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Abstract: In this research paper, a spectral method is used for numerically solving the time-

fractional diffusion equation as the time fractional diffusion equations are a powerful tool for 

simulating physical systems. We employ the Lucas polynomials (LPs) with Petrov-Galerkin 

for the linear combination basis. The main idea of the proposed technique is to convert the 

governed boundary-value problem into a system of linear algebraic equations by applying the 

Petrov-Galerkin method. Many procedures can solve the resulting linear system. The method’s 

accuracy is shown through several examples. 
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1. Introduction 

Several fields within the applied sciences rely heavily on fractional differential 

equations (FDEs). Conventional differential equations fail to account for a great deal 

of the events that they represent. This is because of their remarkable capacity to 

simulate intricate inheritance and memory processes. For instance, as mentioned by 

Magin [1], this approach mimics a wide range of biological and physiological 

processes, such as the growth of tumors and the actions of neurons. The 

aforementioned equations can also be used to explain anomalous diffusion, 

electromagnetic phenomena, and wave propagation in complex media [2]. FDEs have 

also frequently been used to depict the intricate mechanical response of viscoelastic 

materials to stress or strain [3]. Fractional calculus has been utilized in signal 

processing for feature extraction, denoising, and filtering [4].  

Particularly in numerical solutions for ordinary, partial, and differential equations, 

spectral approaches are crucial to numerical analysis. Using spectral methods, the 

differential equation solution is expressed as a sum of basis functions, and the 

coefficients are then selected to minimize the error between the exact and numerical 

solutions. Spectral approaches have the advantage of rapidly converting differential 

problems into linear or nonlinear algebraic equation solutions [5,6]. The collocation, 

tau, and Galerkin methods are the three widely used spectral approaches. Numerous 

researchers have given these techniques a lot of thought [7–10]. The equation for 

fractional diffusion treats super-diffusive flow phenomena and generalizes the 

classical diffusion equation, making it one of the foundational equations of 

mathematical physics. In recent years, its demand has grown. The old version of the 

diffusion process issue, which attempts to derive past field conditions from present 

data, has a wide range of applications. The well-known simple model of the time-
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diffusion problem is the familiar partial differential equation of the temperature field 

u(x,t)  [11,12] 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
, 𝑡 ∈ ℝ+, 𝑥 ∈ 𝜎 ⊂ ℝ1, (1) 

under a predetermined beginning state at t=0 and specific boundary constraints 

on ∂σ. Finding a closed form of u(x, t) using only the beginning and boundary 

conditions provided is the goal. Time fractional diffusion equations have many 

applications such as description reaction diffusion processes with memory effects in 

biology, physics and chemistry. Modeling heat conduction with memory effects in 

material is one of the important applications of time fractional diffusion equations. 

The view and use of Lucas polynomials in contemporary research are highly 

interesting, and they play important roles in mathematical theory and practice. Many 

scholars have examined their diverse mathematical characteristics and come up with 

a number of important conclusions. For instance, Koundal [13] developed new 

formulae on shifted LPs, Abd-Elhameed et al. [14] developed new formulae on 

Fibonacci and LPs, Gumgum et al. [15] suggested a Lucas polynomials collocation 

approach to solve functional integro-differential equations, Singh and Ray [16] used a 

spectral Lucas approach to solve multi-dimensional stochastic Itô-Volterra integral 

equations, and Youssri et al. [17] presented a generalized Lucas Galerkin method for 

solving the linear one_dimensional telegraph type equation. 

We use LPs with Petrov-Galerkin for solving time fractional diffusion equation 

because less calculation is required, and the resulting errors are small. It gives us high 

accuracy and efficiency. 

The overall organization of the article is as follows: In Section 2, Caputo 

fractional calculus along with LPs are discussed in depth along with their fundamental 

relations. In Section 3 we introduce Petrov-Galerkin Approach for the Treatment of 

Time Fractional diffusion equation. In Section 4 we introduce some examples to 

confirm the accuracy of our method, and we make a comparison between our method 

and other. Finally, we present the conclusion for our method in Section 5.  

