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Abstract: This contribution presents a highly efficient three-step iterative scheme. The 

proposed scheme is different in itself by achieving seventh-order convergence. The scheme is 

very useful for equations of nonlinear nature having multiple roots. The Taylor series 

expansion is employed to rigorously analyze the convergence of the presented scheme. That 

the scheme is effective and robust can be fit through a variety of examples from different fields. 

Numerical experimentation demonstrates the scheme’s rapid and reliable convergence to the 

true root and comparing its performance against existing techniques in the literature. 

Additionally, basins of attraction are visualized to offer a clear, comparative view of how 

different methods perform with varying initial guesses. The results show that this new scheme 

consistently compete well over other methods. This makes it a powerful tool for solving 

complex equations. 
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1. Introduction 

In the realm of numerical analysis, one of the most fundamental and challenging 

problem is finding accurate and reliable solutions to nonlinear equations. These are 

found to be quite difficult to solve due to their complexity and the nature of their roots. 

Such equation are common in physics, engineering to say a few. As technology 

advances, the computers are becoming more powerful and sophisticated, our ability to 

tackle these problems has grown exponentially. This progress has allowed for the 

development of more refined and efficient methods to find not just single, but multiple 

roots of nonlinear equations. 

This manuscript emphasizes on finding multiple root α of multiplicity 𝑚 using 

highly efficient iterative methods. Newton-Raphson method is originally developed 

for simple roots and has been adapted to handle multiple roots [1] with the basic 

iterative formula: 

𝑥𝜔+1 = 𝑥𝜔 − 𝑚
𝑓(𝑥𝜔)

𝑓′(𝑥𝜔)
, (1) 

This adaptation of the Newton method is particularly valuable. This is because it 

converges quadratically, meaning that the error decreases by a factor of the square of 

the previous error in each iteration. The knowledge of the root’s multiplicity is of 

utmost importance. 
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Researchers work to improve the efficiency and accuracy of root-finding 

algorithms. Many have focused on increasing their convergence order. Higher-order 

methods, third, fourth, or even sixth-order convergence, can significantly lower the 

number of iterations. However, these methods often come with the incorporation of 

additional computational complexity, particularly the need to calculate higher-order 

derivatives. 

In the literature, numerous methods have been proposed to tackle this problem 

[2–13] and references therein. For instance, Geum et al. [5] developed a scheme with 

sixth-order convergence, while Sharma et al. [14] proposed a seventh-order method. 

These advanced methods represent significant progress in the field, allowing for faster 

and more accurate solutions, especially for problems involving multiple roots with 

known multiplicity. The work of pioneers like J.F. Traub, who emphasized the 

superiority of multi-step methods in comparison to one-step methods in his seminal 

book [15], has paved the way for these innovations. 

Recently, Kumar et al. [16] presented the weighted seventh-order scheme using 

𝑢𝜔 = (
𝑓′(𝑦𝜔)

𝑓′(𝑡𝜔)
)

1

𝑚−1
𝑎𝑛𝑑 𝑣𝜔 = (

𝑓(𝑧𝜔)

𝑓(𝑡𝜔)
)

1

𝑚
, which is given by 

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑧𝜔 = 𝑦𝜔 − 𝑚𝐺(𝑢𝜔)
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, (2) 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑣𝜔 (1 + 𝑎
𝑣𝜔

𝑢𝜔
) 𝐻(𝑢𝜔)

𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
. 

Highly inspired by the work we proposed a better three-step scheme. The 

motivation behind these advancements is deeply rooted in our evolving needs. For this 

we have to develop more sophisticated models and the demand for better, faster, and 

more accurate solutions. This will only intensify, fueling further innovation in 

numerical analysis. 

Following sections are structured as: Section 2 presents a detailed convergence 

analysis of the presented robust scheme. In Section 3, we illustrate the effectiveness 

of the scheme through selected cases. Section 4 provides numerical verification, 

applying the methods to function drawn from the field of biology: Blood Rheology 

problem. Visual comparisons using basins of attraction are discussed in Section 5. At 

the end in Section 6 conclusions are summarized. 

