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type of shifted Legendre basis for finding a semi-analytic solution to the Liouville-Caputo 

fractional boundary value problem. The algorithm’s main goal is to transform the fractional 

differential problem into a linear system with efficiently invertible, well-structured matrices. 
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1. Introduction 

The fractional calculus (FC) began almost three centuries ago. Recently, FC has 
played a vital part in a variety of scientific fields. FC has been considered one of the 
most effective methods for describing long-memory processes. Mathematicians, as 
well as physicists and engineers, are interested in fractional-order models. Research in 
fractional calculus has developed over the past ten years as it has been shown to give 
the necessary tools for diffusion and simulating anomalous transport. These models 
may explain granular and porous flows, transport in fusion plasmas, and biological 
activities. We take the motion of a nanoparticle in the air as an example, which is 
stochastic and challenging to model using a traditional differential equation. On the 
other hand, if the air is viewed as a fractal space on the scale of a molecule, then the 
nanoparticle’s motion is predictable and may be described using a fractal-fractional 
model. Therefore, for a porous media, we need two scales: one substantial enough to 
maintain the continuum hypothesis and one narrow sufficient to measure porosity [1]. 
Another example seems to be the Moon’s periodic motion, but it becomes stochastic 
when measured at very long distances; in this case, the Heisenberg-like uncertainty 
principle applies [2]. 

Legendre and shifted Legendre polynomials have developed as an extremely 
effective approximation for numerical analysis with orthogonality restrictions. For the 
effectiveness of these polynomials’ accuracy, authors used Legendre polynomials in 

many of their research like these papers [3–5]. 

Spectral methods are becoming increasingly important in a variety of applied 
sciences. These methods approximate the solution of a fractional differential equation, 
that’s frequently orthogonal, using a linear combination of specific polynomials. 
When in comparison with finite-difference techniques, these methods offer numerous 
benefits. While spectral methods are worldwide, finite-difference methods can be 
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obtained by employing a local polynomial interpolant to approximate a function and 
its derivatives. When several decimal places of accuracy are needed for solutions in 
chemical and physical applications, it is desirable to use spectral methods since they 
can yield an exponential convergence of the results. The studies [6–10] for a few 
significant uses of spectral techniques. 

Bagley-Torvik equation finds wide-ranging applications in science and 
engineering fields [11–14]. The physical implications of the Bagley-Torvik equation 
for describing viscoelastic materials and simulating the fluid mechanics mechanism 
have drawn a great deal of interest from researchers. An abundance of effective 
methods has been devised to solve the Bagley-Torvik problem. For instance, the 
analytic approach for a generalized Bagley-Torvik problem through the Prabhakar and 
Wiman functions was explored in [15], along with a discussion of the solution’s 
existence and uniqueness findings. The Adomian decomposition technique for a 
Bagley-Torvik equation was employed by the authors in [16]. Also, for the numerical 
solutions of a Bagley-Torvik equation, the wavelet, generalized Bessel polynomial, 
and Galerkin Gegenbauer expansion in conjunction with operational matrices were 

used in [17–21]. 

In this research, we are interested in finding a semi-analytic solution for the 
Liouville-Caputo fractional Bagley-Torvik differential problem: 

𝜐ᇱᇱ(𝜀) + 𝜌 𝐷ఊ  𝜐(𝜀) + 𝜎 𝜐(𝜀) = 𝑔(𝜀), 0 ⩽ 𝜀 ⩽ 1, 1 < 𝛾 < 2, (1)

where 𝜌 and 𝜎 are real constants and 𝑔(𝜀) is given continuous function. Applying 
the following non-homogeneous boundary conditions 

𝜐(0) = 𝛼, 𝜐(1) = 𝛽. (2)

The general structure of the article is as next: In Sect. 2, Liouville-Caputo 
fractional calculus is discussed in depth along with their fundamental relations. Basic 
relations for shifted Legendre polynomials have existed in Sect. 3. Section 4 describes 
how we created the basis for the shifted Legendre polynomials. The operational matrix 
with shifted Legendre polynomials, found in Sect. 5, is used to solve fractional Bagley-
Torvik problems. Sect. 6 investigates the shifted Legendre expansion’s error 
evaluation. Section 7 provides three numerical examples to demonstrate the suggested 
method’s effectiveness and applicability. In Section 8, we introduce some concluding 
observations. 

