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Abstract: The paper introduces an iterative method for solving nonlinear Volterra integral 

equations and analyzes its convergence, stability, and application through examples. It 

expresses the general nonlinear Volterra integral equation as a series and decomposes the 

nonlinear operator to derive a recursive formula for the proposed iterative method. The method 

ensures absolute and uniform convergence, with stability analysis conducted to ensure bounded 

errors in the presence of perturbations. Convergence analysis utilizes the Lipschitz condition, 

demonstrating the uniform convergence of the solution series. Illustrative examples, including 

power nonlinearity and trigonometric functions, validate the stability and convergence of the 

method. Through graphical representations, convergence analyses for specific integral 

equations demonstrate the method’s effectiveness and applicability in solving diverse nonlinear 

integral equations. Overall, the paper contributes a robust iterative method with insights into 

its stability and convergence properties, supported by practical examples. 
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1. Introduction 

Nonlinear integral equations are mathematical equations that involve both 

integrals and nonlinear functions [1,2]. These equations play a crucial role in various 

scientific and engineering fields, describing phenomena where the relationship 

between variables is not linear [3–5]. The general form of a nonlinear integral equation 

can be represented as: 

𝐹[𝑥(𝑡)] = ∫ 𝐾(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 + 𝑔(𝑡, 𝑥(𝑡)) = 0
𝑏

𝑎

 

here, 𝑥(𝑡) is the unknown function, 𝐾(𝑡, 𝑠, 𝑥(𝑠)) is the kernel of the integral equation, 

and 𝑔(𝑡, 𝑥(𝑡)) is a nonlinear function. The integral is taken over a specified interval 

[𝑎, 𝑏]. The nonlinear term 𝑔(𝑡, 𝑥(𝑡)) introduces nonlinearity to the equation [6,7]. 

Nonlinear Volterra integral equations play a crucial role in modeling a variety of 

real-world phenomena, from biological processes to physical systems. Solving these 

equations poses a significant mathematical challenge due to their inherent complexity 

[8]. In recent years, iterative methods have emerged as powerful tools for tackling 

nonlinear integral equations, providing numerical solutions with theoretical 

underpinnings [9,10]. 

The nonlinear Volterra integral equation is a specific type of integral equation 

that involves a nonlinear function within the integral. Named after the Italian 

mathematician Vito Volterra, these equations have applications in various fields, 

including physics, biology, and engineering [11]. The general form of a nonlinear 

Volterra integral equation of the first kind can be expressed as: 
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𝑓(𝑡) = 𝑔(𝑡) +∫ 𝐾(𝑡, 𝑠). 𝑓(𝑠)𝑑𝑠
𝑡

𝑎

 

here, 𝑓(𝑡) is the unknown function, 𝑔(𝑡) is a given function, and 𝐾(𝑡, 𝑠) is the kernel 

of the integral equation. The integral is taken over the interval [𝑎, 𝑡]. The Volterra 

integral equation can be written in different forms depending on the problem under 

consideration [12]. 

Solving nonlinear Volterra integral equations analytically is often challenging, 

and numerical methods such as iterative techniques and discretization methods are 

commonly employed to obtain approximate solutions [13]. 

This paper introduces an innovative iterative method for solving nonlinear 

Volterra integral equations, offering a systematic and rigorous approach to finding 

solutions. The methodology is grounded in the series representation of the solution, 

with a focus on absolute and uniform convergence. The decomposition of the 

nonlinear operator and the recursive formula contribute to the efficiency and 

applicability of the proposed method. 

The stability analysis of the iterative process is a critical aspect addressed in this 

paper. Stability ensures that small errors in the initial conditions do not propagate 

exponentially, leading to divergent solutions [14,15]. The Lipschitz condition is 

employed as a fundamental criterion for stability, allowing for a comprehensive 

understanding of the behavior of the iteration in the presence of perturbations [16]. 

A common stability criterion is based on the Lipschitz continuity of the mapping 

involved in the iterative process [17]. Specifically, an iterative method is said to be 

stable if there exists a constant 𝐿 such that for all iterates 𝑥𝑛 𝑎𝑛𝑑 𝑥𝑛+1 the following 

inequality holds: 

‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ 𝐿‖𝑥𝑛 − 𝑥𝑛−1‖ 

here, ‖. ‖ denotes a norm, and 𝐿 is the Lipschitz constant. A stable method ensures that 

the difference between consecutive iterates decreases at each step, contributing to 

convergence [18]. 