2. Analysis of convergence 

We consider a scheme with three variables 𝑝𝜔, 𝑣𝜔 , and 𝑤𝜔 . We will explore 

certain conditions on the weight functions L( 𝑝𝜔), M (𝑣𝜔) and N (𝑣𝜔,𝑤𝜔) to enhance 

the order of converegence as highest as possible. For handling lengthy and complex 

calculations MATHEMATICA software [17] has been used. The scheme is 

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 
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𝑧𝜔 = 𝑦𝜔 − 𝑚𝑝𝜔𝐿(𝑝𝜔)
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, (3) 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑝𝜔𝑀(𝑣𝜔)𝑁(𝑣𝜔 , 𝑤𝜔)
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

where 𝑝𝜔 = (
𝑓(𝑦𝜔)

𝑓(𝑡𝜔)
)

1

𝑚
, 𝑣𝜔 = (

𝑓(𝑧𝜔)

𝑓(𝑦𝜔)
)

1

𝑚
 and 𝑤𝜔 = 𝑝𝜔(1 − 𝑣𝜔). 

Theorem 1: Consider 𝑓: 𝐶 → 𝐶 as an analytic function with 𝑡 = 𝛼 (say), where t 

is a multiple root with 𝑚 ≥ 1 (multiplicity). The scheme (3) defined by using the 

weight functions L ( 𝑝𝜔 ), M ( 𝑣𝜔 ) and N ( 𝑣𝜔 , 𝑤𝜔 ) possesses seventh-order of 

convergence if it satisfies the following conditions: 

𝑀0 = 0, 𝑀2 = 2𝑀1 , 𝑁0 =
1

𝑀1
, 𝑁1 =

2

𝑀1
, 𝑁2 =

2 + 𝐿2

𝑀1
 

Proof: Let us consider 𝑒𝜔 = 𝑡𝜔 − 𝛼 , the error at the 𝜔𝑡ℎ  iteration. Now by 

employing the Taylor expansion about 𝛼 on 𝑓(𝑡𝜔) 𝑎𝑛𝑑 𝑓′(𝑡𝜔) gives: 

𝑓(𝑡𝜔) =
𝑓(𝑚)(α)

𝑚!
𝑒𝜔

𝑚(1 + 𝑑1𝑒𝜔 + 𝑑2𝑒𝜔
2 + 𝑑3𝑒𝜔

3 + ⋯ + 𝑂(𝑒𝜔
9 )) (4) 

And 

𝑓′(𝑡𝜔) =
𝑓(𝑚)(α)

𝑚!
𝑒𝜔

𝑚−1(𝑚 + (𝑚 + 1)𝑑1𝑒𝜔 + (𝑚 + 2)𝑑2𝑒𝜔
2 + ⋯ + 𝑂(𝑒𝜔

9 )), (5) 

where 𝑑𝑞 =
𝑚!

(𝑚+𝑙)!

𝑓(𝑚+𝑙)(α)

𝑓(𝑚)(α)
, 𝑓𝑜𝑟 𝑞 ∈ 𝑁. 

Substitution of Equations (4) and (5) in the first sub step of (3) yields: 

𝑒𝑦𝜔
= 𝑦𝜔 − 𝛼 =

𝑑1

𝑚
𝑒𝜔

2 + (
−(𝑚 + 1)𝑑1

2 + 2𝑚𝑑2

𝑚2
) 𝑒𝜔

3 + ∑ ϕ𝑖

4

𝑖=0

𝑒𝜔
𝑖+4 + 𝑂(𝑒𝜔

9 ) (6) 

where ϕ𝑖  is the expression based on 𝑑1, 𝑑2, … , 𝑑8, 𝑚∀𝑖 . We will minimize the 

inclusion of lengthy expressions in the paper, providing only the initial ones for 

reference. Using Taylor expansion in Equation (6), we get 

𝑓(𝑦𝜔) =
𝑓(𝑚)(α)

𝑚!
𝑒𝑦𝜔

𝑚 (1 + 𝑑1𝑒𝑦𝜔
+ 𝑑2𝑒𝑦𝜔

2 + ⋯ + 𝑂(𝑒𝑦𝜔
9 )) (7) 

By using (4) and (7), we have 

𝑝𝜔 = (
𝑓(𝑦𝜔)

𝑓(𝑡𝜔)
)

1
𝑚

=
𝑑1𝑒𝜔

𝑚
+

(2𝑚𝑑2 − (𝑚 + 2)𝑑1
2)𝑒𝜔

2

𝑚2
+ ∑ η𝑖

5

𝑖=0

𝑒𝜔
𝑖+3 + 𝑂(𝑒𝜔

9 ), (8) 

where η𝑖 depends on 𝑑1, 𝑑2, … , 𝑑8, 𝑚∀𝑖. 