2. Some essential properties of Liouville-Caputo fractional calculus 

The objective of this section is to provide some background information and 
essential definitions for Liouville-Caputo fractional calculus theory. 

Definition 1. In any function 𝜁(𝜀) specified on [𝑎, 𝑏], 𝛾 > 0, 𝑛 = ⌈𝛾⌉, and 𝜀 > 0. 
The following are the definitions of the right and left-handed Liouville-Caputo 
fractional order derivatives: 

 ௔
஼𝐷ఌ

ఊ
𝜁(𝜀) =

1

Γ(𝑛 − 𝛾)
න

ఌ

௔

𝜁(௡)(𝜏)

(𝜀 − 𝜏)ଵି௡ାఊ
𝑑𝜏, (3)

 ఌ
஼𝐷௕

ఊ
 𝜁(𝜀) =

1

Γ(𝑛 − 𝛾)
න

௕

ఌ

(−1)௡𝜁(௡)(𝜏)

(𝜏 − 𝜀)ଵି௡ାఊ
𝑑𝜏, (4)

where 𝑛 ∈ ℕ. 

Not to be overlooked, the operator ஼𝐷ఊ meets the following basic properties: 
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 ஼𝐷ఊ𝑐 =஼ 𝐷ఊ𝜀 = 0, 𝑐: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (5)

 ஼𝐷ఊ𝐼ఊ𝜁(𝜀) = 𝜁(𝜀), (6)

 ஼𝐷ఊ𝜀௤ =
Γ(𝑞 + 1)

Γ(𝑞 − 𝛾 + 1)
 𝜀௤ିఊ , 𝑞 ∈ ℕ, 𝑞 ≥ ⌈𝛾⌉, (7)

𝐼ఊ  ஼𝐷ఊ𝜁(𝜀) = 𝜁(𝜀) − ෍

௠ିଵ

௤ୀ଴

𝜁(௤)(0ା)

𝑞!
(𝜀 − 𝑎)௤ , 𝜀 > 0. (8)

For several more  extra properties of fractional integrals and derivatives, see [22]. 
In the Fractional Bagley-Torvik differential Equations (1) and (2), the non-

homogeneous boundary conditions are converted to homogeneous using the following 
relation [23] 

𝜐(𝜀) = 𝑢(𝜀) + 𝛼(1 − 𝜀) + 𝛽𝜀, (9)

the second derivative of 𝜐(𝜀) is 
𝜐ᇱᇱ(𝜀) = 𝑢ᇱᇱ(𝜀), (10)

and the fractional of order 𝛾 Liouville-Caputo derivative 𝜐(𝜀) is 
𝐷ఊ𝜐(𝜀) = 𝐷ఊ𝑢(𝜀), (11)

we substitute (10) and (11) in (1), then an Equation (1) and non-homogeneous 
boundary conditions (9) become as the following 

𝑢ᇱᇱ(𝜀) + 𝜌𝐷ఊ𝑢(𝜀) + 𝜎𝑢(𝜀) = 𝑓(𝜀), 𝑢(0) = 0, 𝑢(1) = 0, (12)

where 𝑓(𝜀) is provided by 

𝑓(𝜀) = 𝑔(𝜀) − 𝜎(𝛼(1 − 𝜀) + 𝛽𝜀). (13)

3. Fundamental properties of the shifted Legendre polynomials 

The standard Legendre polynomials 𝜔௞(𝜀);  −1 ≤ 𝜀 ≤ 1  create a full 

orthogonal system for 𝐿௪
ଶ [−1,1] with the weight function 𝑤(𝜀) = 1. Furthermore, 

these polynomials meet the following orthogonality condition 

න
ଵ

ିଵ

𝜔௠(𝜀)𝜔௡(𝜀)𝑑𝜀 = ൝

0, 𝑚 ≠ 𝑛,
2

1 + 2𝑛
, 𝑚 = 𝑛.

 (14)

Rodrigues’ formula Legendre polynomials is supplied by 

𝜔௡(𝜀) =
2ି௡

𝑛!

𝑑௡

𝑑 𝜀௡
(𝜀ଶ − 1)௡, (15)

where 𝜓௞(𝜀) refers to shifted Legendre polynomials formed on the interval [0,1] as: 

𝜓௞(𝜀) = 𝜔௞(2𝜀 − 1). (16)

The shifted Legendre polynomials create a full orthogonal system for 𝐿ଶ[0,1]. 
They display a subsequent orthogonality relation 

න
ଵ

଴

𝜓௜(𝜀)𝜓௞(𝜀)𝑑𝜀 = ൝
0, 𝑘 ≠ 𝑖,

1

1 + 2𝑘
, 𝑘 = 𝑖,

 (17)

and they have an analytic formulation (see to [24]) 

𝜓௞(𝜀) = ෍

௞

௜ୀ଴

(−1)௜ା௞(𝑘 + 𝑖)!