2. Preliminaries and fundamentals 

The first part of this section, we recall some definitions and properties of 

fractional calculus. The second part we recall some properties and relations of LPs. 

2.1. Some definitions and properties of the fractional Calculus 

Definition 1. [18] On the standard Lebesgue space 𝐿1[0,1], the Riemann-Liouville 

fractional integral operator 𝐼𝜌 of order ρ is defined as: 

𝐼𝜌ℎ(𝑦) = {

1

Γ(𝜌)
∫

𝑦

0

(𝑦 − 𝑡)𝜌−1ℎ(𝑡)𝑑𝑡, 𝜌 > 0,

ℎ(𝑦), 𝜌 = 0.

 (2) 

Definition 2. [18,19] The fractional-order derivative is defined by Caputo as follows: 

𝐷𝜌ℎ(𝑦) =
1

Γ(𝑚 − 𝜌)
∫

𝑦

0

(𝑦 − 𝑡)𝑚−𝜌−1ℎ
(𝑚)(𝑡)𝑑𝑡,   𝜌 > 0,   𝑦 > 0, (3) 
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where 𝑚 − 1 ⩽ 𝜌 < 𝑚, 𝑚 ∈ ℕ. The operator 𝐷𝜌 satisfies the following properties 

for 𝑚 − 1 ⩽ 𝜌 < 𝑚, 𝑚 ∈ ℕ, 

(𝑖) (𝐷𝜌 𝐼𝜌ℎ)(𝑦) = ℎ(𝑦), 

(𝑖𝑖) (𝐼𝜌 𝐷𝜌ℎ)(𝑦) = ℎ(𝑦) − ∑

𝑚−1

𝑘=0

ℎ(𝑘)(0+)

Γ(𝑘 + 1)
(𝑦 − 𝑎)𝑘 ,    𝑦 > 0, 

(𝑖𝑖𝑖)𝐷𝜌 𝑦𝑘 =
Γ(𝑘 + 1)

Γ(𝑘 + 1 − 𝜌)
 𝑦𝑘−𝜌,    𝑘 ∈ ℕ,    𝑘 ≥ ⌈𝜌⌉, 

where ⌈𝜌⌉ indicates the smallest integer greater than or equal to 𝜌. 

Definition 3. [18] 

𝐷𝜈𝑥𝑘 = {

0,  𝑖𝑓     𝑘 ∈ ℕ0  and  𝑘 < ⌈𝜈⌉,
Γ(𝑘 + 1)

Γ(𝑘 + 1 − 𝜈)
𝑥𝑘−𝜈,  𝑖𝑓   𝑘 ∈ ℕ0  and  𝑘 ≥ ⌈𝜈⌉,

 (4) 

where ℕ = {1,2, . . . } and ℕ0 = {0,1,2, . . . }. 

2.2. Some properties and fundamental relations of LPs 

The recurrence relation governing LPs 𝐿𝑖(x) is defined in Youssri et al. [17]  

𝐿𝑖(𝑥) = 𝑥𝐿𝑖−1(𝑥) + 𝐿𝑖−2(𝑥), 𝑖 ≥ 2, (5) 

where 

𝐿0(𝑥) = 2, 𝐿1(𝑥) = 𝑥, (6) 

The analytic form of 𝐿𝑖(𝑥) is 

𝐿𝑖(𝑥) = 𝑖 ∑

⌊
𝑖
2

⌋

𝑟=0

(
𝑖 − 𝑟
𝑟

)

𝑖 − 𝑟
𝑥𝑖−2𝑟, 𝑖 ≥ 1, (7) 

or, in another form 

𝐿𝑖(x) = 2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘
2

𝑖 − 𝑘
2

) 𝛿𝑖+𝑘

𝑖 + 𝑘
x𝑘 , 𝑖 ≥ 1, 

(8) 

where 

𝛿𝑟 = {
1, 𝑖𝑓   𝑟   𝑒𝑣𝑒𝑛,
0, 𝑖𝑓   𝑟   𝑜𝑑𝑑.