Consider 

𝐿(𝑝𝜔) ≈ 𝐿0 + 𝐿1𝑝𝜔 +
𝐿2

2
𝑝𝜔

2 +
𝐿3

6
𝑝𝜔

3 + 𝑂(𝑝𝜔
4 ). (9) 

Now, by inserting Equations (4)–(6), (8) and (9) in the scheme (3), we get 
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𝑒𝑧𝜔
= 𝑧𝜔 − α =

𝑑1(1 − 𝐿0)𝑒𝜔
2

𝑚
+

(−2𝑚𝑑2(−1 + 𝐿0) + 𝑑1
2(−1 − 𝑚 + (3 + 𝑚)𝐿0 − 𝐿1)) 𝑒𝜔

3

𝑚2
+ ∑ Φ𝑖

6

𝑖=0

𝑒𝜔
𝑖+2

+ 𝑂(𝑒𝜔
9 ), 

where  Φ𝑖  depends on 𝑑1, 𝑑2, … , 𝑑8, 𝑚∀𝑖 . Here, we choose 𝐿0 = 1, 𝐿1 = 2  and on 

putting the same in above equation, we obtain the fourth-order convergence, which is 

optimal. 

𝑒𝑧𝜔
= 𝑧𝜔 − α =

(𝑑1
3(𝑚 + 9 − 𝐿2) − 2𝑚𝑑1𝑑2)𝑒𝜔

4

2𝑚3
+ ∑ 𝐵𝑖

4

𝑖=0

𝑒𝜔
𝑖+5 + 𝑂(𝑒𝜔

9 ) 

where 𝐵𝑖 depends on 𝑑1, 𝑑2, … , 𝑑8, 𝑚∀𝑖. 

Now 𝑓(𝑧𝜔) can be written as: 

𝑓(𝑧𝜔) =
𝑓(𝑚)(α)

𝑚!
𝑒𝑧𝜔

𝑚 (1 + 𝑑1𝑒𝑧𝜔
+ 𝑑2𝑒𝑧𝜔

2 + 𝑑3𝑒𝑧𝜔
3 + 𝑑4𝑒𝑧𝜔

4 + 𝑑5𝑒𝑧𝜔
5 + 𝑑6𝑒𝑧𝜔

6 + 𝑑7𝑒𝑧𝜔
7 + 𝑑8𝑒𝜔

8 + 𝑂(𝑒𝑧𝜔
9 )) 

By using the obtained expressions, we get 

𝑣𝜔 = (
𝑓(𝑧𝜔)

𝑓(𝑦𝜔)
)

1

𝑚
=

(−2𝑚𝑑2+(𝑚+2−𝐿2)𝑑1
2)𝑒𝜔

2

2𝑚2 + ∑ η𝑖
5
𝑖=0 𝑒𝜔

𝑖+3 + 𝑂(𝑒𝜔
9 ), 

and 

𝑤𝜔 = 𝑝𝜔(1 − 𝑣𝜔) =
𝑑1𝑒𝜔

𝑚
+

((2 + 𝑚)𝑑1
2 + 2𝑚𝑑2) 𝑒𝜔

2

𝑚2
+ ∑ 𝐷𝑖

5

𝑖=0

𝑒𝜔
𝑖+3 + 𝑂(𝑒𝜔

9 ) 

Further, we consider the weight functions as: 

𝑀(𝑣𝜔) ≈ 𝑀0 + 𝑀1𝑣𝜔 +
𝑀2

2
𝑣𝜔

2 +
𝑀3

6
𝑣𝜔

3 + 𝑂(𝑣𝜔
4 ) 

and 

𝑁(𝑤𝜔) ≈ 𝑁0 + 𝑁1𝑤𝜔 +
𝑁2

2
𝑤𝜔

2 +
𝑁3

6
𝑤𝜔

3 + 𝑂(𝑤𝜔
4 ) 