(𝑖!)ଶ(𝑘 − 𝑖)!
𝜀௜ . (18)

For a function 𝑔(𝜀) ∈ 𝐿ଶ[0,1], 𝑔(𝜀) could be expanded in terms of the shifted 

Legendre basis that follows: 

𝑔(𝜀) = ∑ஶ
௞ୀ଴ 𝑎௞𝜓௞(𝜀), (19)
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where, 

𝑎௞ = (2𝑘 + 1) න
ଵ

଴

𝑔(𝜀)𝜓௞(𝜀)𝑑𝜀. (20)

Typically, just the first (𝑀 + 1) -terms with the shifted Legendre polynomials are 
looked at. So, we have 

𝑔(𝜀) ≈ 𝑔ெ(𝜀) = ෍

ெ

௞ୀ଴

𝑎௞  𝜓௞(𝜀). (21)

For more properties of Legendre polynomials see, for example [24]. 

4. Choice of basis 

This section chooses a set of orthogonal polynomials that satisfies non-
homogeneous boundary conditions (2). We create the next approximate solution 

𝜐ெ(𝜀) 

𝜐(𝜀) ≈ 𝜐ெ(𝜀) = ෍

ெ

௞ୀ଴

𝑎௞𝜙௞(𝜀);  𝑎 = [𝑎଴, 𝑎ଵ, … , 𝑎ெ]் 

and 

𝛟(𝜀) = [𝜙଴(𝜀), 𝜙ଵ(𝜀), … , 𝜙ெ(𝜀)]் , (22)

where, 

𝜙௞(𝜀) = 𝜓௞ାଶ(𝜀) − 𝜓௞(𝜀); 𝑘 = 0,1, ⋯ 𝑀. (23)

Since 𝜓௞(0) = (−1)௞ and 𝜓௞(1) = 1, we conclude that 

𝜙௞(0) = 𝜙௞(1) = 0. (24)

In the study [25], the authors recommended the basis (23), this basis is orthogonal 

with the wight function 𝑤(𝜀) = (𝜀 − 𝜀ଶ)ିଵ, in other words, 

න
ଵ

଴

𝜙௜(𝜀) 𝜙௝(𝜀) 𝑤(𝜀) 𝑑𝜀 = ቐ

0, 𝑗 ≠ 𝑖,
4(2𝑖 + 3)

(𝑖 + 1)(𝑖 + 2)
, 𝑗 = 𝑖.

 (25)

5. Legendre-Galerkin method for solving Liouville-Caputo 
fractional BVPs 

For the weight function 𝑤(𝜀) = (𝜀 − 𝜀ଶ)ିଵ, let 𝑄ெ = 𝑠𝑝𝑎𝑛{𝜙௞(𝜀): 𝑘 =

0,1, ⋯ , 𝑀}. The Galerkin approximation of (1) is given by 

(𝜐ெ
ᇱᇱ , 𝑞)௪ + 𝜌(𝐷ఊ 𝜐ெ, 𝑞)௪ + 𝜎(𝜐ெ , 𝑞)௪ = (𝑔, 𝑞)௪; ∀𝑞 ∈ 𝑄ெ . (26)

Let us denote 

𝑠௜,௝ = (𝜙௜
ᇱᇱ, 𝜙௝)௪ , 𝑦௜,௝ = (𝐷ఊ  𝜙௜, 𝜙௝)௪ , 𝑧௜,௝ = (𝜙௜, 𝜙௝)௪ , 𝑔௝ = (𝑔, 𝜙௝)௪ , (27)

then the linear system (26) is equivalent to 
(𝐒 + 𝜌𝐘 + 𝜎𝐙)𝐚 = 𝐠, (28)

where, 

𝐒 = ൫𝑠௜௝൯
଴ஸ௜,௝ஸெ

, 𝐘 = ൫𝑦௜௝൯
଴ஸ௜,௝ஸெ

, 

𝐙 = ൫𝑧௜௝൯
଴ஸ௜,௝ஸெ

, 𝐚 = (𝑎௜)଴ஸ௜ஸெ  𝑎𝑛𝑑 𝐠 = (𝑔௜)଴ஸ௜ஸெ . 

