recovery 

time and cost, resource reallocation, and backup suppliers. These elements are, in turn, 

influenced by KPIs such as labor cost, unplanned ability, and quick ship ability, which 

determine how quickly and effectively TSMC can reallocate resources or rely on 

alternative suppliers to restore lost capacity. In this network, restorative capacity 

focuses on post-disruption recovery, ensuring that lost production or capacity is 

mitigated through effective recovery strategies. Together, these three feed into the 

overarching node of resilience, representing TSMC’s ability to withstand, adapt to, 

and recover from disruptions.  

The network acknowledges that while some KPIs may be relevant to multiple 

capacities, their placement has been optimized for best fit. For instance, delivery 

reliability, which impacts both adaptive and restorative functions, is placed under 

adaptive capacity due to its stronger alignment with real-time adjustments in 

production and delivery schedules. This alignment allows for a clearer interpretation 

of the supply chain’s resilience in specific contexts. The integration of KPIs from the 

SCOR model into this Bayesian framework strengthens the network’s applicability in 

analyzing and quantifying resilience within a manufacturing context. The SCOR 

model is widely recognized for linking operational activities with supply chain 

performance, making it an ideal foundation for modeling resilience. By doing so the 

network holistically captures the multi-dimensional nature of resilience within 

TSMC’s supply chain, providing a structured approach to understanding how the 

system absorbs shocks, adapts to changing conditions, and restores lost capacity 

following disruptions. 
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Table 1. Influence between nodes. 

Parent Child Weighted Maximum 

Inventory days Asset management efficiency 0.3520 0.6062 

Cash cycle time Asset management efficiency 0.2620 0.5220 

Asset management efficiency Absorptive capacity 0.2778 0.5 

Quick ship ability Backup suppliers 0.2556 0.5 

Total cost Absorptive capacity 0.2333 0.5 

Processing speed Responsiveness 0.2834 0.4583 

Restorative capacity Resilience 0.3750 0.45 

Unplanned ability Resource reallocation 0.2556 0.45 

Lead time Recovery time & cost 0.2667 0.45 

Flexibility Adaptive capacity 0.2363 0.4 

Absorptive capacity Resilience 0.3250 0.4 

Providing specific needs Restorative capacity 0.3 0.4 

Resource reallocation Backup suppliers 0.2333 0.4 

Responsiveness Adaptive capacity 0.2104 0.4 

Delivery reliability Restorative capacity 0.25 0.35 

Inventory cost Resource reallocation 0.2111 0.35 

Labor cost Adaptive capacity 0.1993 0.35 

Labor cost Total cost 0.1557 0.35 

Recovery time & cost Total cost 0.1557 0.35 

Transportation cost Total cost 0.1494 0.35 

Warranty cost Total cost 0.1405 0.35 

Cash cycle time Recovery time & cost 0.2111 0.35 

Order completeness Delivery reliability 0.1337 0.35 

Backup suppliers Restorative capacity 0.2 0.3 

Adaptive capacity Resilience 0.175 0.3 

Filling order accuracy Delivery reliability 0.1406 0.2784 

Order consistency Delivery reliability 0.1318 0.2784 

Lead time Responsiveness 0.1234 0.2646 

Providing specific needs Flexibility 0.1333 0.2 

Quick ship ability Flexibility 0.1333 0.2 

Unplanned ability Flexibility 0.1333 0.2 

In the BN model, the strength of influence between nodes is depicted by the arcs 

connecting them, with Euclidean distance and arc weights serving as key measures to 

quantify these relationships. Euclidean distance, in this context, reflects the degree of 

similarity or dissimilarity between the probability distributions of connected nodes, 

capturing how closely their outcomes align. Arc weights further quantify the 

magnitude of these influences, with higher weights indicating a stronger causal effect 

from parent to child nodes. In this model, these weights were determined automatically 

by the GeNIe software based on the input conditional probabilities, which encode the 

conditional dependencies between variables. The visual representation of the model 

uses arc thickness to illustrate the strength of influence, where thicker arcs signify 
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stronger dependencies, indicating that variations in the parent node exert a more 

substantial impact on the child node’s probabilistic outcomes. This approach integrates 

both Euclidean distance and weight to offer a detailed representation of the 

interdependencies within the supply chain system. The described network can be seen 

in Figure 3. The influence between the nodes can also be seen in Table 1. 

