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Abstract: This note delves into the convergence analysis of several iterative methods
and elucidates their behaviors. Furthermore, we demonstrate that the findings presented
in “A new three-step fixed point iteration scheme with strong convergence and appli-
cations” are not entirely novel. In particular, some of the results either overlap with or
restate previously established methods without introducing significant innovations.
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Introduction and preliminaries

LetD be a convex subset of a normed space E and T : D → D be a selfmap. Let
p be the fixed point of T.

(a) Considering the Picard iteration scheme

xn+1 = Txn, n = 0, 1, 2 . . . (1)

starting with a suitable initial approximation x0, we built up a sequence of approxima-
tions, say {xn}, for the fixed point p of T .

For the scalar case, D = [a, b] ⊂ R.The scheme will be converge to p, provided
that
(i) the initial approximation x0 is chosen in the interval [a, b],
(ii) |T ′

x| < 1 for all x ∈ [a, b],

(iii) a ≤ Tx ≤ b for all x ∈ [a, b].

Definition 1. Let {xn} converges to ν. If there exist an integer ρ and a real positive
constant C such that

lim
n→∞

|xn+1 − ν|
(xn − ν)ρ

= C

then ρ is called the order of convergence. The efficiency index of an iterative method is
a metric used to compare different iterative methods. It is defined as EI=ρ

1
λ , where ρ is

the local order of convergence of the method andλ is the number of function evaluations
needed to carry out the method per iteration [1].

To determine the order of convergence of the sequence {xn}, let us consider the
Taylor expansion of Txn

Txn = Tx+
T

′
x

1!
(xn − x) +

T
′′
x

2!
(xn − x)2 + ...+

T kx

k!
(xn − x)k + ...
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We have

xn+1 − x =
T

′
x

1!
(xn − x) +

T
′′
x

2!
(xn − x)2 + ...+

T kx

k!
(xn − x)k + ...

Theorem 1. Suppose that T ∈ Cn[a, b]. If T kx = 0, for k = 1, 2, ..., ρ − 1 and
T kx ̸= 0, then the sequence {xn} has ρ as its order of convergence [1].

Remark 1. (1). It is well known that the fixed point method has first order of conver-
gence.

(2). The well known multistep Picard method is given by:

x0 ∈ D,

y
(0)
n = xn,

y
(k)
n = Ty

(k−1)
n ,

xn+1 = Ty
(k)
n , n = 0, 1, 2, ..., k = 0, 1, 2, ...

(2)

and has the linear order of convergence [1].

The following algorithm is due to Kang et al. [2]:

For a given x0ϵ[a, b], we calculate the approximation solution xn+1, by the itera-
tion scheme

xn+1 = θxn+Txn
1+θ = −T

′
xnxn+Txn

1−T ′xn
,

θ = −T
′
xn, n = 0, 1, 2, ...

(3)

Remark 2. (1). The value of θ arises from the derivation steps for algorithm (3). It
plays a crucial role in the convergence analysis and behavior of the algorithm. Specif-
ically, θ is a parameter that influences the iterative process and helps determine the
efficiency and accuracy of the method. Its exact value and influence are derived from
the underlying mathematical formulation and assumptions in the iterative scheme.

(2). For the implementation of algorithm (3), it is advisable to adhere to the con-
ventional convergence criteria of fixed-point methods, as outlined in [2].

The following algorithm is due to Sharma P., et al. ((11) of [3]):

x0 ∈ [a, b],

zn = mxn+Txn
1+m ,

yn = Tzn,

xn+1 = Tyn,m > 0 is a real number, n = 0, 1, 2, ...

(4)

which is the combination of (3) with the two-step composition of fixed point method.

(b) For arbitrary x0 ∈ D, the sequence {xn} defined by

xn+1 = (1− λn)xn + λnTxn, n ≥ 0 (5)

where λn ∈ [0, 1], is known as the Mann iteration scheme [4] .
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(c) For arbitrary x0 ∈ D, the sequence {xn} defined by

xn+1 = (1− λn)xn + λnTyn,

yn = (1− λ′
n)xn + λ′

nTxn, n ≥ 0
(6)

where λn, λ
′
n ∈ [0, 1], is known as the Ishikawa iteration scheme [5].

(d) For arbitrary x0 ∈ D, the sequence {xn} defined by
xn+1 = (1− λn)xn + λnTyn,

yn = (1− λ′
n)xn + λ′

nTzn,

zn = (1− λ′′
n)xn + λ′′

nTxn, n ≥ 0

(7)

where λn, λ
′
n, λ

′′
n ∈ [0, 1], is known as the Noor iteration scheme [6].

We comment as follows:

(1). The algorithm (7) in [3] and the predictor-step of algorithm (4) are not novel;
they are actually identical to algorithm (3) proposed by Kang et al. [2].

(2). The order of convergence of algorithm (3) is two, requiring two function eval-
uations per iteration and yielding an efficiency index of 2

1
2 , as stated in [2]. Therefore,

the results presented in Theorem 2 ([27] of [3]) coincide with the established proof of
convergence for algorithm (3) under the condition m = −T

′
xn. Consequently, The-

orem 2 in [3] does not introduce any new findings and is essentially a restatement of
previously known results from [2].