So, inserting these expansions in the last sub step of (2.1), we have 

𝑒𝜔+1 = −
𝑑1𝑀0𝑁0𝑒𝜔

2

𝑚
+

𝑀0 (−2𝑚𝑑2𝑁0 + 𝑑1
2((3 + 𝑚)𝑁0 − 𝑁1)) 𝑒𝜔

3

𝑚2
+ ∑ 𝐸𝑖

4

𝑖=0

𝑒𝜔
𝑖+4 + 𝑂(𝑒𝜔

9 ). 

After substituting the following conditions, we obtain a final error equation. 

𝑀0 = 0, 𝑀2 = 2𝑀1 , 𝑁0 =
1

𝑀1
, 𝑁1 =

2

𝑀1
,  𝑁2 =

2 + 𝐿2

𝑀1
 

𝑒𝜔+1 =
𝑑1

2 (−2𝑚𝑑2 + 𝑑1
2(9 + 𝑚 − 𝐿2)) (−24𝑚𝑑2 + 𝑑1

2(84 + 12𝑚 − 6𝐿3 + 𝐿3 − 𝑀1𝑁3)) 𝑒𝜔
7

12𝑚6
+ 𝑂(𝑒𝜔

8 ) 

which is a seventh-order error equation. It validates that the proposed scheme 

converges to required convergence order that is seven. 
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3. Efficient cases of the scheme 

We will explore three distinct cases of the scheme (3), each defined by specific 

parameter values. These variations provide insight into the flexibility and adaptability 

of the scheme under different conditions. On substituting 

𝑀0 = 0, 𝑀2 = 2𝑀1 , 𝑁0 =
1

𝑀1
, 𝑁1 =

2

𝑀1
,  𝑁2 =

2 + 𝐿2

𝑀1
 

the considered weight functions reduce to the following form: 

𝐿(𝑝𝜔) ≈ 1 + 2𝑝𝜔 +
𝐿2

2
𝑝𝜔

2 +
𝐿3

6
𝑝𝜔

3 , 

𝑀(𝑣𝜔) ≈ 𝑀1𝑣𝜔 + 𝑀1𝑣𝜔
2 +

𝑀3

6
𝑣𝜔

3  

and 

𝑁(𝑤𝜔) ≈
1

𝑀1
+

2

𝑀1
𝑤𝜔 +

2 + 𝐿2

2 𝑀1
𝑤𝜔

2 +
𝑁3

6
𝑤𝜔

3  

We obtain the following effective cases after substituting the certain values to the 

remaining parameters as shown below: 

Case 1 (𝑁M1): 𝐿2 = 0, 𝐿3 = 0, 𝑁3 = 0, 𝑀1 = 1 𝑎𝑛𝑑 𝑀3 = 6 

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑧𝜔 = 𝑦𝜔 − 𝑚𝑝𝜔(1 + 2𝑝𝜔)
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑝𝜔(𝑣𝜔 + 𝑣𝜔
2 + 𝑣𝜔

3 )(1 + 2𝑤𝜔 + 𝑤𝜔
2 )

𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
. 

Case 2 (𝑁M2): 𝐿2 = 0, 𝐿3 = 0, 𝑁3 = 6
𝑝𝜔

1−𝑣𝜔
, 𝑀1 = 1 𝑎𝑛𝑑 𝑀3 = 84  

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑧𝜔 = 𝑦𝜔 − 𝑚𝑝𝜔(1 + 2𝑝𝜔)
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑝𝜔(𝑣𝜔 + 𝑣𝜔
2 + 14𝑣𝜔

3 ) (1 + 2𝑤𝜔 + 𝑤𝜔
2 +

𝑝𝜔

1 − 𝑣𝜔
𝑤𝜔

3 )
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔 )
, 

Case 3 (𝑁M3): 𝐿2 = 2, 𝐿3 = 0, 𝑁3 = 12, 𝑀1 = 1 𝑎𝑛𝑑 𝑀3 = 84 

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑧𝜔 = 𝑦𝜔 − 𝑚𝑝𝜔(1 + 2𝑝𝜔 + 𝑝𝜔
2 )

𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑝𝜔(𝑣𝜔 + 𝑣𝜔
2 + 14𝑣𝜔

3 )(1 + 2𝑤𝜔 + 2𝑤𝜔
2 )

𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
. 
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We consider the following methods from the literature for the purpose of 

comparison and to establish the numerical and visual comparison are considered here. 

