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Abstract: In this paper, a regularized solution to the Cauchy problem for matrix factorization 

of the Helmholtz equation in a three-dimensional unbounded domain is constructed explicitly 

based on the Carleman matrix. When solving applied problems, in addition to an approximate 

solution, the derivative of the approximate solution is found. It is assumed that the solution to 

the problem exists and is continuously differentiable in a closed domain with precisely 

specified Cauchy data. An explicit formula for continuing the solution and its derivative is 

established, as well as a regularization formula for the case when, under the specified 

conditions, instead of the original Cauchy data, their continuous approximations with a 

specified error in the uniform metric are given. As a result, the stability of the solution to the 

Cauchy problem in the classical sense is estimated. 

Keywords: ill-posed tasks; the Cauchy problem; conditional correctness; explicit formula; 
unbounded domain 
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1. Introduction 

At present, the theory of correctly and ill-posed problems, most of which have 
practical significance, is rapidly developing. Obviously, the theory of ill-posed 
problems is an apparatus of scientific research for many scientific directions and 
studies. The concept of a correctly posed problem was first introduced by Hadamard 
[1], and he asserted that any mathematical problem corresponding to some physical 
or technological problem must be correctly posed [1]. When it comes to ill-posed 
problems, the following question arises: What do we mean by an approximate 
solution? It must be defined so as to be stable with small changes in the initial 
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information. The second question: What algorithms are correct for constructing such 
solutions? The answer to this question can be found in the work [2]. 

The term conditional correctness first appeared in Tikhonov’s scientific 
research [2], then in works [3,4]. When an ill-posed problem is correct according to 
Tikhonov, the existence of a solution and its belonging to the correctness set are 
assumed in the problem statement itself. After the uniqueness and stability theorems 
are established in the study of the conditional correctness of ill-posed problems, the 
question of constructing optimal solution methods arises. We are well aware that the 
Cauchy problem for any elliptic equations and for systems of elliptic equations is 
considered ill-posed (see, for example, [1–9]). Boundary value problems for various 
equations were considered in [10–13]. 

Using the methodology of works [3–4,8–9], in this work we will construct the 
Carleman matrix and a regularized solution based on it. In this paper, we find a 
regularized solution to the Cauchy problem in explicit form for matrix factorizations 
of the Helmholtz equation of an unbounded domain. Our approximate solution 
formula also includes the construction of a family of fundamental solutions of the 
Helmholtz operator in space. This family is represented by some entire function 
depending on the dimension of the space. In this study, based on works [14‒16], we 

obtained better results due to the 𝐾(𝑧), function. Based on these results, we were 
able to obtain effective results in finding an approximate solution based on the 
Carleman matrix. The Carleman matrix or the Carleman function are also 
constructed in works. This helped to get good results when finding an approximate 
solution based on the Carleman matrix. The Carleman matrix or Carleman function 
for some elliptic equations and systems was considered in the following studies [17–
20].  

In many correct problems for elliptic equations, it is not possible to calculate the 
values of the vector function on the entire boundary. Because of this, the problem of 
restoring the solution of elliptic-type systems is one of the topical problems. At 
present, there is a special interest in problems of this type and their applications. 

Let ℝଷ be the three-dimensional real Euclidean space. 

𝜁 = (𝜁ଵ, 𝜁ଶ, 𝜁ଷ) ∈ ℝଷ,   𝜂 = (𝜂ଵ, 𝜂ଶ, 𝜂ଷ) ∈ ℝଷ, 

𝜁′ = (𝜁ଵ, 𝜁ଶ) ∈ ℝଶ,   𝜂′ = (𝜂ଵ, 𝜂ଶ) ∈ ℝଶ. 

Ω ⊂ ℝଷ  is an unbounded simply-connected domain with piecewise smooth 

boundary consisting of the plane 𝐷: 𝜂ଷ = 0 and a smooth surface Σ lying in the half-

space 𝜂ଷ > 0, i.e., 𝜕Ω = Σ ∪ 𝐷. 
Next, we will use the following notations: 

𝑟 = |𝜂 − 𝜁|, 𝛼 = |𝜂′ − 𝜁′|, 𝑧 = 𝑖ඥ𝑎ଶ + 𝛼ଶ + 𝜂ଷ, 𝑎 ≥ 0, 

𝜕఍ = (𝜕఍భ
, 𝜕఍మ

, 𝜕఍య
)் , 𝜕఍ → 𝜒் , 𝜒் = ൭

𝜒ଵ

𝜒ଶ

𝜒ଷ

൱, transposed vector 𝜒, 

𝑊(𝜁) = (𝑊ଵ(𝜁), … , 𝑊௡(𝜁))் ,   𝑣଴ = (1, … ,1) ∈ ℝ௡,   𝑛 = 2௠,   𝑚 = 3, 
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𝐸(𝑢) = ቱ

𝑢ଵ 0 ⋯ 0
0 𝑢ଶ ⋯ 0
⋯ ⋯ ⋱ ⋯
0 0 0 𝑢௡

ቱ −diagonal matrix, 𝑢 = (𝑢ଵ, … , 𝑢௡) ∈ ℝ௡. 

We consider a bounded simply-connected domain Ω ⊂ ℝ௠, having a piecewise 

smooth boundary 𝜕Ω = Σ ∪ 𝐷, where Σ is a smooth surface lying in the half-space Σ 

and 𝐷 is the plane 𝜂௠ = 0.  

Let 𝑃(𝜒்) be a square matrix of dimension (𝑛 × 𝑛) for which the following 
holds:  

𝑃∗(𝜒்)𝑃(𝜒்) = 𝐸((|𝜒|ଶ + 𝜆ଶ)𝑣଴), 

where 𝑃∗(𝜒்) means the Hermitian conjugate matrix of 𝑃(𝜒்), 𝜆 ∈ ℝ, the elements 

of the matrix 𝑃(𝜒்) consist of a set of linear functions with constant coefficients 

from the complex plane ℂ. 
Let’s consider the following system of equations: 

𝑃(𝜕఍) 𝑊(𝜁) = 0,   (1)

in the domain Ω, where 𝑃(𝜕఍) is the matrix differential operator of the first-order. 