(3). The algorithm (4) has the order of convergence two form = −T
′
xn, as stated

in [3], requiring four evaluations per iteration with efficiency index 2
1
4 < 2

1
2 .

(4). In algorithm (4), the claim aboutm > 0 is not always true asm = −T
′
xn.

(5). From algorithm (3), we have

xn+1 = θxn+Txn
1+θ

= θ
1+θxn + 1

1+θTxn

= (1− λ)xn + λTxn; λ = 1
1+θ ∈ (0, 1]

(8)

which is the well known Kirik-Mann type algorithm [4,7] for λn = λ = 1
1+θ ∈

(0, 1]. It is now evident that algorithm (3) and the Kirik-Mann type algorithm [4,7] are
equivalent, thus sharing the same order of convergence under specific conditions.

(6). The algorithm (4) assumes the following form:

x0 ∈ [a, b],

zn = (1− λ)xn + λTxn; λ = 1
1+m ∈ (0, 1],

yn = Tzn,

xn+1 = Tyn, n = 0, 1, 2, ...

(9)

It follows that (3) and (4) exhibit identical convergence orders under certain con-
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ditions. Furthermore, algorithm (4) essentially represents the special case of three-step
iteration method due to Noor [6] for λ′′

n = λ = 1
1+m ∈ (0, 1], λ′

n = 1 and λn = 1,

rendering algorithm (5) in [3] non-novel. Moreover, algorithms (5) in [3] and (4) are
equivalent, thus rendering Theorem 4 in [3] illogical. Furthermore, Theorems 2, 3,
and 5 in [3] are specific instances of well-known results concerning the same topic for
three-step iteration methods [6]. Further details on this matter are deferred to related
researchers for examination.

(7). The performance of algorithms (3) and (4) is as under:

Processor: Intel Core 2 Quad with 4 GB RAM,

Digits: 100, 000,

x0 is the initial approximation,

p is the fixed point of T ,

n(3) is the number of iterations for (3),

n(4) is the number of iterations for (4),

xn(3) is the nth iteration of (3),

xn(4) is the nth iteration of (4),

ε(3) = 10−50000, stopping criteria for (3),

ε(4) = 10−50000, stopping criteria for (4),

δ(3) = |xn+1 − xn| for (3),

δ(4) = |xn+1 − xn| for (4),

CPUT (3), CPU time for (3),

CPUT (4), CPU time for (4),

f1 = x− (1/5)× (1 + cos(x)), T1 = (1/5)× (1 + cos(x)), p = 0.385334547674975;

f2 = tan(x)− x, T2 = Pi+ arctan(x), p = 4.493409e+ 00;

f3 = x− cos(x), T3 = cos(x), p = 0.739085133215160;

f4 = x+ ln(x− 2), T4 = 2 + exp(−x), p = 2.120028238987641;

f5 = x^2− 3, T5 = 3/x, p = −1.732050807568877;

f6 = x^3− 3× x− 18, T6 = (3× x+ 18)^(1/3), p = 3;

Sr. f T x0 n(3) n(4) xn(3) xn(4) ε(3) ε(4)

1 f1 T1 1 16 14 3.853345e− 01 3.853345e− 01 4.914806e− 89013 5.427161e− 58973

2 f2 T2 4 15 14 4.493409e+ 00 4.493409e+ 00 2.216153e− 73266 1.899590e− 80084

3 f3 T3 1.7 16 16 7.390851e− 01 7.390851e− 01 9.584064e− 66707 1.290194e− 88929

4 f4 T4 2.1 15 14 2.120028e+ 00 2.120028e+ 00 7.324884e− 97218 2.325802e− 78776

5 f5 T5 1.6 16 16 1.732051e+ 00 1.732051e+ 00 3.443424e− 91879 3.443424e− 91879

6 f6 T6 1000 16 15 3.000000e+ 00 3.000000e+ 00 1.905607e− 54264 7.150590e− 88827
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δ(3) δ(4) CPUT (3) CPUT (4)

2.302979e− 44506 3.219263e− 29485 548 Sec 996Sec

3.232845e− 36633 6.342504e− 40041 401Sec 852Sec

1.610433e− 33353 8.771733e− 44465 474Sec 908Sec

3.827502e− 48609 1.796875e− 39387 236Sec 387Sec

5.868069e− 45940 5.868069e− 45940 13Sec 29Sec

4.141311e− 27132 2.283151e− 44412 380Sec 784Sec

Note 1. (1). The three-step iteration scheme introduced in [6] is linearly convergent
and exhibit second order of convergence under certain conditions.

(2). The k-step version of algorithm (4):

x0 ∈ [a, b],

zn = (1− λ)xn + λTxn; λ = 1
1+θ ∈ (0, 1],

y
(k)
n = Ty

(k−1)
n ,

xn+1 = Ty
(k)
n , n = 0, 1, 2, ..., k = 0, 1, 2, ..., y

(0)
n = zn

(10)

is linearly convergent and exhibit second order of convergence under certain con-
ditions.

(3). All the iteration schemes (2)-(6) included in [3] are linearly convergent and
exhibit second order of convergence under certain conditions, respectively.

(4). It is worth mentioning that the one-step iteration schemes (e.g., [2,4,7] ) are
robust enough for approximating fixed points of general mappings, unless they exhibit
certain convergence failures.
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