 

Figure 3. TSMC SCOR-BN resilience model. 

To identify the most critical KPIs for evaluating supply chain resilience, the study 

began with a comprehensive literature review to explore widely used metrics 

associated with the SCOR model’s attributes. This review identified over 250 potential 

KPIs commonly utilized to monitor supply chain performance and resilience. From 

this extensive list, an initial set of 30 KPIs was developed, encompassing the five 

SCOR attributes: Reliability, Responsiveness, Agility, Cost, and Asset Management. 

A structured survey was then distributed to 87 supply chain experts, who evaluated 

each KPI based on three criteria: relevance, impact, and feasibility, using a 1–5 Likert 

scale. In addition to scoring the KPIs, respondents selected their top five metrics and 

provided qualitative feedback to offer further insights. After collecting responses, a 

data-cleaning process was conducted to ensure validity and consistency, resulting in 

the exclusion of five incomplete or inconsistent submissions. A total of 82 valid 

responses were analyzed. The quantitative analysis involved calculating weighted 

scores for each KPI, with relevance given a 50% weight, impact 30%, and feasibility 

20%. This provided an objective basis for ranking the KPIs, while the frequency of 

top five selections highlighted consensus among respondents. The qualitative 

feedback was also analyzed to support the quantitative findings and to justify the 

exclusion of less impactful metrics. 

The combined analysis of weighted scores, top five frequency selections, and 

qualitative feedback led to the final selection of 14 KPIs. These metrics were chosen 

for their consistent performance across all evaluation criteria and their alignment with 

the SCOR attributes. Metrics related to financial efficiency, such as inventory days 

and cash cycle time, emerged as critical, alongside delivery reliability and lead time 

shortness, which reflected the importance of ensuring consistent and timely 



Mathematics and Systems Science 2025, 3(1), 3033.  

11 

operations. Agility metrics, such as quick ship ability and providing specific needs, 

stood out for their relevance in dynamic supply chain environments. Cost-related 

metrics, including labor cost and warranty cost, underscored the significance of 

financial resilience in planning. The weighted scores of these 14 KPIs were visualized 

in a bar chart in Figure 4, providing a clear representation of their relative importance. 

 

Figure 4. Weighted scores for selected KPIs. 

Subsequently, upon reaching out to a few experts, their feedback process pushed 

the list to the 17 KPIs, with the addition of supplementary KPIs namely, recovery time 

and cost, backup suppliers and resource reallocation. These were seen as crucial to 

further enhance the model as one capable of yielding reasonable results. This final 

selection offers a focused, yet comprehensive set of metrics tailored to TSMC’s unique 

needs and the complexities of semiconductor manufacturing. It is important to note 

that specific data related to each KPI was obtained by analyzing open-source industry 

data. Given TSMC accounts for well over 80% of global chips, this approach is 

justified as reasonable for this study. 

The entire network is placed in the temporal plate of GeNIe’s dynamic simulation 

interface because every node can be seen as a parameter or variable that changes with 

time. The time step is set to 12, representing a 12-month period that will see numerous 

disruptions introduced in order to understand how the resilience responds with time. 

In dynamic simulation, time steps simply represent the number of iterations being 

considered. However, the network being in the temporal plate was not enough to 

capture the dynamic element of a real-life supply chain. In a dynamic system such as 

a supply chain, resilience is not static; it evolves as a function of past states and 

external conditions. The temporal arc of order 1 signifies that the state of resilience at 

any given time step (e.g., month t) depends on its state in the previous time step (e.g., 

month t − 1). This reflects how historical performance, disruptions, and recovery 

efforts influence future resilience levels, which is critical in capturing real-life 

dynamics of supply chain operations. Therefore, the resilience node was modeled to 

have a temporal arc to itself of order 1, as per Figure 5. 
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Figure 5. Order 1 feedback modelling. 