Let’s assume a set: 

𝑆(Ω) = {𝑊: Ω → ℝ௡}, 

here 𝑊 is considered continuous on Ω = Ω ∪ 𝜕Ω and 𝑊 is a solution of system (1). 

2. Statement of the Cauchy problem  

Suppose 𝑓: Σ → ℝ௡ be a continuous given function on Σ.  

Let 𝑊(𝜂) ∈ 𝑆(Ω) and  

𝑊(𝜂)|ஊ = 𝑓(𝜂),    𝜂 ∈ Σ. (2)

Our main goal is to determine the function 𝑊(𝜂) in the domain Ω, based on its 

known values on Σ.  

If 𝑊(𝜂) ∈ 𝑆(Ω), then the following Cauchy type integral formula: 

𝑊(𝜁) = න
డஐ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,    𝜁 ∈ Ω, (3)

is valid and  

𝐿(𝜂, 𝜁; 𝜆) = (𝐸(Γଷ(𝜆𝑟)𝑣଴)𝑃 × (𝜕఍))𝑃(𝑡்), 

where 𝑡 = (𝑡ଵ, 𝑡ଶ, 𝑡ଷ) shows the unit exterior normal, which is drawn at a point 𝜂 on 

the surface 𝜕Ω and Γଷ(𝜆𝑟) −is the fundamental solution of the Helmholtz equation 
(see [16]), which has the following form: 

Γଷ(𝜆𝑟) = −
𝑒௜ఒ௥

4𝜋𝑟
. (4)

Let 𝐾(𝑧) be an entire function taking real values 𝑧 , (𝑧 = 𝑎 + 𝑖𝑏,   𝑎, 𝑏 −real 
numbers) for which the following is true [8,9]:  
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𝐾(𝑎) ≠ 0,    sup
௕ஹଵ

ห𝑏௣𝐾(௣)(𝑧)ห = 𝐵(𝑎, 𝑝) < ∞,

−∞ < 𝑎 < ∞,    𝑝 = 0,1,2,3.
 (5)

The function Ψ(𝜂, 𝜁; 𝜆) for 𝜂 ≠ 𝜁 is defined as follows: 

Ψ(𝜂, 𝜁; 𝜆) = −
1

2𝜋ଶ𝐾(𝜁ଷ)
න

ஶ

଴

I𝑚 ൤
𝐾(𝑧)

𝑧 − 𝜁ଷ
൨

cos(𝜆𝑎)

√𝑎ଶ + 𝛼ଶ
𝑑𝑎, (6)

Equation (3) remains unchanged; we represent the function Γଷ(𝜆𝑟) as follows:  

Ψ(𝜂, 𝜁; 𝜆) = Γଷ(𝜆𝑟) + 𝐺(𝜂, 𝜁; 𝜆), (7)

where 𝐺(𝜂, 𝜁; 𝜆) is a regular solution with respect to the variable 𝜂, including the 

point 𝜂 = 𝜁.  
In this case (3) is depicted as follows:  

𝑊(𝜁) = න
డஐ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,    𝜁 ∈ Ω, (8)

where: 

𝐿(𝜂, 𝜁; 𝜆) = (𝐸(Ψ(𝜂, 𝜁; 𝜆)𝑣଴)𝑃∗(𝜕఍))𝑃(𝑡்). 

We generalize Equation (8) to an unbounded domain Ω.  

Suppose Ω ⊂ ℝଷ be an unbounded domain, and its boundary 𝜕Ω be piecewise 
smooth (extending to infinity). 

And also let 

Ωோ = {𝜂: 𝜂 ∈ Ω, |𝜂| < 𝑅},   Ωோ
ஶ = Ω\Ωோ , 𝑅 > 0.  

Theorem 1. Suppose that 𝑊(𝜂) ∈ 𝑆(𝛺), and 𝛺 is a finitely connected unbounded 

domain in three-dimensional space with piecewise smooth boundary 𝜕𝛺.  

If for a fixed ∈ 𝛺 the following is true 

lim
ோ→ஶ

න
ஐೃ

ಮ
𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ = 0, (9)

then the integral representation Equation (8) will be true.  

Proof. It is known that for a fixed 𝜁 ∈ Ω(|𝜁| < 𝑅) , relying on the integral 
representation Equation (8) we have: 

න
డஐ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ = න
డஐೃ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠௬ +

+ න
డஐೃ

ಮ
𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ = 𝑊(𝜁) + න

డஐೃ
ಮ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ , 𝜁 ∈ Ωோ .
 

Due to the limit condition Equation (9), as 𝑅 → ∞ , we obtain the integral 
representation Equation (8). 
Suppose that the unbounded domain Ω is defined as follows: 

0 < 𝜂ଷ < ℎ, ℎ =
గ

ఘ
, 𝜌 > 0,  

and most importantly 𝜕Ω extends to infinity.  

Let for any 𝑑଴ > 0 for area 𝜕Ω the following growth condition be true: 
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∫డஐ
exp[−𝑑଴𝜌଴|𝜂′|]𝑑𝑠ఎ < ∞, 0 < 𝜌଴ < 𝜌.  (10)

Suppose 𝑊(𝜂) ∈ 𝑆(Ω) that it satisfies the boundary growth condition:  

|𝑊(𝜂)| ≤ exp[exp𝜌ଶ|𝜂ᇱ|],   𝜌ଶ < 𝜌, 𝜂 ∈ Ω.  (11)

In (6) we put:  

𝐾(𝑧) = exp ቂ−𝑑𝑖𝜌ଵ ቀ𝑧 −
௛

ଶ
ቁ − 𝑑ଵ𝑖𝜌଴ ቀ𝑧 −

௛

ଶ
ቁቃ ,

𝐾(𝜁ଷ) = exp ቂ𝑑cos𝜌ଵ ቀ𝜁ଷ −
௛

ଶ
ቁ + 𝑑ଵcos𝑖𝜌଴ ቀ𝜁ଷ −

௛

ଶ
ቁቃ ,

0 < 𝜌ଵ < 𝜌,    0 < 𝜁ଷ < ℎ,

  (12)

where  

𝑑 = 2𝑐exp(𝜌ଵ|𝜁′|), 𝑑ଵ >
ௗబ

ୡ୭ୱቀఘబ
೓

మ
ቁ

, 𝑐 ≥ 0, 𝑑 > 0.  