 (9) 

The Binet’s form for 𝐿𝑖(x) can be expressed by the following form 

𝐿𝑖(𝑥) =
(𝑥 + √𝑥2 + 4)𝑖 + (𝑥 − √𝑥2 + 4)𝑖

2𝑖
, 𝑖 ≥ 0, (10) 

It is important to note that the following Fibonacci recurrence relation 

𝐿𝑖+2 = 𝐿𝑖+1 + 𝐿𝑖,   𝐿0 = 2, 𝐿1 = 1, 



Mathematics and Systems Science 2025, 3(1), 3013.  

4 

or LPs can be used to construct the well-known Lucas numbers 𝐿𝑖 by setting x = 1.  

3. Petrov-Galerkin technique for the treatment of time-fractional 

diffusion equation 

Consider the following time-fractional diffusion equation (TFDE): 

𝐷𝑡
𝛼𝑢(x, 𝑡) − 𝛽𝑢xx(x, 𝑡) = 𝑓(x, 𝑡), 0 < 𝛼 ≤ 1, (11) 

given the initial and boundary conditions   

𝑢(x, 0) = 𝜎(x),     0 < x ≤ 1, (12) 

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,    0 < 𝑡 ≤ 1, (13) 

where ℎ(x, 𝑡) is the known source term and 𝛽 is arbitrary known positive constant.  

3.1. Trial functions 

Assuming the following basis functions   

𝜓𝑖(x) = x ∫
1

x

𝐿𝑖(𝑡)𝑑𝑡, (14) 

𝜙𝑗(𝑡) = 𝐿𝑗(𝑡). (15) 

3.2. Petrov-Galerkin solution for TFDE 

Now, assuming the following spaces functions 

𝑆𝑀 = 𝑠𝑝𝑎𝑛{𝜓𝑖(𝑥)𝜙𝑗(𝑡)𝑖, 𝑗 = 0,1, . . . , 𝑀}, (16) 

𝑉𝑀 = {𝑢 ∈ 𝑆𝑀, 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0}, (17) 

then, any function 𝑢(x, 𝑡) ∈ 𝑉𝑀 may be written as 

𝑢𝑀(𝑥, 𝑡) = ∑

𝑀

𝑖=0

∑

𝑀

𝑗=0

𝑐𝑖𝑗𝜓𝑖(𝑥)𝜙𝑗(𝑡). (18) 

Now, the application of Petrov-Galerkin is used to find 𝑢𝑀(x, 𝑡) ∈ 𝑉𝑀 such that 

((𝐷𝑡
𝛼𝑢𝑀(x, 𝑡), x𝑟𝑡𝑠)) − 𝛽((𝑢𝑀𝑥𝑥(x, 𝑡), x𝑟𝑡𝑠)) = ((𝑓(x, 𝑡), x𝑟𝑡𝑠)),   0 ≤ 𝑟 ≤ 𝑀, 0 ≤ 𝑠 ≤ 𝑀 − 1, (19) 

where, 

((𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡))) = ∫
1

0

∫
1

0

(𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (20) 

Now, for 0 ≤ 𝑟 ≤ 𝑀, 0 ≤ 𝑠 ≤ 𝑀 − 1, Equation (19) can be written as 

∑

𝑀

𝑖=0

∑

𝑀

𝑖=0

𝑐𝑖𝑗(𝜓𝑖(𝑥), 𝑥𝑟)(𝐷𝑡
𝛼𝜙𝑗(𝑡), 𝑡𝑠) − 𝛽 ∑

𝑀

𝑖=0

∑

𝑀

𝑖=0

𝑐𝑖𝑗(𝜓𝑖
′′(𝑥), 𝑥𝑟)(𝜙𝑗(𝑡), 𝑡𝑠) = ((𝑓(𝑥, 𝑡), 𝑥𝑟𝑡𝑠)), (21) 

or in the simplest form 
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∑

𝑀

𝑖=0

∑

𝑀

𝑖=0

𝑐𝑖𝑗𝑔𝑖,𝑟𝑏𝑗,𝑠 − 𝛽 ∑

𝑀

𝑖=0

∑

𝑀

𝑖=0

𝑐𝑖𝑗𝑑𝑖,𝑟ℎ𝑗,𝑠 = 𝑓𝑟,𝑠, 0 ≤ 𝑟 ≤ 𝑀, 0 ≤ 𝑠 ≤ 𝑀 − 1, (22) 

