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Abstract: Characterization of posinormal operators in terms of their positivity, invertibility 

and numerical ranges has been done. However, characterization of these operators with regards 

to their closed ranges remains interesting. In this work, we characterize conditions for 

posinormal operators to have closed ranges. In particular, we establish an important upper norm 

bound criterion for posinormal operators. We show that if Q, R are normal operators in PN (H), 

the set of all posinormal operators acting on a Hilbert space H and suppose that the range of Q 

is closed with the null space of Q equal to the null space of R, then the range of R is closed. 

The results of this study are very useful applications in many areas, like image and signal 

processing. In particular, they are useful in processing signals and images used in facial 

recognition which are important in the identification of people in places like the airports, thus 

helping in enhancing security and forensic analysis. 
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1. Introduction 

Operators have very important properties like norm, numerical ranges, and closed 

ranges that are under consideration by many authors due to their interesting and useful 

applications in other fields (see [1] and [2] for more details). Normal operators [3] 

have further subclasses like the hyponormal [4], posinormal (an operator A on a 

Hilbert space H is posinormal if its range is included in the range of its adjoint) [5], 

subnormal [6] among others. Other classes are norm-attaining [7], norm-attainable [8], 

convexoid [9], spectraloid [10], transaloid [11], isoloids [12] among others. These 

classes are related to one another in one way or another, as seen in [13]. Studies of 

closed range operators have also been carried out over decades, particularly the 

bounded linear operators on Hilbert spaces [14]. Due to many questions arising from 

these studies, extensions have been done in different classes of operators with 

consideration given in various spaces like Hilbert spaces [15]. A natural question from 

[16] which has not been answered states that to what extent can one characterize all 

composition operators on Hardy spaces that are posinormal or coposinormal? In other 

words, this is restated in [17] that one can give a complete characterization of 

composition operators and other classes of operators in a general Banach space 

setting? This question was further stressed by [18]. The study of the product of 

commuting closed range operators was initiated by [19], whereby the study 

characterized closed range operators in terms of their ranges, Kernels and orthogonal 

complements of the same. From these studies, it is clear that one property that has been 

considered by many authors and is still being considered is the closedness [20] of the 

range of these operators. In [21], the authors characterized totally (p, k)-quai-

posinormal operators in terms of their numerical ranges and invertibility. In [22] the 
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author studied posinormal operators on Hilbert spaces and came up with conditions 

for an operator to be in the superclass of posinormal and hyponormal. 

Supraposinormality of operators has also been characterized and it has been shown in 

[23] that the superclass contained all posinormal and coposinormal operators. The 

work of [24] characterized basic properties of positive normal operators in semi-

Hilbertian spaces and suggested a consideration to be given to posinormal operators 

in terms of their closed ranges. In [25] the authors worked on powers of posinormal 

operators. The authors proved that posinormal operators have a closed range and it 

was shown that if a posinormal operator is coposinormal, then its posinormal operators 

with powers are also coposinormal. In [26] the authors characterized numerical ranges 

of posinormal operators on Hilbert spaces. It was shown that for a posinormal mapping 

B, W (B) is nonempty and is an ellipse whose foci are eigenvalues of B. The authors 

discussed how the numerical range of a given operator can be obtained on Hilbert 

spaces.  

The work of [27] characterized powers of posinormal operators on Hilbert spaces. 

It was shown that the powers of posinormal operators have closed ranges and it was 

shown that the class of posinormal operators consists of all hyponormal operators. 

Examples of operators with closed ranges but whose powers do not contain closed 

ranges were provided. The authors also studied normal and hyponormal operators 

where the closedness was also shown to hold. The work of [28] characterized totally 

posinormal operators on Hilbert spaces. Basic properties of p-posinormal operators 

were obtained and in particular, the authors considered the spectral continuity and 

range-kernel orthogonality of posinormal operators in [29]. In [30] the authors 

characterized composition operators with closed ranges on Dirichlet spaces. The 

authors in [31] gave conditions necessary for maps on Dirichlet space to have closed 

range. Also [32] characterized posinormal operators and products of posinormal 

operators with closed ranges. The authors obtained conditions for the products of two 

posinormal operators to be posinormal and conditions for the posinormal operators to 

have closed ranges. The authors in [33] also discussed the conditions necessary for the 

products of commuting posinormal operators with closed ranges to be posinormal with 

closed ranges. With regard to these questions, this study therefore seeks to carry out 

further characterization of closed ranges of products of commuting closed range 

operators [34]. In particular, we consider the class of posinormal operators and 

characterize upper norm bounds in terms of their closed ranges. These 

characterizations will help in closing some of the gaps that have been identified in this 

study. Finally, we give the notations as used in this study. In this work, Ran(Q) is the 

range of an operator Q, Ran(R) is the range of an operator R, while PN(H) is the set of 

all posinormal operators acting on a Hilbert space H. Moreover, σiso(Q) is the isolated 

spectrum of Q. 