Theorem 1. The nonzero entries of the matrices 𝑺 , 𝒀 , and 𝒁  are provided 
respectively as 
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𝑠௜௝ =

⎩
⎪
⎨

⎪
⎧

0, (𝑖 − 𝑗) odd,

−8(3 + 2𝑖)ଶ, 𝑗 = 𝑖,
−8(3 + 2𝑖)(3 + 2𝑗), (𝑖 − 𝑗) even, 𝑖 > 𝑗,

−
8(−1)ଶ௜(1 + 𝑖)(2 + 𝑖)(3 + 2𝑖)(3 + 2𝑗)

(1 + 𝑗)(2 + 𝑗)
, (𝑖 − 𝑗) even, 𝑗 − 1 > 𝑖,

 

𝑦௜௝ =
2(−1)௜(2𝑖 + 3)(2𝑗 + 3)

(𝑗 + 1)(𝑗 + 2)
× 

൭
గ ସംఊ୻(ିఊ)

୻൬
భ

మ
(ି௜ି௝ିఊିଵ)൰୻൬

భ

మ
(௜ି௝ିఊାଶ)൰୻൬

భ

మ
(ି௜ା௝ିఊାଶ)൰୻൬

భ

మ
(௜ା௝ିఊାହ)൰

−  

2

Γ(2 − 𝛾)
+

2Γ(1 − 𝛾)

Γ(−𝑖 − 𝛾)Γ(𝑖 − 𝛾 + 3)
−

2(−1)௝sin(𝜋𝛾)Γ(1 − 𝛾)Γ(𝑗 + 𝛾 + 1)

𝜋Γ(𝑗 − 𝛾 + 3)
ቇ, 

𝑧௜௜ =
4(2𝑖 + 3)

(𝑖 + 1)(𝑖 + 2)
. 

Proof. Using relations in (27), we obtain 

𝑠௜௝ = ∫
ଵ

଴
𝜙௜

ᇱᇱ(𝜀)𝜙௝(𝜀)𝑤(𝜀)𝑑𝜀

= ∫
ଵ

଴

ସ(ଷାଶ௜)(ଷାଶ ௝)ట೔శభ
భ (ఌ)టೕశభ

భ (ఌ)

(ଵା௜)(ଶା௝)ఌ(ఌିଵ)
𝑑𝜀

=

⎩
⎪
⎨

⎪
⎧

0, (𝑖 − 𝑗) odd,

−8(3 + 2𝑖)ଶ, 𝑗 = 𝑖,
−8(3 + 2𝑖)(3 + 2𝑗), (𝑖 − 𝑗) even, 𝑖 > 𝑗,

−
଼(ିଵ)మ೔(ଵା௜)(ଶା௜)(ଷାଶ௜)(ଷାଶ ௝)

(ଵା௝)(ଶା௝)
, (𝑖 − 𝑗) even, 𝑗 − 1 > 𝑖,

  (29)

where 𝜓ఓ
ఐ (𝜀)  is associated Legendre polynomial. We can obtain the rest of the 

matrices by the same steps. □ 

Algorithm 1 Creation of an algorithm for our fractional-order Bagley-Torvik method of 
differential equations 

1: Input 𝑀. 

2: Step 1. Turn the non-homogeneous boundary conditions (2) to Equation (12) using 
Relation (9). 

3: Step 2. Consider that the approximate solution is 𝑢ெ(𝜀) = ∑ெ
௞ୀ଴ 𝑎௞𝜙௞(𝜀). 

4: Step 3. Use the matrices 𝐒, 𝐘, 𝐙, and 𝐠. 

5: Step 4. Create the residual of the Equation (1). 

6: Step 5. Utilize the Galerkin method to get a system in (28). 

7: Step 6. Solve the system in (28) by any suitable algebraic method to obtain 𝐚. 

8: Step 7. Set up the approximate solution 𝑢ெ(𝜀). 

9: Output 𝜐ெ(𝜀). 

6. Discussion of the error and convergence analysis 

This section examines the provided method’s error and convergence analysis 
employing several theorems. 