along with the following initial condition 

∑

𝑀

𝑖=0

∑

𝑀

𝑖=0

𝑐𝑖𝑗𝜓𝑖 (
𝑘 + 1

𝑀 + 2
) 𝜙𝑗(0) = 𝜎 (

𝑘 + 1

𝑀 + 2
) , 𝑘 = 0, . . . , 𝑀, (23) 

where 

𝑏𝑗,𝑠 = (𝐷𝑡
𝛼𝜙𝑗(𝑡), 𝑡𝑠), 𝑑𝑖,𝑟 = (𝜓𝑖

′′(x), x𝑟), 𝑔𝑖,𝑟 = (𝜓𝑖(x), x𝑟), ℎ𝑗,𝑠 = (𝜙𝑗(𝑡), 𝑡𝑠), 𝑓𝑟,𝑠 = ((𝑓(x, 𝑡), x𝑟𝑡𝑠)). (24) 

Therefore, a linear system of algebraic equations of dimension (M + 1) × (M + 1) in 

the unknown expansion coefficients 𝑐𝑖𝑗 is produced by Equations (22) and (23) and 

can be solved using an appropriate approach. 

Theorem 1. The elements 𝑏𝑗,𝑠, 𝑑𝑖,𝑟, 𝑔𝑖,𝑟 and ℎ𝑗,𝑠 are given by 

𝑏𝑗,𝑠 = ∑

𝑗

𝑘=1

(2𝑗)𝑘! (

𝑗 + 𝑘
2

𝑗 − 𝑘
2

) 𝛿𝑗+𝑘

(𝑗 + 𝑘)Γ(𝑘 − 𝛼 − 1)(𝑘 − 𝛼 + 𝑠 + 1)
, 

(25) 

𝑑𝑖,𝑟 = −2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘

2
𝑖 − 𝑘

2

) 𝛿𝑖+𝑘

(1 + 𝑘)(2 + 𝑘)

(1 + 𝑘 + 𝑟)(𝑖 + 𝑘)
, (26) 

𝑔𝑖,𝑟 = 2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘

2
𝑖 − 𝑘

2

) 𝛿𝑖+𝑘

1

(2 + 𝑟)(3 + 𝑘 + 𝑟)(𝑖 + 𝑘)
, (27) 

ℎ𝑗,𝑠 =
1

𝑗 + 𝑠 + 1 3𝐹2 (

1

2
−

𝑗

2
, −

𝑗

2
, −

𝑗

2
−

𝑠

2
−

1

2

1 − 𝑗, −
𝑗

2
−

𝑠

2
+

1

2

| − 4) , (28) 

where _𝑟𝐹𝑠 indicates the Gauss generalized hypergeometric function defined by 

r𝐹s (
𝑝1, 𝑝2, ⋯ , 𝑝𝑟
𝑞1, 𝑞2, ⋯ , 𝑞𝑠

| t) = ∑∞
𝑚=0

(𝑝1)𝑚 (𝑝2)𝑚⋯(𝑝𝑟)𝑚
(𝑞1)𝑚 (𝑞2)𝑚⋯(𝑞𝑠)𝑚

 𝑡𝑚

𝑚!
. (29) 

Proof. The elements of 𝑏𝑗,𝑠, ℎ𝑗,𝑠 exist in Reference [20].  

To find 𝑑𝑖,𝑟 = (𝜓𝑖
′′, x𝑟), we have 

𝜓𝑖(𝑥) = 𝑥 ∫
1

𝑥

𝐿𝑖(𝑡)𝑑𝑡, (30) 
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𝜓𝑖(x) = x ∫
1

x

𝐿𝑖(𝑡)𝑑𝑡

= x ∫
1

x

2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘
2

𝑖 − 𝑘
2

) 𝛿𝑖+𝑘

𝑖 + 𝑘
𝑡𝑘𝑑𝑡 = 2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘
2

𝑖 − 𝑘
2

) 𝛿𝑖+𝑘

(𝑖 + 𝑘)(𝑘 + 1)
x(1 − x𝑘+1),

 (31) 

