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Abstract: Activation functions assume a crucial role in elucidating the intricacies of training 

dynamics and the overall performance of neural networks. Despite its simplicity and 

effectiveness, the ubiquitously embraced ReLU activation function harbors certain drawbacks, 

notably the predicament recognized as the “Dying ReLU” issue. To address such challenges, 

we propose the introduction of a pioneering activation function, the modified scaled 

exponential linear unit (M-SELU). Drawing from an array of experiments conducted across 

diverse computer vision tasks employing cutting-edge architectures, it becomes apparent that 

M-SELU exhibits superior performance compared to ReLU (used as the baseline) and various 

other activation functions. The simplicity of the proposed activation function (M-SELU) makes 

this solution particularly suitable for multi-layered deep neural architecture, including 

applications in CNN, CIFAR-10, and the broader field of deep learning. 

Keywords: activation functions; CNN; CIFAR-10; deep learning; modified scaled exponential 

linear unit (M-SELU) 

1. Introduction 

Deep learning [1], which falls under the umbrella of machine learning [2], has 
proven to be highly successful across diverse applications [3]. These tasks encompass 
recognizing images and speech, handling natural language processing [4], conducting 
medical diagnoses [5], and engaging in strategic game playing [6]. The power of deep 
neural networks [7], a fundamental element of deep learning, lies in their ability to 
independently grasp intricate structures and patterns from data. This capability has 
established deep learning as a formidable tool within the realm of artificial 
intelligence. Key components in deep learning include neural networks, activation 
functions [8], back propagation, forward propagation, convolution neural networks 
(CNNs) [9–12] recurrent neural networks (RNNs) [13,14]. 

In the sphere of neural networks and deep learning, an activation function 
constitutes a mathematical operation systematically imposed upon the output of each 

individual neuron within a given layer. The infusion of non-linearity [15–17] serves 

the pivotal purpose of endowing the network with the capacity to assimilate and 
approximate intricate mappings derived from inputs to outputs. At its core, the 
operational sequence involves neurons receiving a multitude of inputs, undergoing a 
process of weighted summation [18], and subsequently subjecting this aggregate to an 
activation function to yield the neuron’s output. The crux of the activation function 
[19,20] resides in its discerning role—deciding whether a neuron merits activation, 
signifying the consequentiality of its output for subsequent layers, or whether it should 

remain in a quiescent state [21–23]. 
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In the context of linear models within neural networks, the process involves 
mapping input functions to output through an affine transformation in the hidden 
layers, typically before making final predictions for class scores. The neural networks 
generate linear results from this mapping, and the need for an activation function 
arises. Activation functions are crucial to convert these linear outputs into non-linear 
ones, facilitating the learning of intricate patterns in the data. The non-linear output, 
following the application of the activation function, is expressed as: 

𝑦 = 𝜎 ൭෍ 𝑤௜𝑥௜ + 𝑏

௡

௜ୀଵ

൱ (1)

here, σ in Equation (1) represents the activation function used 𝑤௜ are the weights, and 

𝑥௜ are the input features. Thus, the activation function emerges as an indispensable 
constituent [24], conferring upon the neural network the agility to navigate and 
comprehend intricate patterns and relationships inherent in the data. This renders the 
network proficient in addressing multifaceted tasks such as image recognition [25,26], 
language comprehension [27], or predictive analysis based on intricate datasets. In 
summary, the selection of an appropriate activation function emerges as a decisive 
factor [28], wielding substantial influence over the neural network’s performance 
across a spectrum of tasks [29,30]. 

 
Figure 1. Graph of different activation functions. 