Theorem 2. If 𝜔(𝜀) ∈ 𝐶௣[0,1],  for some 𝑝 > 2 , then we have the expansion 

coefficients 𝑎௞ (22), 𝜙௞(𝜀), 𝜙௞
ᇱᇱ(𝜀), and 𝐷ఊ𝜙௞(𝜀) satisfy the following estimates: 
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|𝑎௞| ≲ 2ି௣(1 − 𝑝)ିଶ௞,

|𝜙௞(𝜀)| ≲
଼ೖ

௞!
,

|𝜙௞
ᇱᇱ(𝜀)| ≲ 121𝑝ିଵ𝑀ହି௣(𝑘 + 1)ଷ,

|𝐷ఊ 𝜙௞(𝜀)| ≲ 400𝑝ିଵ𝑀ସି௣(𝑘 + 1)ଶ.

  (30)

Proof. From the relation (22) and the properties of orthogonality for 𝜙௞(𝜀), we have 

|𝑎௞| =
(௞ାଵ)(௞ାଶ)

ସ(ଶ௞ାଷ)
∫

ଵ

଴
𝜙௞(𝜀)𝜙௝(𝜀)𝑤(𝜀)𝑑𝜀

=
(௞ାଵ)(௞ାଶ)

ସ(ଶ௞ାଷ)
൝
0, 𝑗 ≠ 𝑘,

ସ(ଶ௞ାଷ)

(௞ାଵ)(௞ାଶ)
, 𝑗 = 𝑘,

≲ 2ି௣ାଷ(2 − 𝑝)ିଶ௞.

  (31)

In the relation (23), which that gives the next equation 

|𝜙௞(𝜀)| = ቚ∑௞ାଶ
௜ୀ଴

(ିଵ)ೖశమశ೔(௞ାଶା௜)!

(௞ାଶି௜)!(௜!)మ 𝜀௜ − ∑௞
௜ୀ଴

(ିଵ)ೖశ೔(௞ା௜)!

(௞ି௜)!(௜!)మ 𝜀௜ቚ ; 𝑘 = 0,1, ⋯ 𝑀

≲ ቚ4 ቀ
଼ೖ

௞!
ቁ − 3 ቀ

଼ೖ

௞!
ቁቚ

=
଼ೖ

௞!
.

  (32)

We can prove 𝜙௞
ᇱᇱ(𝜀)  and 𝐷ఊ 𝜙௞(𝜀)  using the same estimation method in 

previous relations. □ 

Theorem 3. If 𝜐(𝜀) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 the hypothesis of Theorem 2, then the maximum 

absolute error (𝐸ெ) is given as next 

𝐸ெ = max
ఌ∈[଴,ଵ]

|𝜐(𝜀) − 𝜐ெ(𝜀)|, 

then we have the following estimate 

𝐸ெ ≲ 2ି௣ାଷ(3𝑝 − 1)ଽ𝑀ିଵି௣. 
Proof. The maximum absolute error is specified as 

max
ఌ∈[଴,ଵ]

|𝜐(𝜀) − 𝜐ெ(𝜀)| = max
ఌ∈[଴,ଵ]

อ ෍

ஶ

௞ୀெାଵ

𝑎௞𝜙௞(𝜀)อ (33)

From Theorem 2, we use the relations of 𝑎௞ and 𝜙௞(𝜀), then we have 

𝐸ெ = 2ି௣ାଷ ෍

ஶ

௞ୀெାଵ

(2 − 𝑝)ିଶ௞
8௞

𝑘!
= 2ି௣ାଷ ෍

ஶ

௞ୀெାଵ

(8(2 − 𝑝)ିଶ)௞

𝑘!

≲ 2ି௣ାଷ𝑒଼(ଶି௣)షమ
ቆ1 −

Γ(8(2 − 𝑝)ିଶ, 𝑀 + 1)

Γ(𝑀 + 1)
ቇ

≲ 2ି௣ାଷ(3𝑝 − 1)ଽ𝑀ିଵି௣,

 (34)

where Γ(𝜂, Ξ) represents the upper incomplete gamma function. □ 

Theorem 4. If 𝑝 > 5 and 𝜐(𝜀) supports the hypotheses of Theorem 

𝑅ெ = max
ఌ∈[଴,ଵ]

|𝜐ெ
ᇱᇱ (𝜀) + 𝜌 𝐷ఊ𝜐ெ(𝜀) + 𝜎𝜐ெ(𝜀) − 𝑔(𝜀)|, 

then we have the following estimate: 𝑅ெ ≲ 2ି௣𝑝ିଵ𝑀ହି௣. 