2. Materials and methods 

We provide some materials and some methods that are useful in the sequel. 

Definition 1. (The Banach’s closed range theorem [35], Definition 5.7). Let Q and Z 

be Banach spaces. An operator T : Q → Z is said to be a closed range operator if the 

following conditions are equivalent: 
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a) Ran(T) is closed in Z. 

b) Ran(T*) is closed in Q*. 

We note that Ran(T) is the range of T and Ran(T*) is the range of T* the adjoint 

of T. 

Definition 2. ([36], Section 1). An operator A on a Hilbert space H is posinormal if 

its range is included in the range of its adjoint. 

Definition 3. ([37], Definition 2). A matrix(operator) whose range equal to the range 

of its adjoint or their null spaces are equal is referred to as an EP matrix(operator). 

Definition 4. ([38], Definition 2.6). An operator A which is densely defined has an 

inverse called Moore-Penrose Inverse (MPI) denoted by AMPI which is densely defined 

satisfying the property that Null space of AMPI is equal to the Range of orthogonal 

complement of AMPI 

Definition 5. ([39], Definition 2.5). We define by RMM (A) = inf{||Aξ  : ξ ∈ F (T), 

ξ  = 1.} the Reduced Minimum Modulus (RMM) where F (T) is equal to the 

intersection of the null space of the orthogonal complement of A and the domain of A. 

3. Results 

We start by determining conditions for posinormal operators to have closed 

ranges. We begin with the following proposition. 

Proposition 1. Let Q ∈ PN (H) be such that it is densely defined on H then Ran(Q) is 

closed. 

Proof of Proposition 1. From the definition of a densely defined operator, it is known 

from [40] that the closure of the domain of Q is equal to H. Moreover, Q has an adjoint 

Q* which is unique by closed graph theorem (CGT) so it follows that a bounded 

operator is a cloed operator. Since Q is closed then there exists a sequence ξn in H 

such that Qξn → ξ, for all ξ ∈ H. Hence, Ran(Q) is closed. □ 

Lemma 1. Let Q ∈ PN (H) be having a bounded QMPI. Then Ran(Q) is closed. 

Proof of Lemma 1. Let Q be having a bounded QMPI. Then it is known from [41] that 

the null space of Q is equal to the range of the orthogonal complement of Q. So the 

orthogonal projection (OP) PRan(QMPI )(ξ) for all ξ in the domain of Q is equal to 

QMPIQ acting on ξ. But Ran(QMPI) is closed [42]. For boundedness [43], let ξ be in the 

domain of QMPI. Then we have some ξ0 in the domain of QMPI such that  QMPIξ0  ≤ k 

 ξ0 , for some ξ0 in the domain of QMPI. Hence, QMPI is bounded [44]. Finally, since 

QMPI is bounded and closed then from the Inverse mapping Theorem [45], Q is also 

closed. Hence, from Proposition 1 and an assertion in [46] and [47] Ran(Q) is closed. 

□ 

Theorem 1. Let Q ∈ PN (H) be densely defined on H. If RMM (Q) is equal to the 

reciprocal of QMPI and RMM (Q) = RMM (Q*Q) = RMM (Q2) then Ran(Q) is closed. 

Proof of Theorem 1. From Proposition 1, Lemma 1 and a characterization in [48] we 

have that Q is closed and bounded. Moreover, QMPI is also closed from a proof in [49]. 

Indeed, we  sup{||QMPIξ  : ξ  = 1} = RMM (Q)−1, for all ξ in the domain of QMPI. For 

the second part of the proof let RMM (Q) be nonzero. From Lemma 1 we have that 

Ran(Q) is closed. But from [50] if RMM (Q) is nonzero then Ran(Q) is not closed and 

RMM (Q*Q) is equal to zero. Now consider RMM (Q) to be strictly greater that zero. 
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□ 

Remark 1. Every positive Q ∈ PN (H) with a bounded spectrum has a closed range 

[51]. 

Corollary 1. Let Q ∈ PN (H) be self-adjoint then Ran(Q*) is closed. 

Proof of Corollary 1. The proof follows from Theorem 1 and the fact that Q is self-

adjoint. □ 

Corollary 2. Let Q ∈ PN (H) be such that RMM (Q) = RMM (Q*) then Ran(Q) is 

closed. 