Theorem 1. The Banach Fixed-Point Theorem: The theorem states that if a mapping 

𝑇: 𝑋 → 𝑋 is a contraction on a complete metric space 𝑋, then it has a unique fixed 

point, and any iteration of the form 𝑥𝑛+1 = 𝑇(𝑥𝑛) converges to that fixed point. 

To illustrate the practicality and versatility of the proposed method, three distinct 

examples of nonlinear Volterra integral equations are examined. These examples 

encompass power nonlinearity and trigonometric functions, showcasing the method's 

ability to handle diverse scenarios. Convergence analyses, supported by graphical 

representations, demonstrate the effectiveness of the iterative approach in 

approximating the true solutions. 

The theoretical foundations of this iterative method draw on concepts from 

functional analysis, nonlinear dynamics, and numerical methods. Throughout the 

paper, references to relevant mathematical literature and seminal works in the field 

provide a comprehensive framework for understanding and applying the proposed 

methodology. The subsequent sections delve into the details of the iterative method, 

stability analysis, convergence proofs, and the practical application of the method to 

illustrative examples. 

In summary, this paper contributes a robust and theoretically grounded iterative 
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method for solving nonlinear Volterra integral equations, extending the toolkit 

available for researchers and practitioners in various scientific disciplines. 

2. Iterative method for solving nonlinear Volterra equations 

Consider the general nonlinear Volterra Integral equation: 

𝑦(𝑥) = 𝑓(𝑥) +∫ 𝐹(𝑥, 𝑡, 𝑦(𝑡))𝑑𝑡
𝑥

𝑎

 (1) 

We seek a solution in the form of a series: 

𝑦 =∑𝑦𝑖

∞

𝑖=0

 (2) 

The nonlinear operator 𝑄 can be decomposed as 

𝑄 (∑𝑦𝑖

∞

𝑖=0

) = 𝑄(𝑦0) +∑{𝑄(∑𝑦𝑗

𝑖

𝑗=0

) − 𝑄(∑𝑦𝑗

𝑖=1

𝑗=0

)}

∞

𝑖=1

 (3) 

Substituting Equation (2) and (3) into (1), gives 

∑𝑦𝑖

∞

𝑖=0

= 𝑓 + 𝑄(𝑦0) +∑{𝑄(∑𝑦𝑗

𝑖

𝑗=0

)− 𝑄(∑𝑦𝑗

𝑖=1

𝑗=0

)}

∞

𝑖=1

 (4) 

Defining the recurring terms in Equation (4): 

{

𝑦0 = 𝑓
𝑦1 = 𝑄(𝑦0)

𝑦𝑚+1 = 𝑄(𝑦0 +⋯+ 𝑦𝑚) − 𝑄(𝑦0 +⋯+ 𝑦𝑚−1), 𝑚 = 1,2, …
 (5) 

Then 

𝑄(𝑦0 +⋯+ 𝑦𝑚) = 𝑄(𝑦0 +⋯+ 𝑦𝑚−1),𝑚 = 1,2, … (6) 

And 

𝑦 = 𝑓 +∑𝑦𝑖

∞

𝑖=0

 (7) 

If 𝑄 is a contracted, i.e. ‖𝑄(𝑥) − 𝑄(𝑦)‖ ≤ 𝐾‖𝑥 − 𝑦‖, 0 < 𝐾 < 1, 𝑡ℎ𝑒𝑛 

‖𝑦𝑚+1‖ = ‖𝑄(𝑦0 +⋯+ 𝑦𝑚‖ − ‖𝑄(𝑦0 +⋯+ 𝑦𝑚−1)‖ ≤ 𝐾‖𝑦𝑚‖ ≤ 𝐾
𝑚‖𝑦0‖,𝑚 = 0,1,2, … 

and the series ∑ 𝑦𝑖
∞
𝑖=0  absolutely and uniformly converges to a solution of Equation 

(1), which is unique in view, of the Banach fixed point theorem. 

Nonlinear Volterra integral equation, 

Consider the Volterra integral equation, 

𝑦(𝑥) = 𝑓(𝑥) +∫ 𝐹(𝑥, 𝑡, 𝑦(𝑡))𝑑𝑡
𝑥

𝑎

 (8) 

where |𝑥 − 𝑎| ≤ 𝛼,  |𝑡 − 𝑎| ≤ 𝛼,  𝐹  is a continuous function of its arguments and 

satisfies Lipschitz condition, |𝐹(𝑥, 𝑡, ∅) − 𝐹(𝑥, 𝑡, 𝜓)| < 𝐾|∅ − 𝜓|. Let |𝐹(𝑥, 𝑡, ∅)| <