Although the pre-existing activation functions represented in Figure 1 play a 
crucial role in improving the accuracy of computer vision tasks [31–34], there were 
certain challenges and limitations with them as well. The vanishing gradient problem 
[35–37] is closely related to the choice of activation functions in neural networks. This 
problem arises during the training process when the gradients of the loss function with 
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respect to the parameters (weights) become very small, approaching zero [38,39]. As 
a result, the network has difficulty learning, and the weights may not be updated 
effectively during backpropagation. The choice of activation functions plays a 
significant role [40] in the occurrence of the vanishing gradient problem [41,42]. 
ReLU [43] does not suffer from the vanishing gradient problem to the same extent as 
sigmoid or Tanh. However, ReLU has its own challenges, such as the “Dying ReLU” 
problem [43,44] where neurons can become inactive during training. Sigmoid and 
hyperbolic tangent activation functions compress input values within specific ranges 
(0 to 1 for sigmoid and −1 to 1 for hyperbolic tangent) [45]. When dealing with notably 
positive or negative inputs, the gradients of these functions tend to diminish, 
approaching zero. In the case of ReLU, when the input to a neuron becomes negative, 
the output is zero, and the neuron’s weights may no longer receive updates during 
backpropagation if the gradient is consistently zero. This can happen in scenarios 
where a large gradient flows through a ReLU unit, causing the weights to be updated 
in such a way that the neuron always produces a negative output [46]. In such cases, 
M-SELU is very helpful and stable to use. 

The Modified Scaled Exponential Linear Unit, or M-SELU, is a function that was 
created to overcome the drawbacks of more conventional activation functions such as 
ReLU, particularly with respect to negative input values. For negative inputs in ReLU, 
the gradient during backpropagation becomes 0, halting weight updates and resulting 
in neuronal death. This problem is solved by M-SELU. M-SELU produces tiny, non-
zero values in contrast to ReLU, which outputs zero for negative inputs. This 
guarantees that neurons stay active and keep updating their weights throughout 
backpropagation. This prevents neurons from being dormant, which is a significant 
flaw in ReLU. 

In addition, M-SELU modifies both positive and negative inputs to keep the 
gradient flow in the network constant. Particularly in deep networks, this enhanced 
stability greatly lowers the probability of vanishing gradients. The non-linear 
transformations of M-SELU assist in maintaining the dynamic range of activations in 
situations when ReLU frequently fails, leading to more efficient training and quicker 
convergence. 

M-SELU provides superior performance and versatility over SELU. Although 
SELU works well for vanishing gradients, M-SELU adds a scaling parameter that 
allows for more precise control over the handling of negative inputs, improving 
adaptability and hastening convergence in intricate designs. Because of this, M-SELU 
is a more useful activation function in some deep learning applications. 

In order to have a better understanding of the behavior of the M-SELU activation 
function, we examine the feature maps produced by various beta (β) values in this 
work. Previous research has demonstrated that feature map visualization, especially 
when utilizing modified activation functions, can offer important insights into how 
neural networks represent and process information. For example, Zeiler and Fergus 
[47] showed that one can gain a better grasp of the hierarchical structure of learned 
features in convolutional neural networks by viewing feature maps. Furthermore, the 
influence of parameters like β values on feature extraction and network performance 
has been investigated in studies such as Springenberg et al. [48]. Specifically with 
negative inputs, the β values in M-SELU refine the behavior of the activation function, 
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resulting in discernible modifications in feature maps [49]. The goal of this research 
is to determine if changing β values improves network performance and feature map 
variety. 

2. The modified scaled exponential linear unit 

Our Proposed Activation function which is named as Modified Scaled 
Exponential Linear Unit is defined as: 

𝑓(𝑥) = ൝
α൫𝑒ఉ௫ − 1൯      𝑥 < 0

 
𝛼𝑥                      𝑥 ≥ 0

 (2)

With two parameters 𝛼 and 𝛽 where 𝛼 = 1 and 𝛽 = 0.25, 0.5, 0.75,1 etc. 
Activation functions in deep learning architectures are expected to have features 

such as being non-linear, reaching the global optimum without being stuck in the local 
optimum. Clearly, the proposed activation function satisfies these properties. The 
visual depiction of the M-SELU can be observed in Figure 2. 

 
Figure 2. Graph of piecewise function for different values of β. 

3. Delving into the architectural complexity of CNNs 

CNNs stand out as a specialized category within deep neural networks crafted to 
interpret and process visual information, including images and videos. They wield 
remarkable prowess in endeavors such as recognizing images, detecting objects, and 
classifying images. This makes CNNs especially well-suited for navigating the 
intricate details of visual data, unraveling patterns, and making sense of the content 
within images or video frames. 

