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Abstract: Solar sail and other perturbation effects are studied on the dynamical motion of the
infinitesimal body in the four interacting bodieswhere three bigger bodies (two out of these three
bodies are oblate in shape and equal in size) are situated at the vertices of an equilateral triangle.
The important dynamical properties, like the locations of equilibrium points, their stability, the
periodic orbits, Poincaré surfaces of section, and the basins of attraction, are illustrated with the
evaluated equations of motion in unperturbed and perturbed cases. This investigation will be
helpful to the space agencies worldwide.
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1. Introduction

A device where the energy stored which is generated from sunlight through a large
surfaces is known as a solar sail or light sail. Many spacecraft missions have been
introduced for solar propulsion and navigation. Due to solar sail craft occurs low-cost
operations combined with long operating lifetimes. As it has some moving parts, it can
effectively be used many times for the delivery of payloads.

Radiation pressure affects all spacecraft during the interplanetary space mission or
during motions. Whenever the spacecraft is going towards a planet, it will be displaced
by solar radiation pressure to thousands of kilometers, therefore the effects must be
taken into account at the time of trajectory planning. A new factor must be added in
spacecraft design because solar pressure affects the orientation of a spacecraft.

In the existing literature, we found that many scientists and researchers have
studied the effects of solar sails with the different aspects of the circular restricted
3-body problem. These perturbations played an important role in the motion properties.
Some of these researchers have investigated as:

The dynamical motions of the geocentric orbiting high-performance solar sail in
the co-rotating reference frame where the axis is directed along the primary bodies
are analyzed in [1, 2]. The mathematical structure for describing the acceleration
experienced by a solar sail are investigated in [3–8]. The dynamics of a solar sail by
supposing the radiated Earth-Sun restricted 3-body problem is modeled in [9,10]. They
also have computed the center manifold around different equilibria. The design of a
solar-sail spacecraft in two sequential steps are explored in [11, 12]. A shape-based
approach for solar sailing has been developed. The authors have investigated the
dynamical properties of the motion of the infinitesimal body in the restricted three-body
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problem by assuming the interaction between the primary bodies in [13–15]. The
restricted 3-body problem by assuming the effects of solar sails are investigated in
[16]. The effects of asteroid belts on the motion properties in the restricted problem
are investigated in [17–26]. The motion properties under the effects of variable mass
and other perturbations in the restricted problems are revealed in [27–35].

With the influence of the above literatures, in the present paper, we have
considered the effect of solar sails on the motion with some other perturbations in the
restricted 4-body problem. Where two out of these bigger bodies are oblate in shape as
well as equal in size. Also these bodies are interacting with each other and surrounded
by the asteroid belts.

This paper is organized in various sections. The brief introduction of the literature
is given in Section 1. The presentation of the problem is performed in Section 2. Section
3 illustrates the investigations numerically for the problem with various subsections.
The paper concludes in Section 4.

2. Presentation of the problem

In this four-body configuration, we suppose that three bigger bodies of massesm1,
m2 andm3 (wherem2 andm3 are equal and oblate in shape with oblateness parameters
A2 and A3 respectively) are placed at the vertices of an equilateral triangle of side ℓ.
The primary bodies are revolving around their common center of mass in circular orbits
with the mean motion ν. While the fourth body of mass m is moving in space under
the gravitational effects of the three bigger bodies including their interaction with the
interaction parameter K, the asteroids-belt with mass parameterMb and the solar sail
effects with the sail components Sx, Sy and Sz in the x, y and z directions respectively
and the Coriolis as well as centrifugal forces with parameters δ1 and δ2 respectively.
The overview of the configuration of the problem can be found in Figure 1. Following
the procedures given by [36–40], the equations of motion of the infinitesimal body can
be written as:

− 2 δ1 ν ẏ + ẍ = Πx + Sx,

2 δ1 ν ẋ + ÿ = Πy + Sy,

z̈ = Πz + Sz,

(1)

with
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Figure 1. Interactions in the perturbed restricted 4-body equilateral triangular
configuration with solar sail.
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The indices x, y, z in suffixes with Π are denoting the partial derivatives with
respect to these indices. If we ignore the perturbations taken here then this problem
will become a classical restricted four-body problem where the mean motion will be
unity.

3. Numerical investigations

The most important dynamical properties, i.e., positions of equilibrium points,
their stability, periodic orbits, PSS and basins of attractions are illustrated in
unperturbed and perturbed cases with the use of Mathematica software.

3.1. Equilibrium points
We have determined the locations of equilibrium points of in-plane motion (i.e.,

in x-y plane) from Equation (1) by solving

Πx + Sx = 0,

Πy + Sy = 0,
(2)

with the numerical values as z = 0, µ = 0.2, δ1 = δ2 = 1.2, θ = π/4, ϕ = π/4,
q = 0.2, A2 = 0.001, A3 = 0.00015,Mb = 0.2, T0 = 0.2 andK = 0.4.