𝑀. Define 

𝑦0(𝑥) = 𝑓(𝑥) 

𝑦1(𝑥) = ∫ 𝐹(𝑥, 𝑡, 𝑦0(𝑡))𝑑𝑡
𝑥

𝑎

 

𝑦𝑚+1(𝑥) = ∫ |𝐹(𝑥, 𝑡, 𝑦0 +⋯+ 𝑦𝑚) − 𝐹(𝑥, 𝑡, 𝑦0 +⋯+ 𝑦𝑚−1)|𝑑𝑡
𝑥

𝑎

 (9) 

𝑚 = 1,2,… 
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We prove ∑ 𝑦𝑖
∞
𝑖=0 (𝑥) is uniformly convergent. 

|𝑦1(𝑥)| ≤ ∫ |𝐹(𝑥, 𝑡, 𝑦0(𝑡))|𝑑𝑡 ≤ 𝑀(𝑥 − 𝑎) ≤ 𝑀𝛼,
𝑥

𝑎

 

|𝑦2(𝑥)| ≤ ∫ |𝐹(𝑥, 𝑡, 𝑦0(𝑡) + 𝑦1(𝑡)) − |𝐹(𝑥, 𝑡, 𝑦0(𝑡))|𝑑𝑡
𝑥

𝑎

≤ 𝑀𝐾
(𝑥 − 𝑎)2

2!
≤
𝑀

𝐾

(𝐾 ∝)2

2!
| ≤ 𝐾 |∫ 𝑦𝑚−1(𝑡)𝑑𝑡

𝑥

𝑎

|

≤ 𝑀𝐾𝑚
(𝑥 − 𝑎)𝑚+1

(𝑚 + 1)!
≤
𝑀

𝐾

(𝐾 ∝)𝑚+1

(𝑚 + 1)!
 

(10) 

hence ∑ 𝑦𝑖
∞
𝑖=0 (𝑥) is absolutely and uniformly convergent and 𝑦(𝑥) satisfies Equation 

(8). If Equation (8) does not possess unique solution, then this iterative method will 

give a solution among many (possible) other solutions. 

3. Stability analysis 

To perform a stability analysis of the iterative method for solving nonlinear 

functional equation using the Volterra integral equation, we need to investigate the 

behavior of the iteration in the presence of small perturbations. Stability ensures that 

small errors in the initial conditions do not lead to large errors in the final solution [19]. 

The stability analysis involves examining how the error in the solution propagate 

through the iteration process. Denoting the exact solution as 𝑦(𝑥) and the computed 

solution as 𝑦′(𝑥). 

The error at each iteration is given by 

𝑒𝑚(𝑥) = 𝑦(𝑥) − 𝑦
′(𝑥) 

where 𝑦′(𝑥) is the approximate solution at iteration 𝑚. 

The iteration method in consideration is stable if the error in the solution do not 

grow unbounded as 𝑚 increases. In other words, we want to ensure that ‖𝑒𝑚(𝑥)‖ →

0 as 𝑚 → ∞. 

3.1. Algorithm for stability determination 

Step 1: Define the error equation: Consider the error at iteration 𝑚+ 1 

𝑒𝑚+1(𝑥) = 𝑦(𝑥) − 𝑦𝑚+1
′ (𝑥) 

Step 2: Write the error equation in terms of 𝑒𝑚: 

Using the iterative method, express 𝑦𝑚+1
′ (𝑥) in terms of 𝑦𝑚

′ (𝑥): 

𝑦𝑚+1
′ (𝑥) = 𝑄(𝑦𝑚

′ (𝑥)) + 𝑄(𝑦𝑚−1
′ (𝑥)) 

Then, rewrite the error equation as: 

𝑒𝑚+1(𝑥) = 𝑦(𝑥) − 𝑄(𝑦𝑚
′ (𝑥)) + 𝑄(𝑦𝑚−1

′ (𝑥)) 

Step 3: Apply Lipschitz condition: 

Use the Lipschitz condition on 𝑄 to estimate the difference between 𝑦(𝑥) and 

𝑄(𝑦𝑚
′ (𝑥)). 

‖𝑒𝑚+1‖ ≤ 𝐾‖𝑒𝑚‖ 

This condition ensures that errors do not grow exponentially with each iteration. 

Step 4: Conclude Stability: 

If 𝐾 < 1, the iterative method is stable, and errors decrease with each iteration. 
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The choice of 𝐾 depends on the Lipschitz condition of 𝑄. The stability analysis is a 

fundamental step in ensuring that the iterative method converges reliably to the true 

solution, even in the presence of small errors in the initial conditions. 