In dynamic BNs, temporal feedback is crucial for capturing time-evolving 

dependencies. The feedback loop of order 1 is designed to represent the fact that the 

current state of supply chain resilience is influenced by its prior state in the previous 

time step (e.g., previous month). the temporal arc from supply chain resilience back to 

itself models this. Mathematically, this can be represented by a Markov process, where 

the state at time 𝑡, 𝑆(𝑡), is conditioned by the state at 𝑡 −1, 𝑆(𝑡 −1). The recursive 

dependency can be expressed as: 

𝑃(𝑆(𝑡)|𝑆(𝑡 − 1), 𝑿(𝑡))𝑃(𝑆(𝑡)|𝑆(𝑡 − 1), 𝑿internal(𝑡), 𝑿external(𝑡)) (5) 

where 𝑆(𝑡) is the supply chain resilience at time 𝑡, 𝑿internal(𝑡) refers to internal-

facing factors and 𝑿external(𝑡)  refers to customer-facing factors. The Markov 

property assumption simplifies the model by limiting the influence to only the 

previous time step (first-order). This temporal feedback structure enables the resilience 

level from the previous period to carry forward into the next period. It helps in 

modeling path-dependent outcomes, which is crucial for real-world systems where 

conditions accumulate over time. 

5. Simulation, analysis and discussion 

5.1. Analyzing the static network resilience 

5.1.1. Causal reasoning 

In reference to Figure 6, the absorptive capacity, as previously discussed, is 

largely determined by the firm’s ability to efficiently manage its assets and costs. Asset 

management efficiency represents how well TSMC is able to manage its supply chain 

resources, including inventory and working capital, and is directly impacted by KPIs 

such as cash cycle time and inventory days. These two factors are further governed by 

KPIs like cash cycle time, inventory days, and transportation cost. A high probability 

of cash cycle time in a low state suggests that TSMC is efficient in managing its cash 

flow, converting resources into revenue quickly, and maintaining operational 

flexibility during supply chain disruptions. In the model, the probability distribution 

for asset management efficiency is skewed towards the medium and high states, with 

47% for medium and 27% for high, which indicates that TSMC tends to operate at 

optimal levels most of the time, allowing for resilience when disruptions occur. Total 

cost, on the other hand, encompasses the financial aspects of maintaining supply chain 
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operations and is influenced by factors such as transportation cost, inventory cost, 

labor cost, and warranty cost.  

 

Figure 6. TSMC supply chain resilience static network. 

The current model gives a 32% probability for low total cost, 44% for medium, 

and 24% for high. This suggests that while TSMC can often manage costs efficiently 

(evident by the relatively high chance of low and medium costs), there are occasions 

where costs can escalate, potentially affecting the company’s ability to absorb supply 

chain shocks. Importantly, total cost directly feeds into TSMC’s absorptive capacity, 

which has a 66% probability of being true, signaling a strong likelihood that the 

company can absorb disruptions without dramatically increasing operational costs. 

Lower costs typically imply that TSMC is effectively using resources to mitigate 

disruptions, allowing it to maintain flexibility in response to sudden changes, such as 

spikes in labor or transportation expenses. When costs are higher, however, the 

company may face challenges in reallocating resources, impacting its overall 

absorptive capacity. In an industry as cost-sensitive as semiconductor manufacturing, 

the balance between minimizing costs and maintaining sufficient buffer resources is 

essential. Thus, TSMC’s absorptive capacity is reinforced by its ability to keep costs 

manageable while ensuring that operational efficiency does not suffer under 

disruption, further enhancing the company’s overall resilience. 