The CIFAR-10 dataset serves as a widely recognized benchmark in the realm of 
computer vision. Its name is derived from the Canadian Institute for Advanced 
Research (CIFAR), the organization responsible for its curation. Comprising 60,000 
color images, each measuring 32 × 32 pixels, the dataset encompasses a diverse array 
of visuals distributed across 10 distinct classes. Within each category, there are 6000 
images, creating a comprehensive and balanced collection. This dataset is extensively 
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used to evaluate and compare the performance of various machine learning models, 
particularly in the domain of image classification. 

The architecture is delineated as follows: 
To extract and improve features from input photos, we use a sequence of 

convolutional layers in our Convolutional Neural Network (CNN) architecture, 
followed by max pooling layers. 

Conv2d_1 uses a stride of (1, 1) and a filter size of (3, 3) to collect mid-level 
characteristics like limb structures and fur texture. This layer serves as the basis for 
feature extraction by emphasizing the important structures and patterns present in the 
image. Then, with the same filter size of (3, 3) and stride of (1, 1), the conv2d_2, 
conv2d_3, and conv2d_4 layers go deeper into the picture. These layers are intended 
to capture more minute details and complex patterns, which are essential for 
identifying small differences such as variances in facial features, stance, and fur 
patterns. 

Max pooling layers are positioned after each convolutional layer to improve 
feature extraction by down sampling feature maps and highlighting important features 
while lowering spatial dimensions. Accuracy and feature recognition are enhanced as 
a result. 

In the end, the network consists of dense layers that include the features that have 
been learned from earlier levels. This allows the network to make precise predictions, 
like categorizing dog photos according to intricate patterns. With the help of this 
architectural strategy, the CNN can efficiently examine intricate patterns in photos, 
producing precise classifications and high-performance forecasts. 

4. Experimental configuration 

This study focuses on the CIFAR-10 dataset, characterized by precise input 
dimensions of 32 × 32 × 3. The key investigation revolves around the intentional 
adoption of the M-SELU activation function as the primary activation paradigm. The 
architectural framework employed is comprehensive, consisting of a total of 10 layers 
that incorporate convolutional, max-pooling, flattening, and dense layers. Within the 
dense layers, soft max is elegantly chosen as the activation function. Optimization is 
executed through the adaptive moment estimation (Adam) algorithm [50], with stride 
values meticulously configured at a rate of 1 × 1. The selected loss function for this 
context is Sparse Categorical Cross-Entropy. To maintain uniformity throughout the 
tests, we employed a batch size of 32 for all training sessions in our experimental 
setup. Using the Adam optimizer, which dynamically adjusts to the dataset and offers 
consistent training results, the learning rate was set at 0.001. We used the Glorot 
Uniform initialization method for weights, which helps maintain gradient variation 
across network layers and facilitates effective training. Every experiment was run once 
to compare performance, using various activation functions. Even though the 
outcomes shown here are for a single run, conducting many runs can improve 
statistical reliability. 

The algorithm’s training regimen spans a carefully chosen interval of 20 epochs. 
Experimental results are thoughtfully presented through a dual approach, featuring 
both tabular formats and graphical visualizations. 



Mathematics and Systems Science 2024, 2(2), 2870.  

6 

5. Discussion and results 

We conducted an experiment utilizing the CIFAR-10 dataset. The focal point of 
our study was the activation function we introduced, known as M-SELU. In the 
forthcoming discussion, we will dig into the details of the experiment and analyze the 
results. The configuration contributed to the refinement of the model’s parameters and 
its overall performance during the training phase. It is worth emphasizing that the 
network consistently demonstrated improvements in accuracy during the entire 
training process, and this enhancement can be attributed to the utilization of the 
proposed activation function, M-SELU. 

5.1. Feature map visualization 

In this implementation, the initial stages of the network employ a max pooling 
operation with a size of (2, 2) and a stride of 2 for the first two convolutional layers. 
The purpose of this approach is to conduct feature extraction in a hierarchical manner 
within the convolutional layers of the network. The next figures illustrate the resulting 
feature maps from various layers within the constructed CNN architecture. 