so we get, 

𝜓𝑖
′′(x) = 2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘
2

𝑖 − 𝑘
2

) 𝛿𝑖+𝑘

(𝑖 + 𝑘)
(1 − x)−1+𝑘(−2 + (2 + 𝑘)x), 

(32) 

then, 

𝑑𝑖,𝑟 = (𝜓𝑖(x)′′, x𝑟) = 2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘
2

𝑖 − 𝑘
2

) 𝛿𝑖+𝑘

(𝑖 + 𝑘)
∫

1

0

(1 − x)−1+𝑘(−2 + (2 + 𝑘)x)x𝑟𝑑𝑥

= −2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘

2
𝑖 − 𝑘

2

) 𝛿𝑖+𝑘

(1 + 𝑘)(2 + 𝑘)

(1 + 𝑘 + 𝑟)(𝑖 + 𝑘)
.

 (33) 

To find 𝑔𝑖,𝑟 = (𝜓𝑖(x), x𝑟). 

𝑔𝑖,𝑟 = (𝜓𝑖(x), x𝑟)

= 2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘
2

𝑖 − 𝑘
2

) 𝛿𝑖+𝑘

(𝑖 + 𝑘)(𝑘 + 1)
∫

1

0

x(1 − x𝑘+1) x𝑟𝑑x

= 2𝑖 ∑

𝑖

𝑘=0

(

𝑖 + 𝑘

2
𝑖 − 𝑘

2

) 𝛿𝑖+𝑘

1

 (2 + 𝑟)(3 + 𝑘 + 𝑟)(𝑖 + 𝑘)
. □

 (34) 

4. Illustrative examples 

Test Problem 1. [21] Consider the following TFDE  

𝐷𝑡
𝛼𝑢(x, 𝑡) −

𝜕2𝑢(x, 𝑡)

𝜕x2
= 𝑓(x, 𝑡),      (x, 𝑡) ∈ (0,1) × (0,1), (35) 

given boundary conditions 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0      0 ≤ x ≤ 1, (36) 

and initial condition 

𝑢(x, 0) = 0, (37) 
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where 𝑓(𝑥, 𝑡) =
2

𝛤(3−𝛼)
𝑡2−𝛼sin(2𝜋𝑥) + 4𝜋2𝑡2sin(2𝜋𝑥),  the exact solution of this 

example is 𝑢(𝑥, 𝑡) = 𝑡2sin(2𝜋𝑥). 

The approximate spectral solution (left) and exact solution (right) at 𝛾 = 0.5 and 

𝑀 = 7 are displayed in Figure 1. The 𝐿∞ error for 𝛾 = 0.5 and 𝑀 = 7 is displayed in 

Figure 2. The absolute error (AE) at 𝛾 = 0.5 and M = 7 at various 𝑡 values is displayed 

in Table 1. The maximum absolute error (MAE) at various 𝛾  and 𝑀  values is 

displayed in Table 2. 

Table 1. The AE of Test Problem 1. 

γ =0.5 

𝒙 t = 0.1 t = 0.5 t = 0.9 

0.1 2.104 ×  10−6 5.857 ×  10−6 1.901 ×  10−5 

0.2 1.677 ×  10−6 4.660 ×  10−6 1.510 ×  10−5 

0.3 2.861 ×  10−6 7.970 ×  10−6 2.588 ×  10−5 

0.4 1.901 ×  10−6 5.305 ×  10−6 1.726 ×  10−5 

0.5 2.758 ×  10−12 3.544 ×  10−12 6.111 ×  10−12 

0.6 1.901 ×  10−6 5.305 ×  10−6 1.726 ×  10−5 

0.7 2.861 ×  10−6 7.970 ×  10−6 2.588 ×  10−5 

0.8 1.677 ×  10−6 4.660 ×  10−6 1.510 ×  10−5 

0.9 2.104 ×  10−6 5.857 ×  10−6 1.901 ×  10−5 

Table 2. MAE of Test Problem 1.  