Restorative capacity within TSMC’s supply chain is crucial for its ability to 

bounce back after disruptions by leveraging existing resources and backup plans. This 

capacity is dependent on three core components, i.e., recovery time and cost, resource 

reallocation, and backup suppliers. Each of these parameters has direct KPIs that 

influence the overall performance of TSMC’s resilience in a crisis. Recovery time and 

cost in this model represent how quickly and cost-effectively TSMC can resume 

normal operations following a disruption. The node for this parameter depends on cash 

cycle time and lead time shortness, with probabilities distributed based on historical 

data and industry benchmarks. Cash cycle time is crucial, as it reflects how fast TSMC 

can convert resources into cash, which directly affects recovery speed. The CPT 

suggests a 70% probability of true recovery capability, supported by medium to high 

efficiency in lead time shortness and cash cycle time. This aligns with the 

semiconductor industry’s need for quick lead times due to high customer demand and 
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rapid technological evolution. Also, resource reallocation plays a significant role in 

ensuring that during disruptions, TSMC can effectively shift resources (such as labor 

or equipment) to mitigate loss of productivity. This node is influenced by labor costs 

and unplanned ability, both of which reflect the company’s flexibility in mobilizing 

internal resources under stress. With labor cost often fluctuating in relation to market 

dynamics, the model shows a 64% chance of successful resource reallocation, a figure 

supported by efficient workforce planning and cross-training of employees that help 

maintain operations even in difficult circumstances. However, this also indicates room 

for improvement in managing costs when reallocating resources during high-stress 

periods. Finally, backup suppliers add an external layer to restorative capacity, 

allowing TSMC to ensure continuity even if a primary supplier fails. The providing 

specific needs and quick ship ability KPIs are key here, with TSMC’s diverse and 

global supplier network contributing to a 61% probability of true backup supplier 

capability. While TSMC has strategically diversified its supply chain to avoid over-

reliance on any single supplier, there are still risks inherent in the global nature of the 

semiconductor industry, where raw material shortages or geopolitical issues can cause 

delays. By maintaining strong relationships with backup suppliers and prioritizing 

flexibility in procurement, TSMC has a robust but not infallible restorative capacity. 

On the other hand, adaptive capacity, defined by the three nodes of flexibility, 

responsiveness, and delivery reliability, each of which plays a critical role in 

determining TSMC’s overall ability to adapt to new circumstances. Flexibility, 

influenced by unplanned ability and quick ship ability, shows a 39% chance of 

achieving high flexibility, highlighting the challenges of adapting quickly in an 

industry where manufacturing processes are complex and highly specialized. 

However, flexibility is bolstered by the company’s investment in advanced 

manufacturing technologies that allow for some degree of process modification, albeit 

with certain limitations in terms of cost and time. Responsiveness, driven by KPIs 

such as order consistency and order accuracy, has a 31% probability of being highly 

responsive. TSMC is generally able to maintain its order commitments, though it faces 

some difficulties in maintaining accuracy during periods of extreme demand 

fluctuations. The company’s strong customer relationships and emphasis on 

forecasting allow it to remain responsive to changes, though delays in certain areas of 

the supply chain can still cause disruptions. Finally, delivery reliability, which 

evaluates how consistently TSMC meets its delivery targets, has a 41% probability of 

being high under normal operating conditions. Influenced by order completeness, 

processing speed, and filling order accuracy, delivery reliability is essential for TSMC 

to maintain its reputation as a trusted supplier in the global semiconductor market. The 

model suggests that TSMC is generally reliable in meeting its delivery goals, but 

external factors like shipping delays and global trade barriers occasionally affect 

performance. 

All three capacities are the parameters that directly influence TSMC’s overall 

resilience, which measures the company’s ability to withstand, adapt to, and recover 

from disruptions. The network’s analysis shows a 71% probability of TSMC achieving 

true resilience, a figure that reflects the company’s strong operational foundations but 

also underscores the ongoing need for optimization in areas such as cost management 

and global supply chain coordination. 
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5.1.2. Diagnostic reasoning 

Diagnostic reasoning, conducted by setting resilience to a failure state, reveals 

adaptive capacity as the primary bottleneck, with a 61% probability of failure. Key 

contributing factors include poor delivery reliability (43% low), limited flexibility 

(49% medium), and low responsiveness (40% medium). Restorative capacity issues 

were also identified, with inefficiencies in resource reallocation (44% false 

probability) and prolonged recovery timelines (37% false probability). Absorptive 

capacity weaknesses, such as suboptimal asset management efficiency (47% medium) 

and high total cost (45% medium), further reduce resilience. These findings are 

represented in Figure 7. 