Proof. We have the following form of 𝑅ெ, which is 

𝑅ெ = max
ఌ∈[଴,ଵ]

อ෍

ெ

௞ୀ଴

𝑎௞𝜙௞
ᇱᇱ(𝜀) + 𝜌 ෍

ெ

௞ୀ଴

𝑎௞𝐷ఊ𝜙௞(𝜀) + 𝜎 ෍

ெ

௞ୀ଴

𝑎௞𝜙௞(𝜀) − 𝑔(𝜀)อ (35)

Now, we use the hypotheses of |𝑎௞|, |𝜙௞
ᇱᇱ(𝜀)|, |𝐷ఊ 𝜙௞(𝜀)|, and |𝜙௞(𝜀)|, which 

there exist in Theorem 2, then we have the next relation 
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𝑅ெ ≲ ቤ2ି௣ାଷ(2 − 𝑝)ିଶ௞ ቆ121𝑝ିଵ𝑀ହି௣(𝑖 + 1)ଷ + 400𝜌𝑝ିଵ𝑀ସି௣(𝑖 + 1)ଶ + 𝜎
8௞

𝑘!
ቇቤ

≲ 2ି௣ାଷ(3𝑝 − 1)ଽ 𝑀ିଷି௣. □

 (36)

7. Some practice problems for the fractional Bagley-Torvik 
equation 

In this part, the shifted Legendre polynomials on second-order fractional 
differential problems are examined to determine the absolute error. Mathematica’s 
version 11 software solved each of the following examples. 
Example 1. We study the Bagley-Torvik differential equation that follows [26–28]: 

𝐷
ଷ
ଶ𝜐(𝜀) + 𝜐(𝜀) = 𝜀ଶ − 𝜀 +

2𝜀
ଵ
ଶ

Γ(
3
2

)
, 0 ⩽ 𝜀 ⩽ 1, (37)

under the constraint of homogeneous boundary conditions: 

𝜐(0) = 𝜐(1) = 0, (38)

the analytical solution to the Bagley-Torvik differential Equation (37) using the 
boundary conditions (38) is provided via 

𝜐(𝜀) = 𝜀ଶ − 𝜀. (39)

For M = 1, the operational matrix 𝐘 = (𝐷
య

మ𝜙௜, 𝜙௝)௪ is given by 

𝐘 = ቀ
−54.16220002 −18.05406667
54.16220002 −64.47880955

ቁ, (40)

the residual of (37) represents as 

𝑅௝ = ൭෍

ଵ

௜ୀ଴

𝑎௜(𝑦௜,௝ +
4(3 + 2𝑗)

(1 + 𝑗)(2 + 𝑗)
𝛿௜,௝)൱ − 𝑔௝, 𝑗 = 0, 1, (41)

where the residual produces a system consisting of two linear equations are provided 
by 

(−16 + √𝜋)(6𝑎଴ − 1) + 96𝑎ଵ = 0,

336𝑎଴ + 5(240 − 7√𝜋)𝑎ଵ = 56,  (42)

then the solution of the linear system is 𝑎଴ = 0.166667  and 𝑎ଵ = 0 , so the 
approximate solution is given by 

𝜐ଵ(𝜀)   = 𝑎଴𝜙଴(𝜀) + 𝑎ଵ𝜙ଵ(𝜀) = 0.166667(1 − 6𝜀 + 6𝜀ଶ − 1)

= 1.000002(𝜀ଶ − 𝜀) ≈ 𝜀ଶ − 𝜀, 
(43)

where that is the analytical solution. 
Example 2. Let us examine the fractional Bagley-Torvik differential equation 
[14,29] 

𝜐ᇱᇱ(𝜀) + 𝐷ఊ  𝜐(𝜀) + 𝜐(𝜀) = 𝜀ଶ + 2 + 4 ට
𝜀

𝜋
, 0 ⩽ 𝜀 ⩽ 1, 1 < 𝛾 < 2, (44)

given that the following homogeneous boundary conditions apply: 

𝜐(0) = 0, 𝜐(1) = 1, (45)

the analytical solution when 𝛾 = 1.5 is 

𝜐(𝜀) = 𝜀ଶ. (46)

First, we change the boundary conditions from non-homogeneous to homogeneous by 
relation (9), then we have 
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𝑢ᇱᇱ(𝜀) + 𝐷ଵ.ହ𝑢(𝜀) + 𝑢(𝜀) = 𝜀ଶ + 2 + 4ට
𝜀