𝑴 𝜸 = 𝟎. 𝟏 𝜸 = 𝟎. 𝟓 𝜸 = 𝟎. 𝟗 

1 4.169 × 10−1 4.120 × 10−1 4.043 × 10−1 

3 7.749 × 10−2 7.693 × 10−2 7.634 × 10−2 

5 2.508 × 10−3 7.693 × 10−2 2.473 × 10−3 

7 3.203 × 10−5 3.197 × 10−5 3.191 × 10−5 

 

Figure 1. The approximate spectral solution (left) and exact solution (right) of Test 

Problem 1. 
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Figure 2. 𝐿∞ error of Test Problem 1. 

Test Problem 2. [21] Consider the following TFDE 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) −

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
= 𝑓(𝑥, 𝑡),    (𝑥, 𝑡) ∈ (0,1) × (0,1), (38) 

given boundary conditions 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0      0 ≤ 𝑥 ≤ 1, (39) 

and initial condition 

𝑢(𝑥, 0) = 0, (40) 

The exact solution of this example is 𝑢(𝑥, 𝑡) = sin(π𝑥)sin(π𝑡). 

Figure 3 displays the approximate solution (left) and exact solution (right) at 𝛾 =

0.5 and 𝑀 = 8. Figure 4 shows the 𝐿∞ error at 𝛾 = 0.5 and 𝑀 = 8. Table 3 shows the 

𝐴𝐸 at 𝛾 = 0.5 and 𝑀 = 8 at different values of 𝑡. Table 4 shows the 𝑀𝐴𝐸 at distinct 

values of 𝛾  and 𝑀 . Finally, Table 5 presents a comparison of the 𝐴𝐸  at 𝛾 = 0.5 

between our method and method in [21]. 

Table 3. The AE of Test Problem 2. 

 𝜸 = 𝟎. 𝟓 

X 𝒕 =0.1  𝒕 =0.5  𝒕 =0.9  

0.1 5.628 × 10−9  3.627 × 10−10  2.436 × 10−8  

0.2 1.275 × 10−8  1.842 × 10−9  4.556 × 10−8  

0.3 1.769 × 10−8  2.714 × 10−9  6.265 × 10−8  

0.4 1.951 × 10−8  1.592 × 10−9  7.416 × 10−8  

0.5 2.03 × 10−8  1.487 × 10−9  7.803 × 10−8  

0.6 1.9516 × 10−8  1.595 × 10−9  7.416 × 10−8  

0.7 1.771 × 10−8  2.720 × 10−9  6.265 × 10−8  

0.8 1.276 × 10−8  1.849 × 10−9  4.556 × 10−8  

0.9 5.634 × 10−9  3.572 × 10−10  2.436 × 10−8  
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Table 4. MAE of Test Problem 2. 

𝑴 𝜸 = 𝟎. 𝟏  𝜸 = 𝟎. 𝟓  𝜸 = 𝟎. 𝟗  

2  6.839 × 10−2 6.925 × 10−2 6.552 × 10−2 

4 1.326 × 10−3 1.490 × 10−3 1.706 × 10−3 

6 1.269 × 10−5 8.516 × 10−6 1.950 × 10−5 

8 8.814 × 10−8 7.803 × 10−8 9.745 × 10−8 

Table 5. Comparison between our technique and the technique by Roul et al. [21] for 

Test Problem 2. 

𝜸 = 𝟎. 𝟓 

Method in [21] at M = 32 and Δ 𝑥 = 0.001 Our method at M = 8 

1.10 × 10−3  7.803 × 10−8  

 

Figure 3. The approximate solution (left) and exact solution (right) of Test Problem 

2. 

 

Figure 4. 𝐿∞ error of Test Problem 2.  

Test Problem 3. Consider the following TFDE 
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𝐷𝑡
𝛼𝑢(x, 𝑡) −

𝜕2𝑢(x, 𝑡)

𝜕x2
= 𝑓(x, 𝑡),    (x, 𝑡) ∈ (0,1) × (0,1), (41) 

boundary conditions 

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0      0 ≤ 𝑥 ≤ 1, (42) 

and initial condition 

𝑢(x, 0) = 0. (43) 

The exact solution of this problem is 𝑢(𝑥, 𝑡) = 𝑡2(1 − 𝑥)sin(𝑥). 

