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Abstract: This note reviews the iterative methods introduced in “Stability and Data De-
pendence Results for Jungck-Type Iteration Scheme”. It has been observed that these 
methods are not entirely new to a significant extent, as they bear resemblance to pre-viously 
established approaches. Additionally, the primary iterative method proposed in the paper 
lacks efficiency, particularly when compared to more advanced or well-known methods. 
As a result, while the methods may offer some value, they do not represent a significant 
breakthrough in iterative techniques.
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Introduction and main results
Solving the nonlinear equation

f(x) = 0, x ∈ R

where f : D ⊂ R → R is a scalar function andD an open interval, is one of the oldest problems
in numerical analysis [1,2].

We know that one of the fundamental algorithm for solving nonlinear equations is so-
called fixed point iteration method. In the fixed-point iteration method for solving nonlinear
Equation (1), the equation is usually rewritten as

x = ğ(x)

where

(i) there exists [a, b] such that ğ(x) ∈ [a, b] for all x ∈ [a, b],

(ii) there exists [a, b] such that |ğ′
(x)| ≤ L < 1 for all x ∈ [a, b].

Considering the following iteration scheme

xn+1 = ğ(xn), n = 0, 1, 2 . . .

and starting with a suitable initial approximation x0, we built up a sequence of approximations,
say {xn}, for the solution of nonlinear equation, say Ť . The scheme will be converge to Ť ,
provided that

(i) the initial approximation x0 is chosen in the interval [a, b],

(ii) |ğ′
(x)| < 1 for all x ∈ [a, b],

(iii) a ≤ ğ(x) ≤ b for all x ∈ [a, b].

Definition 1. [1, 2] Let {xn} converges to ν. If there exist an integer p and a real positive
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constant C such that
lim

n→∞

|xn+1 − ν|
(xn − ν)ρ

= C

then ρ is called the order of convergence. The efficiency index of an iterative method is a metric
used to compare different iterative methods. It is defined as EI=ρ 1

λ , where ρ is the local order
of convergence of the method and λ is the number of function evaluations needed to carry out
the method per iteration.

To determine the order of convergence of the sequence {xn}, let us consider the Taylor
expansion of ğ(xn)

ğ(xn) = ğ(x) +
ğ

′
(x)

1!
(xn − x) +

ğ
′′
(x)

2!
(xn − x)2 + ...+

ğk(x)

k!
(xn − x)k + ...

We have

xn+1 − x =
ğ

′
(x)

1!
(xn − x) +

ğ
′′
(x)

2!
(xn − x)2 + ...+

ğk(x)

k!
(xn − x)k + ...

Theorem 1. [1, 2] Suppose that ğ ∈ Cn[ã, b]. If ğk(x) = 0, for k = 1, 2, ..., p − 1 and
ğk(x) ̸= 0, then the sequence {xn} has p as its order of convergence.

Remark 1. It is well known that the fixed point method has first order of convergence.

Let the nonlinear Equation (1) has a simple root ζ or equivalently ζ be the coincidence
point of S and T (i.e, Sζ = Tζ), where S, T : D ⊂ R → R ; T (D) ⊂ S(D), S is onto, and T
is sufficiently differentiable in the neighborhood of ζ. Let x0 ∈ D be the initial guess near to ζ.
The Equation (1) can be written as

Sx = Tx

In order to convey the idea, some details from [2] are as follows. We can modify (2) by
multiplying τ ̸= −1 on both sides as follows:

Sx+ τSx = τSx+ Tx

implies
τSx+ Tx

τ + 1
= Sτx (say) (1)

where τ is an arbitrary number. In order (3) to be efficient, we can choose τ = −T
′
x such that

Sτx =
τSx+ Tx

τ + 1
=

−T
′
xSx+ Tx

1− T ′x
, τ = −T

′
x (2)

This formation allows us to suggest the following iteration scheme:

For a given x0, we calculate the the approximation solution xn+1, by the iteration scheme
[2]:

Sxn+1 =
τSxn + Txn

τ + 1
=

−T
′
xnSxn + Txn

1− T ′xn
; τ = −T

′
x (3)
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Remark 2. 1. The algorithm (MJM) takes the form,

Sxn+1 =
τSxn + Txn

τ + 1
S

=
τ

τ + 1
Sxn +

1

τ + 1
Txn (4)

= (1− θ)Sxn + θTxn; θ =
1

τ + 1
∈ (0, 1]

which is due to Singh et al., [3]. Thus the algorithms (MJM) and (S) are equivalent.

2. For Sv = v, the algorithm (MJM) yields,

xn+1 =
τxn + Txn

1 + τ
=

−T
′
xnxn + Txn

1− T ′xn
, τ = −T

′
xn ̸= −1, (5)

which is due to Kang et al. [1].

3. The algorithm (A) can be rewritten as,

xn+1 = (1− θ)xn + θTxn; θ =
1

τ + 1
∈ (0, 1]

which is due to Kirik [4] and Mann [5] respectively.

Let (E, ||.||) be an arbitrary Banach space and Y ⊂ E. Suppose that S, T : Y −→ E are
two non-self mappings such that T (Y ) ⊆ S(Y ), where S(Y ) is a complete subspace of E and
S is onto.

The following algorithm is due to Sharma P., et al. [6]:

x0 ∈ Y,B

Szn = Txn,

Syn = Tzn, (6)

Sxn+1 =
mSyn + Tyn

1 +m
,

m > 0 is a real number, n = 0, 1, 2, ...

which is the combination of extended (MJM) with two-step composition of Jungck iteration
method.

We comment as follows:

Remark 3. 1. The algorithm (7) in [6] in not new and is actually due to Kang et al. [1]. Also
the idea of corrector-step of algorithm (B) is extracted from (MJM) [2].

2. The order of convergence of algorithm (A) is two with efficiency index 2 1
2 [1]. Thus the

results of Theorem 2 ([22] of [6] are coincides with the proof of convergence of algorithm (A)
form = −T

′
xn, consequently Theorem 2 is not new.

3. The claim about m > 0 is not always true as m = −T
′
xn. For the implementation

of (MJM) or (B), it is better to proceed with the convergence criteria of usual Jungck iteration
method [7].
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4. From the corrector-step of algorithm (B),

Sxn+1 =
mSyn + Tyn

m+ 1

=
m

m+ 1
Syn +

1

m+ 1
Tyn

= (1− θ)Syn + θTyn; θ =
1

m+ 1
∈ (0, 1]

and the algorithm (B) takes the form:

x0 ∈ Y,BJ

Szn = Txn,

Syn = Tzn, (7)

Sxn+1 = (1− θ)Syn + θTyn; θ =
1

m+ 1
∈ (0, 1]

n = 0, 1, 2, ...

5.The convergence order of algorithm (MJM) or (S) is two with efficiency index 2 1
3 . The

convergence order of algorithm (B) or (BJ) is two with efficiency index 2 1
7 < 2

1
3 .

6. The performance of the iteration methods (MJM), (B) or (BJ) can be easily checked
through a simple code written in MATLAB or MAPLE for the examples provided in [6].
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