Then the integral representation Equation (8) is true.  

For a fixed 𝜁 ∈ Ω and 𝜂 → ∞, we estimate the functions Ψ(𝜂, 𝜁; 𝜆), 
డஏ(ఎ,఍;ఒ)

డఎೕ
,   𝑗 =

1,2 and 
డஏ(ఎ,఍;ఒ)

డఎయ
.  

To estimate 
డஏ(ఎ,఍;ఒ)

డఎೕ
, we use the equality:  

డஏ(ఎ,఍;ఒ)

డఎೕ
=

డஏ(ఎ,఍;ఒ)

డ௦

డ௦

డఎೕ
= 2(𝜂௝ − 𝜁௝)

డஏ(ఎ,఍;ఒ)

డ௦
,    𝑗 = 1,2.  (13)

And so,  

ฬexp ൤−𝑑𝑖𝜌ଵ ൬𝑧 −
ℎ

2
൰ − 𝑑ଵ𝑖𝜌଴ ൬𝑧 −

ℎ

2
൰൨ฬ =

= expR𝑒 ൤−𝑑𝑖𝜌ଵ ൬𝑧 −
ℎ

2
൰ − 𝑑ଵ𝑖𝜌଴ ൬𝑧 −

ℎ

2
൰൨ =

= exp ൤−𝑑𝜌ଵඥ𝑎ଶ + 𝛼ଶcos𝜌ଵ ൬𝜂ଷ −
ℎ

2
൰ −

 

𝑑ଵ𝜌଴ඥ𝑎ଶ + 𝛼ଶcos𝜌଴ ൬𝜂ଷ −
ℎ

2
൰൨. 

As: 

−
𝜋

2
≤ −

𝜌ଵ

𝜌
⋅

𝜋

2
≤

𝜌ଵ

𝜌

𝜋

2
<

𝜋

2
,

−
𝜋

2
≤ −

𝜌ଵ

𝜌

𝜋

2
≤ 𝜌଴ ൬𝑦ଷ −

ℎ

2
൰ ≤

𝜌ଵ

𝜌

𝜋

2
<

𝜋

2
.
 

Consequently, 

cos𝜌 ቀ𝜂ଷ −
௛

ଶ
ቁ > 0, cos𝜌଴ ቀ𝜂ଷ −

௛

ଶ
ቁ ≥ cos

௛ఘబ

ଶ
> 𝛿଴ > 0. 

It does not vanish in the region Ω and: 
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|Ψ(𝜂, 𝜁; 𝜆)| = O[exp(−𝜀𝜌ଵ|𝜂′|)],   𝜀 > 0,   𝜂 → ∞,    𝜂 ∈ Ω ∪ 𝜕Ω,

ቤ
𝜕Ψ(𝜂, 𝜁; 𝜆)

𝜕𝜂௝
ቤ = O[exp(−𝜀𝜌ଵ|𝜂′|)],   𝜀 > 0,   𝜂 → ∞,   𝜂 ∈ Ω ∪ 𝜕Ω,   𝑗 = 1,2.

ฬ
𝜕Ψ(𝜂, 𝜁; 𝜆)

𝜕𝜂ଷ
ฬ = O[exp(−𝜀𝜌ଵ|𝜂′|)],   𝜀 > 0,   𝜂 → ∞,   𝜂 ∈ Ω ∪ 𝜕Ω.

 

We now choose 𝜌ଵ with the condition 𝜌ଶ < 𝜌ଵ < 𝜌. In this case, condition Equation 
(10) will be valid, and the integral representation Equation (8) will take place. □  

Next, for convenience, we weaken condition Equation (12). 

Let us denote by 𝑆ఘ(Ω) the following growth condition: 

𝑆ఘ(Ω) = {𝑊(𝜂): 𝑊(𝜂) ∈ 𝑆(Ω), |𝑊(𝜂)| ≤ exp[o[exp𝜌|𝜂ଵ|]], 𝜂 → ∞, 𝜂 ∈ Ω}.  (14)

The following is valid: 

Theorem 2. Suppose 𝑊(𝜂) ∈ 𝑆ఘ(𝛺) and the following is true: 

|𝑊(𝜂)| ≤ 𝐶exp ൤𝑐cos𝜌ଵ ൬𝜂ଷ −
ℎ

2
൰ exp(𝜌ଵ|𝜂ᇱ|)൨ ,

𝑐 ≥ 0, 0 < 𝜌ଵ < 𝜌, 𝜂 ∈ 𝜕Ω,
 (15)

where 𝐶 −is a constant. Then the integral representation Equation (8) is valid. 

Proof. Next, we divide the region Ω by the line 𝜂ଷ =
௛

ଶ
 into two corresponding the 

following regions:  

Ωଵ = ቄ𝜂: 0 < 𝜂ଷ <
௛

ଶ
ቅ and Ωଶ = ቄ𝜂:

௛

ଶ
< 𝜂ଷ < ℎቅ. 