The approximate spectral solution (left) and exact smooth solution (right) are 

displayed in Figure 5 at 𝛾 = 0.5 and 𝑀 = 8. The 𝐿∞  error at𝛾 = 0.5 and 𝑀 = 8 is 

displayed in Figure 6. Table 6 illustrates the 𝐴𝐸 at 𝛾 = 0.5 and 𝑀 = 8 at different 

values of 𝑡. The 𝑀𝐴𝐸 at different values of 𝛾 and 𝑁 is displayed in Table 7. 

Table 6. The AE of Test Problem 3. 

 𝜸 = 𝟎. 𝟓 

𝒙 𝒕 = 0.1  𝒕 = 0.5  𝒕 = 0.9  

0.1 3.506 × 10−14  1.577 × 10−14  4.955 × 10−14  

0.2 3.119 × 10−14  5.954 × 10−14  3.718 × 10−13  

0.3 4.778 × 10−14  6.193 × 10−14  4.372 × 10−13  

0.4 9.288 × 10−14  3.072 × 10−14  1.749 × 10−13  

0.5 6.896 × 10−14  5.188 × 10−14  4.601 × 10−13  

0.6 4.058 × 10−14  1.289 × 10−13  7.072 × 10−13  

0.7 7.373 × 10−14  1.486 × 10−14  3.108 × 10−13  

0.8  6.326 × 10−14  1.054 × 10−15  2.052 × 10−13  

0.9  1.681 × 10−14  5.616 × 10−14  3.048 × 10−13  

Table 7. MAE of Test Problem 3. 

𝑴 𝜸 = 𝟎. 𝟏 𝜸 = 𝟎. 𝟓 𝜸 = 𝟎. 𝟗 

2 3.135 × 10−4 3.099 × 10−4 3.061 × 10−4 

4 5.508 × 10−7 5.469 × 10−7 5.428 × 10−7 

6 4.914 × 10−10 4.912 × 10−10 4.910 × 10−10 

8 8.594 × 10−13 9.264 × 10−13 4.367 × 10−13 



Mathematics and Systems Science 2025, 3(1), 3013.  

11 

 

Figure 5. The approximate spectral solution (left) and exact smooth solution (right) 

of Test Problem 3. 

 

Figure 6. 𝐿∞error of Test Problem 3. 

5. Conclusion 

A numerical petrov-Galerkin method for resolving the time_fractional diffusion 

problem was introduced in this work. Appropriate sets of basis functions were selected 

using LPs and their modified polynomials. The proposed Petrov-Galerkin algorithm 

is based on the idea that a problem should be reduced to a system that can be solved 

with the help of proper solver. The numerical findings showed that when expressed as 

combinations of our modified basis function. Also, the approximate answers agree 

with the precise ones. The resulting errors are small. It gives us high accuracy and 

efficiency. As an expected future work, we aim to solve other problems as in Ahmed 

[22] and Zaky et al. [23]. All codes were written and debugged by Mathematica 12 on 

Dell  Inspiron 15, Processor: Intel (R) Core(TM) i5-5200U CPU $@$ 2.20 GHz 

2.20GHz, 8GB Ram DDR3 and 1024 GB storage. Finally, readers who wish to use the 

presented algorithm can follow the steps outlined in Algorithm 1. 
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Algorithm 1 Coding algorithm for the proposed technique in Subsection 3.2 

1: Input 

α, β, σ(x) and f(x,t) 

2: Step 1 

Let that the approximate solution 𝑢𝑀(x, 𝑡) as in (18) 

3: Step 2 

Applying the Petrov-Galerkin method to get the system in (22) and (24) 

4: Step 3 

Employing Theorem 1 to obtain the elements 𝑏𝑗,𝑠, 𝑑𝑖,𝑟 , 𝑔𝑖,𝑟 and ℎ𝑗,𝑠 

5: Step 4 

Use NSolve command to solve the system in (22) and (24) to get 𝑐𝑖𝑗 . 

6: Output 

𝑢𝑀(x, 𝑡) 
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