3.2. Stability illustrative example 

Nonlinear Volterra integral equation with power nonlinearity 

Consider the equation 𝑦(𝑥) = 𝑥 + ∫ 𝑡. 𝑦(𝑡)2𝑑𝑡
𝑥

0
 with initial condition 𝑦(0) = 1. 

To perform stability analysis on this example, let the Lipschitz condition for this 

example involves the term 

|𝑡. ∅2 − 𝑡. 𝜓2| ≤ 𝐿|∅ − 𝜓| 

To analyze the stability, define the error at iteration 𝑚 as  

𝑒𝑚(𝑥) = 𝑦(𝑥) − 𝑦
′(𝑥) 

It implies the iterative method for this example is  

𝑦𝑚+1
′ = 𝑥 +∫ 𝑡. 𝑦𝑚

′ (𝑡)2𝑑𝑡
𝑥

0

 

Applying the Lipschitz condition to the integral term: 

|𝑡. 𝑦𝑚
′ (𝑡)2 − 𝑡. 𝑦𝑚−1

′ (𝑡)2| ≤ 𝐿|𝑦𝑚
′ (𝑡) − 𝑦𝑚+1

′ (𝑡)| 

⟹ |𝑡. 𝑦𝑚
′ (𝑡)2 − 𝑡. 𝑦𝑚−1

′ (𝑡)2| = 𝑡|𝑦𝑚
′ (𝑡) + 𝑦𝑚−1

′ (𝑡)|. |𝑦𝑚
′ (𝑡) − 𝑦𝑚−1

′ (𝑡)| 

𝐿 = 𝑆𝑢𝑝𝑡[0,𝑥]𝑡|𝑦𝑚
′ (𝑡) + 𝑦𝑚−1

′ (𝑡)| 

In this case, we need to determine the maximum value of 𝑡|𝑦𝑚
′ (𝑡) + 𝑦𝑚−1

′ (𝑡)| 

over the interval [0, 𝑥]. This value will depend on the specific values of 𝑥 and the 

function 𝑦𝑚
′ (𝑡) 𝑎𝑛𝑑 𝑦𝑚−1

′ (𝑡). Analyzing 𝐿 in this case involves specific functional 

forms for 𝑦𝑚
′ (𝑡) 𝑎𝑛𝑑 𝑦𝑚−1

′ (𝑡). 

4. Convergence analysis 

To prove the uniform convergence of the series 𝑦 = ∑ 𝑦𝑖
∞
𝑖=0  obtained from the 

Volterra integral equation, we need to use the Lipschitz condition on the function 

𝐹(𝑥, 𝑡, 𝑦) [20]. Proceeding with the proof, we have; 

The Volterra integral equation given by 

𝑦(𝑥) = 𝑓(𝑥) +∫ 𝐹(𝑥, 𝑡, 𝑦(𝑡))𝑑𝑡
𝑥

𝑎

 

Expressing the series representation of 𝑦(𝑥), we get  

𝑦(𝑥) =∑𝑦𝑖

∞

𝑖=0

(𝑥) 

Defining the recurring terms of 𝑦𝑖(𝑥) as: 

{
 
 

 
 

𝑦0(𝑥) = 𝑓(𝑥)

𝑦1(𝑥) = ∫ 𝐹(𝑥, 𝑡, 𝑦0(𝑡))𝑑𝑡
𝑥

𝑎

𝑦𝑚+1(𝑥) = ∫ |𝐹(𝑥, 𝑡, 𝑦0 +⋯+ 𝑦𝑚) − 𝐹(𝑥, 𝑡, 𝑦0 +⋯+ 𝑦𝑚−1)|𝑑𝑡,𝑚 = 1,2, …
𝑥

𝑎

 

Now, using the Lipschitz condition on 𝐹(𝑥, 𝑡, 𝑦): 

|𝐹(𝑥, 𝑡, ∅) − 𝐹(𝑥, 𝑡, 𝜓| ≤ 𝐾|∅ − 𝜓| 

To show that ∑ 𝑦𝑖
∞
𝑖=0 (𝑥) is uniformly convergent, we estimate the terms |𝑦𝑚(𝑥)| 

in the series. 
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For 𝑚 = 1 

|𝑦1(𝑥)| ≤ ∫ |𝐹(𝑥, 𝑡, 𝑦0(𝑡))|𝑑𝑡 ≤ 𝑀(𝑥 − 𝑎) ≤ 𝑀𝛼,
𝑥

𝑎

 