 
Figure 3. Flowchart diagram on CNN architecture. 

Hence, the above Figure 3 shows that creating a convolutional neural network 
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(CNN) experimentally involves defining the layer names, specifying the number of 
filters in each convolutional layer, and determining the output dimensions of the 
feature maps produced by each convolutional layer. Figure 4 shows that in the neural 
network’s initial convolutional layer, conv2d, 32 filters with a specified size and stride 
detect fundamental dog features, emphasizing the overall shape, body contour, and tail 
structure. Leveraging M-SELU as the activation function, this layer captures essential 
visual cues indicative of basic dog features. In Figure 5, a consistent behavior is 
observed across layers for β = 0.5, reminiscent of the described neural network 
architecture. The initial convolutional layer focuses on foundational dog features, with 
subsequent layers discerning increasingly complex patterns. Max pooling layers 
strategically placed contribute to a hierarchical representation, akin to the designed 
network structure. From Figures 6 and 7, we can see a similar pattern to the described 
neural network setup, especially when β is set to 0.75 and 1.0, respectively. The layers 
consistently pick up different levels of details in the images, following a comparable 
structure to the network’s design. 

Figure 4. When a dog image is input into the visualization model, the subsequent figures depict the visualization of 
feature maps from diverse layers of the CNN (β = 0.25). 



Mathematics and Systems Science 2024, 2(2), 2870.  

8 

 

Figure 5. When a dog image is input into the visualization model, the subsequent figures depict the visualization of 
feature maps from diverse layers of the CNN (β = 0.5). 
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Figure 6. When a dog image is input into the visualization model, the subsequent figures depict the visualization of 
feature maps from diverse layers of the CNN (β = 0.75). 
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Figure 7. When a dog image is input into the visualization model, the subsequent figures depict the visualization of 
feature maps from diverse layers of the CNN (β = 1.0). 

Now, we will delve into the discussion of results obtained with varying values of 
β. 

The tables presented above offer a comprehensive overview of the results 
achieved with different values of β. This organized presentation facilitates a clear and 
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concise analysis, allowing us to discern the impact of varying β values on the observed 
outcomes. We will now proceed to illustrate the findings graphically, providing a 
visual representation of the trends observed with different β values. These graphs will 
offer a more intuitive understanding of the model’s performance dynamics. 

The tables unequivocally demonstrate that the accuracy of M-SELU is markedly 
superior to that of SELU, showcasing not only its robust performance but also 
establishing it as a standout choice among the mentioned activation functions. 

Table 1 and Figure 8a reveal that, with a β value of 0.25, the accuracy of the M-
SELU activation function reaches 94.25%, surpassing SELU, ReLU, ELU, and Tanh. 
Furthermore, Figure 4 presents the visualization of feature maps. Likewise, Table 2 
and Figure 9a demonstrate that when utilizing a β value of 0.5, the M-SELU activation 
function achieves an accuracy of 94.31%, outperforming SELU, ReLU, ELU, and 
Tanh. Additionally, Figure 5 showcases the visualization of feature maps. In a similar 
fashion, as depicted in Table 3 and Figure 10a, the M-SELU activation function 
achieves an accuracy of 93.74% when employing a β value of 0.75, outperforming 
SELU, ReLU, ELU, and Tanh. Additionally, Figure 6 provides a visual representation 
of the feature maps. As indicated by the data in Table 4 and the visual depiction in 
Figure 11a, the M-SELU activation function achieves an accuracy of 93.54% when 
employing a β value of 1.0. This performance surpasses that of other activation 
functions. Additionally, Figure 7 provides an insight into the visual representation of 
feature maps. This notable superiority underscores the effectiveness of M-SELU in 
the context of the experiment, highlighting its potential as a preferred activation 
function for similar applications. Among the various β values considered, the highest 
accuracy was achieved when utilizing a β value of 0.5, and the training loss in this 
case is 0.1750, as it can be seen in Figure 9b. 

Table 1. It illustrates the training and validation accuracy of M-SELU and 
alternative activation functions, specifically when β is configured to 0.25 within the 
M-SELU framework. 