The equilibrium points of in-plane motion are performed in the two cases
(perturbed and unperturbed cases). In both cases eight equilibrium points exist,
where in the unperturbed case (Figure 2a) two collinear equilibrium points (L1, 2)
and six non-collinear equilibrium points (L3, 4, 5, 6, 7, 8) exist, while in the perturbed
case (Figure 2b) only one collinear equilibrium point (L1) and seven non-collinear
equilibrium points (L2, 3, 4, 5, 6, 7, 8) exist. In both cases, the non-collinear equilibrium
points L3 and L4, L5 and L6, L7 and L8 are symmetrical about the x-axis. We also
observed that with perturbations, the positions of equilibrium points are shrinking
towards the origin.
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(a) Unperturbed case.
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(b) Perturbed case.

Figure 2. The gray and orange color dots are representing the locations of primary bodies while green color dots are
representing the locations of equilibrium points.
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3.2. Stability states
The equations of motion i.e. Equation (1) can be written as

− 2 δ1 ν ẏ + ẍ = Px

2 δ1 ν ẋ + ÿ = Py

z̈ = Pz

(3)

where, Px = Πx + Sx, Py = Πy + Sy and Pz = Πz + Sz .
By shifting the equilibrium point (x0, y0, z0) to the point (ξ, η, ζ) in Equation

(3), one can examine the stability, hence

ξ̈ − 2 δ1 ν η̇ = P 0
xx ξ + P 0

x y η + P 0
x z ζ,

η̈ + 2 δ1 ν ξ̇ = P 0
y x ξ + P 0

y y η + P 0
y z ζ,

ζ̈ = P 0
z x ξ + P 0

z y η + P 0
z z ζ.

(4)

If ξ = Aeλ t, η = B eλ t and ζ = C eλ t are the solutions of the Equation (4), then
this equation gives as

A (λ2 − P 0
xx) −B (2 δ1 ν + P 0

x y) −C Px z = 0,

A (2 δ1 ν λ − P 0
y x) +B (λ2 − P 0

y y) −C P 0
y z = 0,

−AP 0
z x −B P 0

z y +C (λ2 − P 0
z z) = 0,

(5)

The trivial solution can be obtained if∣∣∣∣∣∣∣∣∣∣∣∣∣

(λ2 − P 0
xx) − (2 δ1 ν + P 0

x y) −Px z

(2 δ1 ν λ − P 0
y x) (λ2 − P 0

y y) −P 0
y z

−P 0
z x −P 0

z y +(λ2 − P 0
z z)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (6)

And hence the characteristic equation corresponding to Equation (6) will be:

λ6 + P4 λ
4 + P3 λ

3 + P2 λ
2 + P1 λ + P0 = 0, (7)

where,

5



Mathematics and Systems Science 2025, 3(2), 2991.

P4 = − (P 0
xx + P 0

y y + P 0
z z),

P3 = 2 δ1 ν (P
0
x y + 2 δ1 ν),

P2 = P 0
xx P

0
y y + P 0

xx P
0
z z + P 0

y y P
0
z z − (P 0

x y)
2

− (P 0
x z)

2 − (P 0
y z)

2 − 2P 0
x y δ1 ν,

P1 = 2 δ1 ν (P
0
x z P

0
y z − P 0

x y P
0
z z − 2P 0

z z δ1 ν),

P0 = (P 0
x z)

2 P 0
y y + P 0

xx (P
0
y z)

2 + (P 0
x y)

2 P 0
z z − P 0

xx P
0
y y P

0
z z

− 2P 0
x y P

0
x z P

0
y z − 2P 0

x z P
0
y z δ1 ν + 2P 0

x y P
0
z z δ1 ν.

(8)

We numerically solved the Equation (6) corresponding to each equilibrium point
and given in Tables 1 and 2. From where, we observed that at least one root is either
a positive real value or a positive real part of the complex roots. Hence, the instability
of these equilibrium points.

Table 1. Nature in the unperturbed case.

Equilibrium points Roots Nature

L1 Positive real part of a complex root Unstable
L2 Positive real value Unstable
L3, 4 Positive real part of a complex root Unstable
L5, 6 Positive real value Unstable
L7, 8 Positive real value Unstable

Table 2. Nature in the perturbed case-III.

Equilibrium points Roots Nature

L1 Positive real part Unstable
L2 Positive real value Unstable
L3, 4 Positive real part Unstable
L5, 6 Positive real value Unstable
L7, 8 Positive real value Unstable

3.3. Periodic orbits
With the proper choice of the initial values, we have to solve the equations of

motion by rewriting them in the phase space and then with the use of well-known
software Mathematica, we have drawn the periodic orbits in two cases (the unperturbed
case and the perturbed case). Figure 3a represents the periodic orbits in the unperturbed
case. In this case, the initial values are x[0] = 0.000000005, y[0] = − 0.01, ẋ[0] =
0.000000005, ẏ[0] = 0, for which the time period is 19.1 units. But in the perturbed
case, the initial values are x[0] = 0.345, y[0] = 0, ẋ[0] = 0.345, ẏ[0] = 0, for which the
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time period is 16.73 units. In both cases, the orbits are not simply periodic. Further
in the unperturbed case, the motion covers more time and less area in comparison to
the perturbed case. We also observed from both cases that in the unperturbed case, the
initial values are smaller and the time period is greater than in the perturbed case.
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(a) Unperturbed case.
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(b) Perturbed case.