𝜋
− 𝜀, (47)

by the homogeneous boundary conditions 

𝑢(0) = 0, 𝑢(1) = 0, 𝑎𝑛𝑑 𝑢(𝜀) = 𝜀ଶ − 𝜀. (48)

For 𝑀 = 4, we apply our method to differential Equation (44) with their boundary 

conditions (45), respectively, the operational matrices for 𝐷ଵ.ହ𝑢(𝜀) , 𝑢ᇱᇱ(𝜀) , 𝑢(𝜀) , 

and 𝑓(𝜀) are given by  

𝐘 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−
ଽ଺

√గ
−

ଷଶ

√గ
−

ଷଶ

√గ
−

ଽ଺

ହ√గ
−

ଽ଺

ହ√గ

−
ଽ଺

√గ
−

଼଴଴

଻√గ
−

ଶଶସ

ଽ√గ
−

ଷ଻ସସ

଻଻√గ
−

ଶସ଺ସ

ଵଵ଻√గ

−
ଵଽଶ

√గ
−

ସସ଼

ଽ√గ
−

ଶଶସ଴

ଵଵ√గ
−

ସ଴ଷଶ

଺ହ√గ
−

ଷଶ଴

ଷ√గ

−
ଵଽଶ

√గ
−

ଵଶସ଼଴

଻଻√గ
−

ଵଷସସ

ଵଷ√గ
−

଼଼ଵଶ଼

ଷ଼ହ√గ
−

ଵ଴ହ଺଴

ଶଶଵ√గ

−
ଶ଼଼

√గ
−

ଵଶଷଶ଴

ଵଵ଻√గ
−

଼଴଴

ଷ√గ
−

ଵହ଼ସ଴

ଶଶଵ√గ
−

ଽଵଵ଺଼

ଶ଼ହ√గ⎠

⎟
⎟
⎟
⎟
⎟
⎞

,  (49)

𝐒 =

⎝

⎜
⎜
⎛

−72 0 −28 0 −
଼଼

ହ

0 −200 0 −108 0

−168 0 −392 0 −
ଵଶଷଶ

ହ

0 −360 0 −648 0
−264 0 −616 0 −968 ⎠

⎟
⎟
⎞

,  (50)

𝐙 =

⎝

⎜
⎜
⎜
⎛

6 0 0 0 0

0
ଵ଴

ଷ
0 0 0

0 0
଻

ଷ
0 0

0 0 0
ଽ

ହ
0

0 0 0 0
ଶଶ

ଵହ⎠

⎟
⎟
⎟
⎞

,  (51)

𝐟 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−11 −
ଵ଺

√గ

−
ଵ଺

ଷ √గ
ଶ

ଷ
(−7 −

଼

√గ
)

−
ଵ଺

ହ √గ

−
ସସ

ଵହ
−

ଵ଺

ହ √గ ⎠

⎟
⎟
⎟
⎟
⎟
⎞

.  (52)

Then the residual of Equation (47) 

𝑅௝ = ቌ෍

௝

௜ୀ଴

𝑎௜(𝐒 + 𝐘 + 𝐙)ቍ − 𝐟் , 𝑗 = 0, 1, 2, 3, 4. (53)

When we follow the Galerkin method, we obtain a linear system of five equations 
in five unknowns are introduced as the following 

         −16 + 212.9819542𝑎଴ − 96𝑎ଵ + 489.772247𝑎ଶ − 192𝑎ଷ + 755.9278166𝑎ସ = 0, 

−24024 + 144144𝑎଴ + 2084990.28𝑎ଵ − 224224𝑎ଶ + 3604326.614𝑎ଷ − 474320𝑎ସ = 0, 

         −17509.35783 + 105056.147𝑎଴ + 32032𝑎ଵ + 1150967.379𝑎ଶ − 133056𝑎ଷ + 1748387.233𝑎ସ = 0, 

−272272 + 1633632𝑎଴ + 204245187.48𝑎ଵ + 103488𝑎ଶ + 2292729.73𝑎ଷ − 6098400𝑎ସ = 0, 

     −793535.2255 + 4761211.353𝑎଴ + 1989680𝑎ଵ + 51339006.94𝑎ଶ + 4514400𝑎ଷ + 192074972.8𝑎ସ = 0. 