Following are the special cases given by Sharma et al. [14] and Kumar et al. [16]. 

Method given by Sharma et al. [14], designated as SM 

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑧𝜔 = 𝑦𝜔 − 𝑚𝑝𝜔(1 + 2𝑝𝜔 − 𝑝𝜔
2 )

𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑣𝜔(1 + 2𝑝𝜔 + 𝑤𝜔)
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
. 

with 𝑝𝜔 = (
𝑓(𝑦𝜔)

𝑓(𝑡𝜔)
)

1

𝑚
, 𝑣𝜔 = (

𝑓(𝑧𝜔)

𝑓(𝑡𝜔)
)

1

𝑚
 𝑎𝑛𝑑 𝑤𝜔 = (

𝑓(𝑧𝜔)

𝑓(𝑦𝜔)
)

1

𝑚
. 

Method presented by Kumar et al. [16], named as 𝐾M1 

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑧𝜔 = 𝑦𝜔 − 𝑚𝑢𝜔 (
1 + 𝑢𝜔

1 +
1 + 𝑚
1 − 𝑚

𝑢𝜔 +
2𝑚(𝑚 + 1)

(𝑚 − 1)2 𝑢𝜔
2

)
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑣𝜔 (1 +
𝑚 − 1

𝑚

𝑣𝜔

𝑢𝜔
) (1 + 2𝑢𝜔 +

𝑚2 − 2𝑚 − 1

𝑚(𝑚 − 1)
𝑢𝜔

2 )
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
. 

Method proposed by Kumar et al. [16], discussed as KM2 

𝑦𝜔 = 𝑡𝜔 − 𝑚
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑧𝜔 = 𝑦𝜔 − 𝑚𝑢𝜔 (1 −
𝑚𝑢𝜔

𝑚 − 1
+

3𝑚2𝑢𝜔
2

2(𝑚 − 1)2
)

−2
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
, 

𝑡𝜔+1 = 𝑧𝜔 − 𝑚𝑣𝜔 (1 +
𝑚 − 1

𝑚

𝑣𝜔

𝑢𝜔
) (1 + 2𝑢𝜔 +

𝑚2 − 2𝑚 − 1

𝑚(𝑚 − 1)
𝑢𝜔

2 )
𝑓(𝑡𝜔)

𝑓′(𝑡𝜔)
. 

with 

 𝑢𝜔 = (
𝑓′(𝑦𝜔)

𝑓′(𝑡𝜔)
)

1

𝑚−1
𝑎𝑛𝑑 𝑣𝜔 = (

𝑓(𝑧𝜔)

𝑓(𝑡𝜔)
)

1

𝑚
. 

Numerical testing is performed to demonstrate the numerical comparison among 

existing methods and the cases of our presented scheme. 

4. Numerical experiments 

Special cases NM1, NM2 and NM3 of the presented scheme are compared with 

the methods given by Sharma et al. [14] (SM) and Kumar et al. [16] (KM1, KM2). For 

comparison we have selected a numerical from biology field, Blood Rheology 

Problem. The resultant nonlinear equation is: 
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𝑓(𝑥) = (
𝑥8

441
+

8𝑥5

63
−

2857144357𝑥4

50000000000
+

16𝑥2

9
−

906122449𝑥

250000000
+

3

10
)

4

 

where required root is 0.08643356 and m = 4. 

The table below displays the number of iterations (ω) in the second column. To 

stop the procedure, we choose stopping criterion as |tω+1 − tω|. The estimated errors 

for are also given in third, fourth and fifth column of the table. Further, computational 

order of convergence (COC), denoted by ρ, is also provided for each method. The 

COC is calculated using the formula: 

COC =
log|(tω+2 − α)/(tω+1 − α)|

log|(tω+1 − α)/(tω − α)|
 

The CPU time measured in seconds is also displayed in the final column of the 

table. Required calculations were performed using the MATHEMATICA software 

[17]. 