Figure 3. Periodic orbits.

3.4. Poincaré surfaces of section (PSS)
Chaotic and non-chaotic regions explain the important dynamical behavior of the

motion, therefore we have plotted the PSS for both cases (the unperturbed case and the
perturbed case). For this, we have to evaluate the location (x, y) and velocity (ẋ, ẏ) of
the infinitesimal body and then draw the graph between (x, ẋ) at y = 0, whenever the
path intersects the plane for ẏ > 0. Figure 4a,b represents the unperturbed case and
perturbed case respectively. We observed in both cases there is no chaos and surfaces
are symmetrical about both the axes. There is no chaosmeans themotion will be regular
and symmetrical means that if we study the behavior of the motion in the first quadrant
or just one part of the four parts of the figure then we can similarly say the behavior of
the other three parts of the figure.
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Figure 4. Poincaré surfaces of section.
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3.5. Basins of attraction
For the basins of attraction, we will follow the procedure given by [41] where they

have used the Newton’s-Raphson iterative method. This method is easier, faster and
simpler than the other methods. The iterative algorithm for our problem is as follows:

xn+1 = xn −
(

Px Py y − Py Px y

Pxx Py y − Px y Py x

)
(xn yn)

,

yn+1 = yn −
(

Py Pxx − Px Py x

Pxx Py y − Px y Py x

)
(xn xn)

,

(9)

where the n-th step of the Newton-Raphson iterative method for x and y can be taken
as xn, yn, and also the denominators must be non-zero in Equation (9).

If all the points are converge to one of the attracting points (equilibrium points)
then the basins of the attracting domain are generated. The color code will be used
to differentiate the attracting regions. The basins of attraction are performed in two
cases (unperturbed case and perturbed case) and presented in Figure 5with two Figure
5a,b. Figure 5a,b represents the basins of attraction for the unperturbed case and the
perturbed case respectively. For the clear view, the number of iterations is taken as 28
and 22 for the unperturbed case and perturbed case respectively. We observed that the
number of iterations is reduced due to perturbations.

(a) Unperturbed case. (b) Perturbed case.

Figure 5. Basins of attraction.

From Figure 5a, we observed that the attracting points L1, 2, 5 correspond to the
green color regions, the attracting pointsL3, 7 correspond to the light blue color regions,
the attracting pointL6 corresponds to the yellow color region, the attracting pointsL4, 8

correspond to the red color region. And these regions corresponding to the attracting
points are extended to infinity except the region corresponding to the attracting point
L6.

From Figure 5b, we observed that the attracting point L1 corresponds to the cyan
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color region, the attracting point L2 corresponds to the light green color region, the
attracting pointsL3, 7 correspond to the dark pink color regions, the attracting pointsL5

andL6 correspond to the blue and green color regions respectively, the attracting points
L4, 8 correspond to the dark yellow color regions. In this way, the regions corresponding
to the attracting points L1, 5, 6 are finite and the rest of the regions are extended to
infinity. We also observed from here that due to perturbations the color codes and the
number of iterations were changed in comparison to the unperturbed case.

4. Conclusion

The impact of the solar sail including other perturbations (like interaction between
bodies, asteroid belts, oblateness, etc.) is investigated on the motion of the infinitesimal
body in the circular restricted 4-body problem. Firstly, the analytical determination of
the equation of motion shows these impacts. And then numerically, we have illustrated
the dynamical properties in two cases (unperturbed and perturbed cases). From where
we have observed that the number of collinear equilibriums is reducing and the positions
of the equilibrium points are shrinking towards the origin in the perturbed case than the
unperturbed case. And found that all the equilibrium points are unstable in both cases.

With the use of the initial values, we got the periodic orbits in both cases but these
periodic orbits are multiply periodic with different time periods. In the next, we have
obtained the Poincaré surfaces of sections that are symmetrical about both the axes and
there is no chaos. Further, the basins of attractions are illustrated in both cases, where
we have used the color code to bifurcate the attracting regions. We found here that most
of the attracting regions are extended to infinity. In this way, these properties clearly
show the impact of the perturbations.

If an infinitesimal body is moving in space with these perturbations, then one can
get the location of equilibrium points nearer than without perturbations. Means space
stations can be installed with lower prices because distances are also a big factor.

We also found that due to perturbations, the time periods are less than due to the
un-perturbations, meaning an infinitesimal body can reach faster with perturbations
than the un-perturbations to the destination.
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