(54)

The solution of the previous linear system is 𝑎଴ = 0.166667, 𝑎ଵ = 0, 𝑎ଶ = 0, 

𝑎ଷ = 0, and 𝑎ସ = 0. Therefore, the approximate solution is 
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𝑢ସ(𝜀) = 𝑎଴𝜙଴(𝜀) + 𝑎ଵ𝜙ଵ(𝜀) + 𝑎ଶ𝜙ଶ(𝜀) + 𝑎ଷ𝜙ଷ(𝜀) + 𝑎ସ𝜙ସ(𝜀)

= 0.166667(1 − 6𝜀 + 6𝜀ଶ − 1) = 1.000002(𝜀ଶ − 𝜀) ≈ 𝜀ଶ − 𝜀,
 (55)

and that is the analytical solution. 
Example 3. Let’s look at the Bagley-Torvik problem [30] 

𝜐ᇱᇱ(𝜀) +
8

17
𝐷ఊ𝜐(𝜀) +

13

51
𝜐(𝜀) = 𝑓(𝜀), 0 ⩽ 𝜀 ⩽ 1, 1 < 𝛾 < 2, (56)

depending on the homogeneous boundary conditions: 

𝜐(0) = 𝜐(1) = 0, (57)

where 𝑓(𝜀) is selected so that the analytical solution is supplied by 

𝜐(𝜀) = 𝜀ହ −
29

10
𝜀ସ +

76

25
𝜀ଷ −

339

250
𝜀ଶ +

27

125
𝜀. (58)

We employ our method to Equation (56) with the homogeneous boundary 

conditions (57) for 𝑀 = 3 and 𝑀 = 4, therefore we contrast the absolute error in the 
method we use with others as shown in Table 1. Table 2 shows the running times of 

our method to various values of 𝑀. Figure 1 depicts the shifted Legendre expansion 

behavior, demonstrating the absolute error at 𝑀 = 3. In Figure 2, we contrast the 

analytical with approximate solutions with 𝑀 = 3, 4, … , 8. Which the approximate 

solution at 𝑀 = 3 is quite near to the analytical solution. 

Table 1. Our method’s absolute error when using various M values for Example 2. 

ε M = 3 M = 4 M = 8 M = 256 

0.1 0 0 3.597 × 10⁻4 3.899 × 10⁻6 

0.2 8.882 × 10⁻16 5.329 × 10⁻15 1.583 × 10⁻3 4.171 × 10⁻6 

0.3 0 7.105 × 10⁻14 1.787 × 10⁻3 3.943 × 10⁻6 

0.4 0 5.684 × 10⁻13 1.634 × 10⁻3 3.373 × 10⁻6 

0.5 2.274 × 10⁻13 2.956 × 10⁻12 1.158 × 10⁻3 2.609 × 10⁻6 

0.6 1.819 × 10⁻12 1.000 × 10⁻11 5.836 × 10⁻4 1.788 × 10⁻6 

0.7 3.638 × 10⁻12 2.910 × 10⁻11 1.271 × 10⁻4 1.041 × 10⁻6 

0.8 7.276 × 10⁻12 6.912 × 10⁻11 1.197 × 10⁻4 4.920 × 10⁻7 

0.9 1.455 × 10⁻11 1.455 × 10⁻10 5.540 × 10⁻4 2.611 × 10⁻7 

Table 2. Running times of our method for Example 2 in seconds. 

M 3 4 5 6 7 8 

CPU 12.891 14.36 22.782 34.954 82.906 90.938 

 
Figure 1. The absolute error with 𝑀 = 3 for Example 3. 
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Figure 2. Comparing the approximate and analytical solutions for Example 3 for 
different values of M. 

8. Conclusions 

Finding the exact answers to fractional differential equations is typically 
challenging. Thus, approximating solution methods is required. In our study, we 
attempted the Galerkin method for solving the fractional Bagley-Torvik problems with 
shifted Legendre polynomials. Our method can reach the exact solution, in which the 
absolute error equals zero. The mentioned method converted linear fractional Bagley-
Torvik problems into an algebraic system that relied on the Galerkin method. It is easy 
to solve them by any algebraic method. The method’s efficiency in producing results 
has been demonstrated using instances with exact solutions. The approximation of 
fractional Bagley-Torvik equations solved by this method is highly practical and 
effective, as shown by the numerical results and figures. The research used a PC with 
those specifications: Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz; 
installed memory: 16.0 GB. 
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