First, let us consider the domain Ωଵ. To do this, we substitute the functions 𝐾ଵ(𝑧) 

into equality Equation (6) instead of the functions 𝐾(𝑧) 

𝐾ଵ(𝑧) = 𝐾(𝑧)exp ൤−𝛿 𝑖𝜏 ൬𝑧 −
ℎ

2
൰ − 𝛿ଵ𝑖𝜌 ൬𝑧 −

ℎ

2
൰൨ ,

𝜌 < 𝜏 < 2𝜌, 𝛿 > 0, 𝛿ଵ > 𝑜,
 (16)

Here the function 𝐾(𝑧) is directly determined from Equation (12). In these cases, 
condition Equation (10) will be true. 
And so, 

ฬexp ൤−𝑖𝜏 ൬𝑧 −
ℎ

4
൰ − 𝛿ଵ𝑖𝜌 ൬𝑧 −

ℎ

4
൰൨ฬ =

= exp ൤−𝛿𝜏ඥ𝑎ଶ + 𝛼ଶcos𝜏 ൬𝜂ଷ −
ℎ

4
൰൨ =

= exp ቂ−𝛿𝜏ඥ𝑎ଶ + 𝛼ଶቃ ≤ exp[−𝛿exp𝜏|𝜂′|],

 

as 

−
గ

ଶ
≤ −𝜏

గ

ସ
≤ 𝜏 ቀ𝜂ଷ −

௛

ସ
ቁ ≤ 𝜏

గ

ଶ
<

௛

ଶ
 and cos𝜏 ቀ𝜂ଷ −

௛

ସ
ቁ ≥ cos𝜏

௛

ସ
≥ 𝛿଴ > 0. 

We denote the corresponding Ψ(𝜂, 𝜁; 𝜆) by Ψା(𝜂, 𝜁; 𝜆). 
As 

cos𝜏 ൬𝜂ଷ −
ℎ

4
൰ ≥ 𝛿଴,    𝜂 ∈ Ωଵ ∪ 𝜕Ωଵ, 

then for fixed 𝜁 ∈ Ωଵ, 𝜂 ∈ Ωଵ ∪ 𝜕Ωଵ , for Ψା(𝜂, 𝜁; 𝜆)  and its derivatives are true 
asymptotic estimates. 
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|Ψା(𝜂, 𝜁; 𝜆)| = O[exp(−𝛿଴exp(𝜏|𝜂′|)],   𝜂 → ∞,   𝜌 < 𝜏 < 2𝜌,

ฬ
డஏశ(ఎ,఍;ఒ)

డఎೕ
ฬ = O[exp(−𝛿଴exp(𝜏|𝜂′|)],   𝜂 → ∞,   𝜌 < 𝜏 < 2𝜌,   𝑗 = 1,2.

ቚ
డஏశ(ఎ,఍;ఒ)

డఎయ
ቚ = O[exp(−𝛿଴exp(𝜏|𝜂′|)],   𝜂 → ∞,   𝜌 < 𝜏 < 2𝜌.

  

Suppose that 𝑊(𝜂) ∈ 𝑆ఘ(Ωଵ), and in the domain Ωଵ the following is true 

|𝑊(𝜂)| ≤ 𝐶exp[exp(2𝜌 − 𝜀)|𝜂′|],   𝜀 > 0. (17)

We choose 𝜏 the inequality 2𝜌 − 𝜀 < 𝜏 < 2𝜌 in Equation (16). 

It is obvious that for the region Ωଵ the condition Equation (16) will be satisfied, then 
therefore the following integral representation is valid 

𝑊(𝜁) = න
డஐభ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,    𝜁 ∈ Ωଵ. (18)

where 

𝐿(𝜂, 𝜁; 𝜆) = (𝐸(Ψା(𝜂, 𝜁; 𝜆)𝑣଴)𝑃∗(𝜕఍))𝑃(𝑡்). 

If 𝑊(𝜂) ∈ 𝑆ఘ(Ωଶ)  in Ωଶ  satisfies (15), then for 2𝜌 − 𝜀 < 𝜏 < 2𝜌  we obtain the 

following 

𝑊(𝜁) = න
డஐమ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,    𝜁 ∈ Ωଶ. (19)

where 

𝐿(𝜂, 𝜁; 𝜆) = (𝐸(Ψି(𝜂, 𝜁; 𝜆)𝑣଴)𝑃∗(𝜕఍))𝑃(𝑡்).  

Here the function Ψି(𝜂, 𝜁; 𝜆)  is represented by formula (6), in which the 

function 𝐾(𝑧) is taken as a function of 𝐾ଶ(𝑧): 

𝐾ଶ(𝑧) = 𝐾(𝑧)exp ൤−𝛿𝑖𝜏(𝑧 − ℎଵ) − 𝛿ଵ𝑖𝜌 ൬𝑧 −
ℎ

2
൰൨, (20)

where 

ℎଵ =
ℎ

2
+

ℎ

4
,   

ℎ

2
< 𝜂ଷ < ℎ,   

ℎ

2
< 𝜁ଷ < ℎଵ,   𝛿 > 0,   𝛿ଵ > 0. 

In these formulas, the integrals (according to Equation (11)) converge uniformly for 

𝛿 ≥ 0, when 𝑊(𝜂) ∈ 𝑆ఘ(Ω). In these formulas we put 𝛿 = 0 and, combining the 

formulas obtained, we find 

𝑊(𝜁) = න
డஐ

𝐿(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,    𝜁 ∈ Ω,    𝜁ଷ ≠
ℎ

2
, (21)

where 

𝐿(𝜂, 𝜁; 𝜆) = ቀ𝐸൫Ψ෩(𝜂, 𝜁; 𝜆)𝑣଴൯𝑃∗൫𝜕఍൯ቁ 𝑃(𝑡்). 

(Note that here the integrals over the cross section 𝜂ଷ =
௛

ଶ
 cancel each other out) 

Here the function Ψ෩(𝜂, 𝜁; 𝜆) will be determined on the basis of Equation (6), and the 

function 𝐾(𝑧)  is determined from Equation (16), where 𝛿 = 0 . Based on the 
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continuation principle, Equation (21) will be true for∀𝜁 ∈ Ω. Taking into account 
condition Equation (18), the integral representation Equation (21) will also be true 

for ∀𝛿ଵ ≥ 0. Assuming 𝛿ଵ = 0, we obtain the complete proof of the theorem. □ 

In the integral representation Equation (6), choosing functions 𝐾(𝑧) and 𝐾(𝜁ଷ) 
as follows: 