Proof of Corollary 2. From Remark 1 we know that Q is self-adjoint and hence Q0. 

Therefore, RMM (Q) = RMM (Q*) since from Lemma 1 it follows that RMM (QQ*) = 

RMM (Q*Q). Since Ran(Q*) is closed then Ran(Q) is closed because Q = Q*. The rest 

follows from Corollary 2 and the technique of [52]. □ 

Next, we characterize when the posinormal operators are strictly posinormal as 

seen in the next Proposition. 

Proposition 2. Let Q ∈ PN (H) be self-adjoint. If α ∈ σiso(Q) is an eigenvalue then 

Ran(Q) is closed. 

Proof of Proposition 2. Let α ∈ σiso(Q). It follows from [53] that zero is in σiso(Q). Of 

course, from Remark 1 we have that σ(Q) is nonempty hence σiso(Q) is also nonempty. 

From Theorem 1 RMM (Q) > 0 and Corollary 3.5 asserts that Q = Q*. The fact that α 

is an eigenvalue follows from the assertion that zero is in σiso(Q − αI)2. Since σiso(Q − 

αI)2 is positive so Q has a bounded spectrum of isolated points. From Remark 1 every 

Q ∈ PN (H) with a bounded spectrum has a closed range. Hence, Ran(Q) is closed. □ 

Lemma 2. Let Q ∈ PN (H) be normal. Then Ran(Q) is closed. 

Proof of Lemma 2. Since Q is normal then from Corollary 1, we have that Q is self-

adjoint. Also, we have RMM (Q) = RMM (Q*). So, Ran(Q) is closed if and only if it is 

normal and self-adjoint. Next, we give our main result which is a new characterization 

of the closed ranges of posinormal operators in-terms of upper norm bounds. □ 

Theorem 2. Consider Q, R ∈ PN (H) be normal. Suppose that Ran(Q) is closed with 

null space of Q equal to the null space of R then Ran(R) is closed if  Qξ  ≤ M Rξ  , 

for all ξ ∈ H. 

Proof of Theorem 2. From the Closed Graph Theorem (CGT), the null space of any 

operator is closed if and only if we have a constant m > 0 such that Qξ = Qξ0 for all ξ 

∈ H and some ξ0 ∈ H and ξ0  ≤ m  Q  . Now R, Q are one to one from Remark 1 onto 

the orthogonal complement of the null space of Q. So, the null space of R is a subset 

of the null space of Q. Let 0 ∈ σiso(Q) as in Proposition 2 then σiso(Q) is nonempty and 

a subset of the orthogonal complement of the null space of Q. Therefore, R acting on 

the orthogonal complement of the null space of Q is closed in H. Hence,  Ran(R) is 

closed. □ 

Example 1. Consider Q, R ∈ B(H) be normal. Suppose that Ran(Q) is closed with null 

space of Q equal to the null space of R then Ran(R) is closed if  Qξ  ≥ M Rξ  , for all 

ξ ∈ H. 

Remark 2. Consider Q, R ∈ B(H). Suppose that R, Q are norm equivalent then the 

null space of R is equal to the null space of Q. It follows that Ran(R) is closed if and 

only if Ran(Q) is closed. 
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4. Applications 

Operator theory has very useful applications as seen in [54] many areas like 

image and signal processing. In particular, applications of posinormal operators are 

immense in different fields. These operators are useful in quantum mechanics whereby 

they are significant in the estimation of the distances moved by the electrons in the 

orbitals [55]. This enables quantum physicists in determining the ground state energies 

of these electrons which are in turn useful in processing signals and images used in 

facial recognition which are important in the identification [56] of people in places 

like the airports, thus helping in enhancing security and forensic analysis. 

5. Conclusion 

In many studies, characterization of posinormal operators in terms of their 

positivity, invertibility and numerical ranges has been done. However, 

characterization of these operators with regards to their closed ranges remains 

interesting. In this work, we have characterized conditions for posinormal operators to 

have closed ranges. In particular, we have established an important upper norm bound 

criterion for posinormal operators when they have closed ranges. We have shown that 

if Q, R ∈ PN (H) are normal and suppose that Ran(Q) is closed with null space of Q 

equal to the null space of R, then Ran(R) is closed if Qξ  ≤ M Rξ , for all ξ ∈ H. 

The results of this study are useful in application in quantum mechanics and portfolio 

optimization in financial mathematics. We recommend a further study to be carried 

out on the characterization of the products of posinormal operators when they are 

unbounded in a general Banach space setting. This work is useful in image and signal 

processing which are important in facial recognition and forensic analysis. 
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