Table 1 shows that for all methods, the error significantly decreases with each 

successive approximation. However, the proposed methods NM1 , NM2  and NM3 

achieve much lower error values compared to KM1, KM2, indicating superior accuracy. 

Table 1. Numerical comparison of considered methods. 

Methods 𝝎 |𝒆𝝎−3| |𝒆𝝎−2| |𝒆𝝎−1| CPU−t (s) COC 

x0 = 0       

SM 4 8.64 (−2) 4.67 (−8) 1.22 (−51) 0.13 7.00 

KM1 4 8.64 (−2) 1.19 (−9) 4.21 (−18) 0.40 1.33 

KM2 4 8.64 (−2) 1.61 (−7) 1.11 (−41) 0.13 6.00 

NM1 4 8.64 (−2) 5.29 (−9) 2.14 (−58) 0.08 7.00 

NM2 4 8.64 (−2) 5.21 (−9) 1.93 (−58) 0.09 7.00 

NM3 4 8.64 (−2) 9.58 (−9) 9.54 (−57) 0.09 7.00 

Notably, NM1  achieves an error of 2.14 × 10−58 , the smallest among all 

methods, closely followed by NM2  and NM3 . This indicates that the proposed 

methods have a good convergence rate and are highly precise. The COC for NM1, 

NM2 and NM3 and SM is 7.00, which suggests that these methods have a high order 

of convergence. In contrast, KM1, KM2, have a much lower COC of 1.33, reflecting 

slower convergence. The CPU time is another critical factor in evaluating the 

efficiency of the methods. The proposed methods NM1 , NM2  and NM3  utilize 

significantly less CPU time compared to KM1, KM2, and even outperform the SM 

method. 

Among the proposed methods NM1, is the most efficient with a CPU time of 0.08 

seconds, closely followed by NM2  and NM3  at 0.09 seconds each. This efficiency 

confirms the practicality of the proposed methods, especially in real-time applications 

where computational speed is crucial. 

The results from the table clearly indicate that the presented methods not only 

achieve higher accuracy and faster convergence but also do so with less computational 

effort compared to existing methods. This makes the proposed methods highly 
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effective for solving complex nonlinear equations, such as those encountered in 

biological fields like Blood Rheology. Their robust performance across all key 

metrics—error reduction, convergence rate, and CPU time—underscores their 

superiority and practical applicability in finding multiple roots for the target equations. 

5. Basins of attraction 

For comparing the performance of NM1, NM2 and NM3 of the proposed scheme 

(3) within the complex plane, basins of attraction are employed (see Figure 1a–f). 

This technique is a powerful tool for analyzing how different methods behave in terms 

of convergence to roots, particularly in complex scenarios. It has been widely adopted 

by researchers in recent studies [18,19]. Leveraging the advanced capabilities of 

MATHEMATICA software, we developed detailed basins of attraction. For this 

analysis, we considered the function 𝑓(𝑧) = (𝑧2 − 1)3, which has two distinct roots, 

each with a multiplicity of 3. This setup allows for a comprehensive comparison of the 

methods’ efficiency and reliability in finding multiple roots. 

Out of the six methods, NM1 offers the highest precision while KM1 provides the 

most straightforward and stable convergence behavior. Depending on the problem’s 

complexity, one might choose the appropriate method from these methods. 

  
(a) SM (b) KM1 

  
(c) KM2 (d) NM1 
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(e) NM2 (f) NM3 

Figure 1. Basins of attraction for f (z) = (z2 − 1)3, z ∈ D. 

6. Conclusion 

The proposed scheme exhibits impressive seventh-order convergence towards the 

desired root, a significant achievement in solving nonlinear equations with multiple 

roots. Extensive numerical and dynamical tests have not only validated the theoretical 

underpinning but also highlighted the scheme’s superiority over existing methods of 

the same order. In particular, cases NM1, NM2 and NM3 consistently outperformed 

others in terms of elapsed CPU time, minimal estimated error and computational order 

of convergence (COC) as demonstrated in Table 1. These results underscore the 

scheme’s robustness and accuracy, making it an invaluable tool for tackling complex 

root-finding problems. 
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