𝐾(𝑧) =
1

(𝑧 − 𝜁ଷ + 2ℎ)ଶ
exp(𝜎𝑧),

𝐾(𝜁ଷ) =
1

(2ℎ)ଶ
exp(𝜎𝜁ଷ),    0 < 𝜁ଷ < ℎ,    ℎ =

𝜋

𝜌
,

 (22)

we get 

Ψఙ(𝜂, 𝜁; 𝜆) = −
𝑒ିఙ఍య

𝜋ଶ(2ℎଶ)ିଵ
න

ஶ

଴

Im
exp(𝜎𝑧)

(𝑧 − 𝜁ଷ + 2ℎ)ଶ(𝑧 − 𝜁ଷ)

cos(𝜆𝑎)

√𝑎ଶ + 𝛼ଶ
𝑑𝑎. (23)

Then the integral formula Equation (8) has the following form: 

𝑊(𝜁) = න
డஐ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,   𝜁 ∈ Ω, (24)

where 

𝐿ఙ(𝜂, 𝜁; 𝜆) = 𝐸(Ψఙ(𝜂, 𝜁; 𝜆)𝑣଴)𝑃∗(𝜕఍)(𝑃(𝑡்). 

3. Approximate solution of the Cauchy problem 

Theorem 3. Assume that 𝑊(𝜂) ∈ 𝑆ఘ(𝛺) and the following is true 

|𝑊(𝜂)| ≤ 𝑀,   𝜂 ∈ 𝐷. (25)

If 

𝑊ఙ(𝜁) = න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,   𝜂 ∈ Ω, (26)

then the following estimates are true: 

|𝑊(𝜁) − 𝑊ఙ(𝜁)| ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑀𝑒ିఙ఍య ,   𝜁 ∈ 𝛺, (27)

ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
−

𝜕𝑊ఙ(𝜁)

𝜕𝜁௝
ቤ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑀𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ 𝛺,   𝑗 = 1,2,3. (28)

Where K஡(λ, ζ) represents the bounded functions on compact subsets of the domain 

Ω. 
Proof. To do this, we first estimate Equation (27). Based on the integral 
representation Equation (24), as well as the equality Equation (26), we obtain the 
following  

𝑊(𝜁) = න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ + න
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ =

= 𝑊ఙ(𝜁) + න
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ ,    𝜁 ∈ Ω.
 

Based on Equation (25), we next estimate the following 
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|𝑊(𝜁) − 𝑊ఙ(𝜁)| ≤ ቤන
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎቤ ≤

≤ න
஽

|𝐿ఙ(𝜂, 𝜁; 𝜆)||𝑊(𝜂)|𝑑𝑠ఎ ≤ 𝑀 න
஽

|𝐿ఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ ,   𝜁 ∈ Ω.

 (29)

Next, we estimate the integrals ∫஽
|Ψఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ, ∫஽

ฬ
డஏ഑(ఎ,఍;ఒ)

డఎೕ
ฬ 𝑑𝑠ఎ, 𝑗 = 1,2 and 

∫஽
ቚ

డஏ഑(ఎ,఍;ఒ)

డ఍య
ቚ 𝑑𝑠ఎ on the part 𝐷 of the plane 𝜂ଷ = 0. 

Now separating the imaginary part of equality (23), we finally obtain the following 

Ψఙ(𝜂, 𝜁; 𝜆) =
𝑒ఙ(ఎయି఍య)

𝜋ଶ(2ℎଶ)ିଵ
ቈන

ஶ

଴

ቆ
(−𝛼ଵ

ଶ + 𝛽ଵ
ଶ + 2𝛽ଵ𝛽)cos𝜎𝛼ଵ

(𝛼ଵ
ଶ + 𝛽ଵ

ଶ)ଶ(𝛼ଵ
ଶ + 𝛽ଶ)

+

+
(2𝛼ଵ

ଶ𝛽ଵ + 𝛼ଵ
ଶ𝛽 − 𝛽ଵ

ଶ𝛽)

(𝛼ଵ
ଶ + 𝛽ଵ

ଶ)ଶ(𝛼ଵ
ଶ + 𝛽ଶ)

sin𝜎𝛼ଵ

𝛼ଵ
ቇ cos(𝜆𝑎)𝑑𝑎቉ ,

 (30)

where 

𝛼ଵ
ଶ = 𝑎ଶ + 𝛼ଶ,    𝛽 = 𝜂ଷ − 𝜁ଷ,    𝛽ଵ = 𝜂ଷ − 𝜁ଷ + 2ℎ. 

Then, based on Equation (30), we have 

න
஽

|Ψఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω. (31)

Next, we will use the following equality 

𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜂௝
=

𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝑠

𝜕𝑠

𝜕𝜂௝
= 2(𝜂௝ − 𝜁௝)

𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝑠
,

𝑠 = 𝛼ଶ,   𝑗 = 1,2.

 (32)

Based on Equation (30) and equality Equation (32), we obtain the following 

න
஽

ቤ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜂௝
ቤ 𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω,   𝑗 = 1,2. (33)

Now, we will estimate ∫஽
ቚ

డஏ഑(ఎ,఍;ఒ)

డఎయ
ቚ 𝑑𝑠ఎ. 

And here too, based on Equation (30), we obtain the following 

න
஽

ฬ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜂ଷ
ฬ 𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω, (34)

From inequalities Equation (31), Equations (33) and (34), taking into account 
Equation (29), we finally obtain an estimate Equation (27). 
Now it remains to prove the inequality (28). To do this, we will take the derivatives 

of equalities Equations (24) and (26) with respect to 𝜁௝, (𝑗 = 1,3), and as a result we 

will estimate the following: 
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ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
−

𝜕ఙ𝑊(𝜁)

𝜕𝜁௝
ቤ ≤ ቤන

஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ ≤

≤ න
஽

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ |𝑊(𝜂)|𝑑𝑠ఎ ≤ 𝑀 න

஽

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ 𝑑𝑠ఎ ,

𝜁 ∈ Ω,   𝑗 = 1,3.

 (35)

In order to prove Equation(35), we will evaluate here ∫஽
ฬ

డஏ഑(ఎ,఍;ఒ)

డ఍ೕ
ฬ 𝑑𝑠ఎ, 𝑗 = 1,2 and 

∫஽
ቚ

డஏ഑(ఎ,఍;ఒ)

డ఍య
ቚ 𝑑𝑠ఎ, on the part 𝐷 of the plane 𝜂ଷ = 0. 