 

Figure 7. Diagnostic reasoning results. 

5.1.3. Causal chain analysis 

The causal chain analysis identifies key pathways affecting TSMC’s resilience. 

The most critical chain contributing to resilience failure includes labor cost → 

resource reallocation → restorative capacity → resilience. An alternative pathway 

based on average influence involves cash cycle time → recovery time & cost → 

restorative capacity → resilience. These findings highlight areas where strategic 

interventions, such as improving cost management and enhancing backup supplier 

relationships, can improve resilience. 

5.2. Forward propagation–GeNIe dynamic simulation 

Propagation in BNs is central to the inference process, allowing probability 

distributions to update dynamically in response to new evidence. This process enables 

decision-making under uncertainty, where BNs offer a structured approach to 

managing interdependencies between variables. Bayesian networks utilize directed 

acyclic graphs (DAGs) to represent conditional dependencies, with propagation 

mechanisms facilitating inference across the network.  

Despite the entire disruption scenarios being hypothetical, by incorporating some 

of the patterns of modern challenges faced by today’s supply chains in the industry 

(including TSMC), which include geopolitical tensions, pandemics, and technological 

failures, to name a few. This ensures the study is a close representation of the risks 
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that exist in the real world. Table 2 shows the month-by-month (in order from 1–12) 

disruptions to TSMC’s supply chain, the affected KPIs, and how their respective states 

change as a result. 

Table 2. Disruption events to TSMC’s manufacturing supply chain. 

Disruption KPIs affected State change 

Earthquake in Taiwan 
Lead time shortness, inventory cost 

and cash cycle time 
All change to high due to severe disruptions in operations and infrastructure 

Trade war escalation Transport and inventory cost 
Transport changes to high due to increased tariffs; inventory remains high 

from previous disruption. 

Supplier quality issues 
Warranty cost, order completeness 

and order consistency 

Warranty costs change to high; order completeness and consistency drop to 

low, reflecting the effect of receiving substandard materials. 

Major port strike 
Transport cost, lead time shortness 

and cash cycle time 

Transport and lead time shortness remain high; cash cycle time changes to 

high due to significant delays in shipments. 

Increase in demand for 

semiconductors 

Inventory days, quick ship ability, 

filling order accuracy 

Inventory days change to low as stock turns over quickly, quick ship ability 

changes to high to meet fast shipping demands, and filling order accuracy 

changes to medium, balancing increased demand pressures. 

Raw material shortage 
Inventory cost, unplanned ability, 

cash cycle time 

Inventory cost remains high, unplanned ability changes to high, reflecting 

strong downside flexibility; cash cycle time changes to high due to 

production delays. 

Pandemic outbreak 
Labor cost, lead time shortness, 

inventory days 

Labor cost and lead time shortness remain high; inventory days remain low 

due to ongoing disruptions. 

New technology 

implementation 
Processing speed, order completeness 

Both change to medium as the firm adjusts to new technology and initial 

disruption. 

Geopolitical tensions in 

Asia-Pacific region 
Transport and Labor costs Both remain high, reflecting continued pressures from external tensions. 

Major customer contract 

loss 

Providing specific needs, order 

completeness, cash cycle time 

Providing specific needs and order completeness changes to low due to 

reduced demand; cash cycle time changes to high, reflecting slower revenue 

streams. 

Supplier bankruptcy Warranty cost, inventory days 

Warranty costs remain high due to challenges in securing quality materials; 

inventory days change to medium as efforts are made to secure alternative 

suppliers. 

Recovery and 

stabilization 

Lead time shortness, unplanned 

ability, inventory cost 
All change to medium as attempts to stabilize operations are made. 