Activation Function Training Accuracy (%) Validation Accuracy (%) 

M-SELU 94.31 72.54 

Tanh 91.66 70.15 

SELU 89.14 68.46 

ELU 93.32 69.43 

RELU 90.03 71.80 

Table 2. It illustrates the training and validation accuracy of M-SELU and 
alternative activation functions, specifically when β is configured to 0.5 within the 
M-SELU framework. 

Activation Function Training Accuracy (%) Validation Accuracy (%) 

M-SELU 94.25 71.79 

Tanh 91.66 70.15 

SELU 89.58 67.47 

ELU 92.91 69.73 

RELU 90.85 71.53 
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Table 3. It illustrates the training and validation accuracy of M-SELU and 
alternative activation functions, specifically when β is configured to 0.75 within the 
M-SELU framework. 

Activation Function Training Accuracy (%) Validation Accuracy (%) 

M-SELU 93.74 70.17 

Tanh 91.30 69.42 

SELU 89.50 68.84 

ELU 93.52 70.16 

RELU 90.24 71.42 

Table 4. It illustrates the training and validation accuracy of M-SELU and 
alternative activation functions, specifically when β is configured to 1.0 within the 
M-SELU framework. 

Activation Function Training Accuracy (%) Validation Accuracy (%) 

M-SELU 93.54 70.17 

Tanh 91.29 69.42 

SELU 89.21 68.84 

ELU 93.52 70.16 

RELU 90.24 71.42 

  
(a) (b) 

Figure 8. Training accuracy and loss at β is 0.25 (a) Depicting the comparison of training accuracy when the value of 
β is 0.25; (b) depicting the comparison of training loss when the value assigned to β is 0.25. 
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(a) (b) 

Figure 9. Training accuracy and loss at β is 0.5 (a) Depicting the comparison of training accuracy when the value of β 
is 0.5; (b) depicting the comparison of training loss when the value assigned to β is 0.5. 

  
(a) (b) 

Figure 10. Training accuracy and loss at β is 0.75 (a) Depicting the comparison of training accuracy when the value 
of β is 0.75; (b) depicting the comparison of training loss when the value assigned to β is 0.75. 
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(a) (b) 

Figure 11. Training accuracy and loss at β is 1 (a) Depicting the comparison of training accuracy when the value of β 
is 1; (b) depicting the comparison of training loss when the value assigned to β is 1. 

The visual representation below supplements the outcomes elucidated in the 
previously mentioned tables. 

Figure 12 illustrates the comprehensive performance of M-SELU using a 
graphical representation. Moreover, the presented graph in Figure 13 illustrates the 
relationship between training loss and β values for the M-SELU activation function. 
The x-axis represents different β values, while the y-axis depicts the corresponding 
training loss values. 

 
Figure 12. Composite performance of M-SELU through a graphical representation. 
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Figure 13. Illustration of training loss of M-SELU for different values of β. 

5.2. Conclusion 

In this paper, we introduce a novel activation function termed M-SELU, formally 
presented in Section 2, Equation (2). The focus of our study centers on evaluating the 
efficacy of M-SELU in image classification tasks. Utilizing the CIFAR-10 dataset, our 
CNN incorporating M-SELU across its layers demonstrates promising results when 
compared to SELU, ReLU, and other activation functions. Notably, with various 
values of β, our approach achieves state-of-the-art performance, particularly excelling 
with β = 0.5. The training accuracy exhibits a significant improvement of 3.46% over 
ReLU and 4.9% over SELU. Furthermore, validation accuracy also experiences 
enhancements. Additionally, the introduced M-SELU activation function addresses 
the common issue of the “dying ReLU” problem, further enhancing its potential 
impact on model performance in image classification tasks. Future research efforts 
might look at the implementation of this new activation function in more complex 
models, which could potentially produce novel state-of-the-art outcomes spanning 
various datasets. To assess the activation function’s performance on a broader variety 
of tasks and datasets, such as various image recognition challenges, tasks involving 
natural language processing, and other domains in which activation functions are 
crucial, it could be specifically applied to more intricate neural network architectures. 
Furthermore, this work can be effectively applied to other areas, such as [50]. 
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