In order to evaluate the first integrals, we will use the equality 

𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁ଵ
=

𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝑠

𝜕𝑠

𝜕𝜁௝
= −2(𝜂௝ − 𝜁௝)

𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝑠
,

𝑠 = 𝛼ଶ,   𝑗 = 1,2.

 (36)

Based on equalities Equations (30) and (36), we finally obtain 

න
஽

ቤ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ 𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω,   𝑗 = 1,2. (37)

And now it remains to evaluate the integral ∫஽
ቚ

డஏ഑(ఎ,఍;ఒ)

డ఍య
ቚ 𝑑𝑠ఎ. 

Based on Equation (30), we obtain as a result 

න
஽

ฬ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁ଷ
ฬ 𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω. (38)

From Equations (37) and (38), based on Equation (35), we finally obtain the validity 
of estimate Equation (28). □ 

Corollary 1. For each 𝜁 ∈ 𝛺 the following limit equalities hold: 

lim
ఙ→ஶ

𝑊ఙ(𝜁) = 𝑊(𝜁),   lim
ఙ→ஶ

డௐ഑(఍)

డ఍ೕ
=

డௐ(఍)

డ఍ೕ
,   𝑗 = 1,2,3.  

We define 𝛺ఌ as  

Ωఌ = {(𝜁ଵ, 𝜁ଶ, 𝜁ଷ) ∈ Ω,    𝑎 > 𝜁ଷ ≥ 𝜀,   𝑞 = max
஽

𝜓(𝜁′),    0 < 𝜀 < 𝑞}.  

Here 𝜓(𝜁′) −is a surface. It is easy to see that the set 𝛺ఌ ⊂ 𝛺 is compact. 

Corollary 2. If 𝜁 ∈ 𝛺ఌ, then the families of vector functions {𝑊ఙ(𝜁)} and ൜
డௐ഑(఍)

డ఍ೕ
ൠ 

are satisfied uniformly as σ→∞, i.e.: 

𝑊ఙ(𝜁) ⇉ 𝑊(𝜁),   
𝜕𝑊ఙ(𝜁)

𝜕𝜁௝
⇉

𝜕𝑊(𝜁)

𝜕𝜁௝
,   𝑗 = 1,3. 

We should note separately that the set 𝐸ఌ = Ω\Ωఌ is a boundary layer for this 

problem, as in the theory of singular perturbations, where there is no uniform 
convergence. 

Let us assume that the boundary of the domain Ω belongs to the hyperplane 

𝜂ଷ = 0 and a smooth surface 𝑆, which extends to infinity and lies in the following 
layer: 
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0 < 𝜂ଷ < ℎ,   ℎ =
𝜋

𝜌
,   𝜌 > 0. 

Suppose that the surface Σ (or the curve at 𝑚 = 2) is given by the equation  

𝜂௠ = 𝜓(𝜂′),   𝜂′ ∈ ℝଶ, 

where 𝜓(𝜂′) satisfies the condition  

|𝜓′(𝜂′)| ≤ 𝑀 < ∞,   = 𝑐𝑜𝑛𝑠𝑡. 

We put 

𝑞 = max
஽

 𝜓′(𝜂′),   𝑙 = max
஽

ඥ 1 + 𝜓′ଶ(𝜂′). 

Theorem 4. Let 𝑊(𝜂) ∈ 𝑆ఘ(𝛺) satisfies in the boundary condition Equation (25), 

and on a smooth surface 𝛴 the inequality 

|𝑊(𝜂)| ≤ 𝛿,   0 < 𝛿 < 1. (39)

Then the following estimates will be valid 

|𝑊(𝜁)| ≤ 𝐾_𝜌(𝜆, 𝜁)𝜎𝑀^(1 − 𝜁_3/𝑞) 𝛿^(𝜁_3/𝑞),   𝜎 > 1,   𝜁 ∈ 𝛺. (40)

ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
ቤ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑀

ଵି
఍య
௤ 𝛿

఍య
௤ ,   𝜎 > 1,   𝜁 ∈ Ω,

𝑗 = 1,3.

 (41)

Proof. Let us first evaluate the validity of Equation (40). Based on the integral 
representation Equation (24), we obtain 

𝑊(𝜁) = න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ + න
஽

𝐿ఙ(𝜂, 𝜁; 𝜆))𝑊(𝜂)𝑑𝑠ఎ ,   𝜁 ∈ Ω. (42)

We estimate the following 

|𝑊(𝜁)| ≤ ቤන
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎቤ + ቤන
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎቤ ,   𝜁 ∈ Ω. (43)

Thanks to Equation (39), we first estimate the first integral Equation (43). 

ቤන
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎቤ ≤ න
ஊ

|𝐿ఙ(𝜂, 𝜁; 𝜆)||𝑊(𝜂)|𝑑𝑠ఎ ≤

≤ 𝛿 න
ஊ

|𝐿ఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ ,   𝜁 ∈ Ω.

 (44)

Here we will appreciate ∫ஊ
|Ψఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ ,   ∫ஊ

ฬ
డஏ഑(ఎ,఍;ఒ)

డఎೕ
ฬ 𝑑𝑠ఎ , 𝑗 = 1,2  and 

∫ஊ
ቚ

డஏ഑(ఎ,఍;ఒ)

డఎయ
ቚ 𝑑𝑠ఎ on a Σ. 