5.3. Dynamic supply chain results analysis 

Upon running the simulation, the model is unrolled from the temporal plate over 

the stated time step; each individual time step will reveal its respective updated beliefs 

and evidence within the BN model. As the model progresses through each step, the 

probability distributions of nodes are recalculated based on the new evidence 

introduced, allowing us to observe how new data influences the network’s state. Parent 

nodes update dynamically, transmitting causal effects to child nodes, enabling us to 

trace evolving dependencies and variable relationships in real time. Given the 

network’s size and a larger time step of 12, a simplified model with a shorter time step 

of 3 (Figure 8a) can provide a clear illustration of the unrolling process and how 

evidence and beliefs propagate through each step (Figure 8b). For the full analysis, 

however, the results are presented and discussed ahead using line graphs showing each 

parameter and the overall resilience across the entire 12-time steps. This approach will 

allow for a comprehensive visual overview of resilience fluctuations and parameter 
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evolution, highlighting both immediate and long-term impacts of disruptions within 

the simulated supply chain scenarios. 

  
(a) (b) 

Figure 8. GeNIe modelling of dynamic network, (a) dynamic 3-step illustration model; (b) unrolled 3-step illustration 

model. 

5.3.1. Absorptive capacity 

Consider Figure 9, the absorptive capacity saw notable declines during months 

4 and 6, driven by significant disruptions such as the major port strike and raw material 

shortages. In month 4, the port strike disrupted transport and lead times, which strained 

the system’s ability to absorb these impacts. The subsequent raw material shortage in 

month 6 compounded these issues, as the supply chain struggled to cope with 

increased costs and delays in production. The declines in absorptive capacity during 

these months corresponded with the dips in resilience, highlighting how the system’s 

inability to manage these disruptions directly affected overall performance. By the end 

of the period, absorptive capacity improved as recovery measures took hold, 

contributing to the stabilization of resilience. 

 

Figure 9. TSMC’s absorptive capacity. 

5.3.2. Restorative capacity 

Moving onto the restorative capacity, this parameter remained consistently strong 

throughout the year, playing a crucial role in maintaining overall resilience during key 
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disruptions such as the port strike and raw material shortages. Even during periods of 

strain, the system’s ability to restore operations quickly helped prevent deeper declines 

in resilience. In month 8, during the implementation of new technology, restorative 

capacity supported resilience by enabling the system to adapt to operational changes 

and prevent disruptions from escalating. The strong performance in this area helped 

counterbalance the fluctuations in absorptive and adaptive capacities, ensuring that 

resilience was maintained at a relatively high level throughout most of the year. By 

the end of the period, continued recovery efforts allowed restorative capacity to further 

reinforce the system’s resilience, particularly as the supply chain stabilized. The 

restorative capacity is represented by the graph in Figure 10. 

 

Figure 10. TSMC’s restorative capacity. 

5.3.3. Adaptive capacity 

As seen in Figure 11, adaptive capacity exhibited variability throughout the year, 

reflecting the system’s ability to adjust to different disruptions. During month 4, 

adaptive capacity’s true value increased, showcasing the system’s ability to adapt 

effectively to the major port strike by reallocating resources and managing transport 

and inventory challenges. In month 6, adaptive capacity remained stable with a slight 

increase, highlighting the system’s continued flexibility in responding to the raw 

material shortage despite ongoing pressures. This variability underscores the system’s 

capacity to handle sudden shifts and disruptions. Towards the later months of the year, 

adaptive capacity stabilized, reflecting a more consistent ability to manage disruptions 

and adapt to changing circumstances effectively. 

 

Figure 11. TSMC’s adaptive capacity. 
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5.3.4. Supply chain resilience 

The resilience of TSMC’s supply chain, Figure 12, fluctuated throughout the 12-

month period, reflecting its ability to handle disruptions and recover from them. 

During month 4, resilience dipped due to the major port strike, which disrupted 

transportation networks and led to delays in inventory movement. While adaptive 

capacity increased during this period, showcasing the system’s flexibility to reallocate 

resources and manage disruptions, it was insufficient to fully counterbalance the strain 

on resilience caused by the extensive logistical challenges. By month 6, resilience 

experienced another significant decline due to raw material shortages, which extended 

lead times and increased operational costs. During this period, adaptive capacity 

increased slightly, reflecting the system’s ability to remain flexible in adapting to the 

disruption, but this flexibility alone could not prevent the erosion of resilience under 

sustained external pressures. After month 6, resilience shows signs of stabilizing in 

months 7 and 8 but dips again in month 9, as geopolitical tensions in the Asia-Pacific 

region exerted further pressure on transport and labor costs. The system’s resilience 

was weakened during this period due to difficulties in absorbing increased costs, as 

evidenced by a dip in absorptive capacity. However, the relatively stable restorative 

capacity during this period continued to cushion the impact of these external pressures, 

allowing the system to maintain a level of resilience despite the ongoing disruptions. 

By the final months, recovery and stabilization efforts led to a rebound in resilience, 

aided by improvements in lead times, unplanned ability, and better inventory 

management. 

 

Figure 12. TSMC’s supply chain resilience. 

Throughout the year, restorative capacity played a critical role in cushioning 

these dips in resilience, allowing the system to recover and stabilize. By the final 

months, recovery efforts supported improvements in lead times, unplanned abilities, 

and inventory management, enabling resilience to rebound. The interaction between 

adaptive capacity and resilience highlights that while flexibility is essential for 

managing disruptions, resilience ultimately requires strong recovery mechanisms, 

supported by restorative capacity, to sustain performance through prolonged 

challenges. 
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5.4. Key findings from dynamic simulations 

1) Temporal propagation of disruptions: 

• Disruptions originating at nodes with high interconnectivity, such as 

inventory days and lead time shortness, demonstrate rapid cascading effects 

throughout the network, as indicated by simulation results showing 

increased downstream impacts when these nodes experience disruptions. 

This highlights their critical role in maintaining supply chain stability. 

• Temporal analysis reveals that nodes like backup suppliers and resource 

reallocation significantly mitigate the spread of disruptions when their 

performance is optimized. 

2) Performance under stress scenarios: 

• Scenarios involving simultaneous disruptions demonstrate the importance 

of adaptive capacity in maintaining operational continuity. 

• Nodes linked to restorative capacity, such as recovery time and cost, exhibit 

delayed responses under extreme conditions, indicating the need for 

proactive recovery planning. 

3) Critical resilience enhancements: 

• Increasing flexibility in production scheduling and resource allocation 

improves the supply chain’s ability to absorb shocks and maintain 

functionality. 

• Expanding quick ship ability and backup supplier availability reduces 

recovery times and prevents bottlenecks during high-stress scenarios. 

6. Conclusion and limitations 

The goal of this study was to test and assess the resilience of Taiwan 

Semiconductor Manufacturing Company’s (TSMC) supply chain by simulating 

various disruption scenarios. The findings indicate that while TSMC’s supply chain 

exhibits a degree of resilience, it is also susceptible to notable disruptions, particularly 

in scenarios involving natural disasters like earthquakes, geopolitical tensions, and 

critical supplier failures. These disruptions lead to extended lead times, depleted 

inventory levels, increased labor and operational costs, and reduced service levels. 

Based on the results analysis, what can be highlighted immediately is the importance 

of proactive measures such as diversifying suppliers, enhancing inventory 

management strategies, and investing in robust risk management practices to mitigate 

these impacts and ensure supply chain continuity. 

However, certain limitations inherent in the modeling and simulation approach 

are evident. While the selected KPIs provided valuable insights into the supply chain’s 

response to disruptions, the real-world complexity of TSMC’s operations involves a 

far broader set of metrics that could also influence resilience. Factors such as 

environmental sustainability, ethical sourcing, cybersecurity, and technological 

advancements in manufacturing are just a few examples of additional dimensions that 

were not fully captured in this analysis due to limited access to data or just the 

complexity involved in incorporating them. Furthermore, the dynamic interactions 

between various supply chain components and external factors create effects that are 

difficult to predict and model comprehensively. 
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In conclusion, this study demonstrates the utility of simulation as a method for 

stress-testing supply chain resilience and highlights the critical areas where TSMC 

could focus its efforts to bolster its supply chain against future disruptions. The 

insights gained, while valuable, should be viewed as part of a broader, ongoing effort 

to continually monitor, evaluate, and enhance the robustness of the firm’s global 

supply chain. Future research could expand on this work by incorporating a more 

extensive range of KPIs and by exploring the impact of emerging technologies and 

global trends on supply chain resilience. 
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