Based on equality (30), we obtain the estimate  

න
ஊ

|Ψఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ఙ(௤ି఍య),   𝜎 > 1,   𝜁 ∈ Ω. (45)

And now, to estimate the second integral, based on Equations (30) and (32), we 
obtain, respectively, 
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න
ஊ

ቤ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜂௝
ቤ 𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ఙ(௤ି఍య),   𝜎 > 1,   𝜁 ∈ Ω,   𝑗 = 1,2. (46)

When estimating the integral ∫ஊ
ቚ

డஏ഑(ఎ,఍;ఒ)

డఎయ
ቚ 𝑑𝑠ఎ, we take Equation (30) into account 

and obtain 

න
ஊ

ฬ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜂ଷ
ฬ 𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ఙ(௤ି఍య),   𝜎 > 1,   𝜁 ∈ Ω. (47)

From the obtained estimates Equations (45)–(47), and also on the basis of Equation 
(44), we obtain 

ቤන
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎቤ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝛿𝑒ఙ(௤ି఍య),   𝜎 > 1,   𝜁 ∈ Ω. (48)

The following is known 

ቤන
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎቤ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑀𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω. (49)

Now taking into account Equations (48) and (49) and using Equation (43), we have 

|𝑊(𝜁)| ≤ (𝐾_𝜌(𝜆, 𝜁)𝜎)/2(𝛿𝑒^𝜎𝑞 + 𝑀)𝑒^(−𝜎𝜁_3),   𝜎 > 1,   𝜁 ∈ 𝛺. (50)

Choosing 𝜎 from the equality 

𝜎 =
1

𝑞
ln

𝑀

𝛿
, (51)

we will obtain proof Equation (41).  
Now it remains to prove Equation (41). Here we first find the partial derivative of 

Equation (24) with respect to the variable 𝜁௝, 𝑗 = 1,3: 

𝜕𝑊(𝜁)

𝜕𝜁௝
= න

ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎ + න

஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎ =

=
𝜕𝑊ఙ(𝜁)

𝜕𝜁௝
+ න

஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎ ,   𝜁 ∈ Ω,   𝑗 = 1,3.

 (52)

Where 

𝜕𝑊ఙ(𝜁)

𝜕𝜁௝
= න

ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎ . (53)

We estimate the following 

ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
ቤ ≤ ቤන

ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ +

+ ቤන
஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ ≤ ቤ

𝜕𝑊ఙ(𝜁)

𝜕𝜁௝
ቤ +

+ ቤන
஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ ,    𝜁 ∈ Ω,    𝑗 = 1,3.

 (54)

Based on Equation (40), we will estimate the first integral Equation (54). 
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ቤන
ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ ≤ න

ஊ

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ |𝑊(𝜂)|𝑑𝑠ఎ ≤

≤ 𝛿 න
ஊ

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ 𝑑𝑠ఎ ,    𝜁 ∈ Ω,    𝑗 = 1,3.

 (55)

To prove Equation (55), we estimate the integrals ∫ஊ
ฬ

డஏ഑(ఎ,఍;ఒ)

డ఍ೕ
ฬ 𝑑𝑠௬ , 𝑗 = 1,2 and 

∫ஊ
ቚ

డஏ഑(ఎ,఍;ఒ)

డ఍య
ቚ 𝑑𝑠ఎ on a Σ. 

Based on equalities Equations (30) and (36), we finally obtain 

න
ஊ

ቤ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ 𝑑𝑠ఎ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ఙ(௤ି఍య),    𝜎 > 1,   𝜁 ∈ Ω,   𝑗 = 1,2. (56)

Now let’s move on to estimating ∫ஊ
ቚ

డஏ഑(ఎ,఍;ఒ)

డ఍య
ቚ 𝑑𝑠ఎ. 

Based on Equation (30), we finally obtain 

න
ஊ

ฬ
𝜕Ψఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁ଷ
ฬ 𝑑𝑠௬ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑒ఙ(௤ି఍య),   𝜎 > 1,   𝜁 ∈ Ω, (57)

From the already obtained estimates Equations (56) and (57), and also on the basis of 
Equation (55), we obtain 

ቤන
ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝛿𝑒ఙ(௤ି఍య),   𝜎 > 1,   𝜁 ∈ Ω,

𝑗 = 1,3.

 (58)

We received the following 

ቤන
஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑀𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω,

𝑗 = 1,3.

 (59)

From the estimates obtained above Equations (58)–(59), based on Equation (54), we 
have as a result 

ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
ቤ ≤

𝐾ఘ(𝜆, 𝜁)𝜎

2
(𝛿𝑒ఙ௤ + 𝑀)𝑒ିఙ఍య ,   𝜎 > 1,   𝜁 ∈ Ω,

𝑗 = 1,3.

 (60)

In the last estimate, choosing 𝜎 from Equation (51), we finally obtain the validity of 
Equation (41). □  

Assume that 𝑊(𝜂) ∈ 𝑆ఘ(Ω) is defined on Σ and 𝑓ఋ(𝜂) is its approximation with 

an error 0 < 𝛿 < 1 in this case 

max
ஊ

|𝑊(𝜂) − 𝑓ఋ(𝜂)| ≤ 𝛿. (61)

We put 

𝑊ఙ(ఋ)(𝜁) = න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑓ఋ(𝜂)𝑑𝑠ఎ ,    𝜁 ∈ Ω. (62)

Theorem 5. Let 𝑊(𝜂) ∈ 𝑆ఘ(𝛺)  on the part of the plane 𝜂ଷ = 0  satisfies in the 
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condition Equation (25). 
In this case, the following are true: 

𝑊ఙ(ఋ)(𝜁) = න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑓ఋ(𝜂)𝑑𝑠ఎ ,   𝜁 ∈ Ω. (63)

ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
−

𝜕𝑊ఙ(ఋ)(𝜁)

𝜕𝜁௝
ቤ ≤ 𝐾ఘ(𝜆, 𝜁)𝜎𝑀

ଵି
఍య
௤ 𝛿

఍య
௤ ,   𝜎 > 1,   𝜁 ∈ Ω,

𝑗 = 1,3.

 (64)

Proof. Based on the integral representations Equations (24) and (62), we will have 

𝑊(𝜁) − 𝑊ఙ(ఋ)(𝜁) = න
డஐ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ −

− න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑓ఋ(𝜂)𝑑𝑠ఎ = න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ +

+ න
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ − න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑓ఋ(𝜂)𝑑𝑠ఎ =

= න
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆){𝑊(𝜂) − 𝑓ఋ(𝜂)}𝑑𝑠ఎ + න
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎ .

 

and 

𝜕𝑊(𝜁)

𝜕𝜁௝
−

𝜕𝑊ఙ(ఋ)(𝜁)

𝜕𝜁௝
= න

డஐ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎ −

− න
ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑓ఋ(𝑦)𝑑𝑠௬ = න

ௌ

𝜕𝑁ఙ(𝑦, 𝑥; 𝜆)

𝜕𝑥௝
𝑈(𝑦)𝑑𝑠௬ +

+ න
஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎ − න

ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑓ఋ(𝜂)𝑑𝑠ఎ =

= න
ஊ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝

{𝑊(𝜂) − 𝑓ఋ(𝜂)}𝑑𝑠ఎ + න
஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎ ,

𝑗 = 1,3.

 

Based on Equations (25) and (61), we will further estimate the following: 

ห𝑊(𝜁) − 𝑊ఙ(ఋ)(𝜁)ห = ቤන
ஊ

𝐿ఙ(𝜂, 𝜁; 𝜆){𝑊(𝜂) − 𝑓ఋ(𝜂)}𝑑𝑠ఎቤ +

+ ቤන
஽

𝐿ఙ(𝜂, 𝜁; 𝜆)𝑊(𝜂)𝑑𝑠ఎቤ ≤ න
ஊ

|𝐿ఙ(𝜂, 𝜁; 𝜆)||{𝑊(𝜂) − 𝑓ఋ(𝜂)}|𝑑𝑠ఎ +

+ න
஽

|𝐿ఙ(𝜂, 𝜁; 𝜆)||𝑊(𝜂)|𝑑𝑠ఎ ≤ 𝛿 න
ஊ

|𝐿ఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ +

+𝑀 න
஽

|𝐿ఙ(𝜂, 𝜁; 𝜆)|𝑑𝑠ఎ .

 

and 
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ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
−

𝜕𝑊ఙ(ఋ)(𝜁)

𝜕𝜁௝
ቤ = ቤන

ఙ

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝

{𝑊(𝜂) − 𝑓ఋ(𝜂)}𝑑𝑠ఎቤ +

+ ቤන
஽

𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
𝑊(𝜂)𝑑𝑠ఎቤ ≤ න

ஊ

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ |{𝑊(𝜂) − 𝑓ఋ(𝜂)}|𝑑𝑠ఎ +

+ න
஽

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ |𝑊(𝜂)|𝑑𝑠ఎ ≤ 𝛿 න

ஊ

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ 𝑑𝑠ఎ +

+𝑀 න
஽

ቤ
𝜕𝐿ఙ(𝜂, 𝜁; 𝜆)

𝜕𝜁௝
ቤ 𝑑𝑠ఎ ,    𝑗 = 1,3.

 

To prove this theorem, we will use the already known results of Theorems 3 and 4. 

ห𝑊(𝜁) − 𝑊ఙ(ఋ)(𝜁)ห ≤
𝐾ఘ(𝜆, 𝜁)𝜎

2
(𝛿𝑒ఙ௤ + 𝑀)𝑒ିఙ఍య . 

ቤ
𝜕𝑊(𝜁)

𝜕𝜁௝
−

𝑊ఙ(ఋ)(𝜁)

𝜕𝜁௝
ቤ ≤

𝐾ఘ(𝜆, 𝜁)𝜎

2
(𝛿𝑒ఙ௤ + 𝑀)𝑒ିఙ఍య ,   𝑗 = 1,3. 

In the last estimates, choosing σ from Equation (51), we will fully prove the validity 
of estimates Equations (63) and (64). □ 

Corollary 3. For each 𝜁 ∈ 𝛺 the following corresponding limit equalities hold: 

lim
ఋ→଴

𝑊ఙ(ఋ)(𝜁) = 𝑊(𝜁),    lim
ఋ→଴

𝜕𝑊ఙ(ఋ)(𝜁)

𝜕𝜁௝
=

𝜕𝑊(𝜁)

𝜕𝜁௝
,   𝑗 = 1,3. 

Corollary 4. If 𝜁 ∈ 𝛺ఌ, then the families of functions ൛𝑊ఙ(ఋ)(𝜁)ൟ and ൜
డௐ഑(ഃ)(఍)

డ఍ೕ
ൠ are 

convergent uniformly for 𝛿 → 0, i.e.: 

𝑊ఙ(ఋ)(𝜁) ⇉ 𝑊(𝜁),   
𝜕𝑊ఙ(ఋ)(𝜁)

𝜕𝜁௝
⇉

𝜕𝑊(𝜁)

𝜕𝜁௝
,   𝑗 = 1,3. 

4. Conclusions 

In this paper, we have found an approximate solution to the problem based on 
the properties of the Carleman matrix. If the Carleman matrix is known, then it is no 
longer difficult to find a regularized solution in explicit form. In this case, we have 
that the solution to the problem exists and is continuously differentiable in a closed 
region with exactly specified Cauchy data. 

We note that for solving applicable problems, the approximate values of 𝑊(𝜁) 

and 
డௐ(఍)

డ఍ೕ
, 𝜁 ∈ Ω, 𝑗 = 1,3 should be found. 

As a result, we constructed a family of vector functions 𝑊(𝜁, 𝑓ఋ) = 𝑊ఙ(ఋ)(𝜁) 

and 
డ௪(఍,௙ഃ)

డ఍ೕ
=

డௐ഑(ഃ)(఍)

డ఍ೕ
, 𝑗 = 1,3 , which depend on the parameter 𝜎 . It is 

additionally proved that under specific conditions and a special choice of the 

parameter 𝜎 = 𝜎(𝛿), at 𝛿 → 0, the family 𝑊ఙ(ఋ)(𝜁) and 
డௐ഑(ഃ)(఍)

డ఍ೕ
 are convergent to a 

solution 𝑊(𝜁)  and its derivative 
డௐ(఍)

డ఍ೕ
, 𝜁 ∈ Ω  at point 𝜁 ∈ Ω . Here we will call 

𝑊ఙ(ఋ)(𝜁) and 
డௐ഑(ഃ)(఍)

డ఍ೕ
 the regularized solution of the problems Equations (1) and 
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