Now, assume that |𝑦𝑚(𝑥)| ≤ 𝑀𝑘  for some 𝑘  (inductive hypothesis). We will 

show that  

|𝑦𝑚+1(𝑥)| ≤ 𝑀𝑘+1 

⟹ |𝑦𝑚+1(𝑥)| ≤ ∫ |𝐹(𝑥, 𝑡, 𝑦0 +⋯+ 𝑦𝑚) − 𝐹(𝑥, 𝑡, 𝑦0 +⋯+ 𝑦𝑚−1)|𝑑𝑡
𝑥

𝑎

≤ 𝑀𝐾𝑚
(𝑥 − 𝑎)𝑚+1

(𝑚 + 1)!
 

Defining 𝑀𝑘+1 = 𝑀𝐾
𝑚 (𝑥−𝑎)𝑚+1

(𝑚+1)!
. Then, |𝑦𝑚+1(𝑥)| ≤ 𝑀𝑘+1 holds. 

Therefore, by induction, |𝑦𝑚(𝑥)| ≤ 𝑀𝑘 for all 𝑚. This implies that ∑ 𝑦𝑖
∞
𝑖=0 (𝑥) 

is absolutely and uniformly convergent. 

This completes the proof, demonstrating that the series ∑ 𝑦𝑖
∞
𝑖=0 (𝑥) is uniformly 

convergent under the Lipschitz condition on 𝐹(𝑥, 𝑡, 𝑦). 

4.1. Example 1 

𝑦(𝑥) = 𝑒𝑥 +∫ 𝑒𝑥+𝑡𝑦(𝑡)𝑑𝑡
𝑥

0

 

Let  

𝑦0(𝑥) = 𝑒
𝑥  

𝑦𝑚+1(𝑥) = ∫ 𝑒𝑥+𝑡(𝑦0 + 𝑦1 +⋯+ 𝑦𝑚)𝑑𝑡
𝑥

0

 

Applying the Lipschitz condition, we have; 

|𝐹(𝑥, 𝑡, ∅) − 𝐹(𝑥, 𝑡, 𝜓| = |𝑒𝑥+𝑡(∅ − 𝜓)| ≤ 𝐾|∅ − 𝜓| 

This holds with 𝐾 = 1, as |∅ − 𝜓| = |𝑦(𝑡)| 

For the iterative method to converge, 

|𝑦1(𝑥)| ≤ ∫ 𝑒𝑥+𝑡|𝑒𝑡|𝑑𝑡 ≤ 𝑀(𝑥 − 𝑎) = 𝑀𝑥
𝑥

0

 

Therefore, the iterative method will converge if; 

1) 𝑀𝑥 ≤ 𝛼 (𝑖. 𝑒. 1.0 ≤ 1) 

2) 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐾 = 𝑀 (𝑖. 𝑒. 1 ≤ 1) 

From Figure 1, the blue curve represents the iterative method’s approximation 

of the solution to the Volterra integral equation. This curve is obtained by iterating the 

given scheme until convergence. The orange dashed curve represents the true solution 

to the Volterra integral equation. In this example, the true solution is 𝑦(𝑥) = 𝑒𝑥 . 

The iterative method appears to converge to the true solution. Convergence is 

achieved when the iterative process stabilizes, and the solution stops changing 

significantly between iterations. The difference between consecutive iterations is 

measured by the tolerance level (tol = 1 × 10−6 in the code). If the difference falls 

below this tolerance, the iteration stops. This is important to ensure that the method 

converges to a reasonable solution. 
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Figure 1. Convergence analysis of iterative method using Example 1. 

4.2. Example 2 

𝑦(𝑥) = sin(𝑥) +∫ cos(𝑥 + 𝑡) 𝑦(𝑡)𝑑𝑡
𝑥

0

 

Let 

𝑦0(𝑥) = sin(𝑥) 

𝑦𝑚+1(𝑥) = ∫ cos(𝑥 + 𝑡) (𝑦0 + 𝑦1 +⋯+ 𝑦𝑚)𝑑𝑡
𝑥

0

 

Applying the Lipschitz condition, we have; 

|𝐹(𝑥, 𝑡, ∅) − 𝐹(𝑥, 𝑡, 𝜓| = |cos (𝑥 + 𝑡)(∅ − 𝜓)| ≤ 𝐾|∅ − 𝜓| 

This holds with 𝐾 = 1, as |∅ − 𝜓| = |𝑦(𝑡)| 

For the iterative method to converge, 

|𝑦1(𝑥)| ≤ ∫ |cos(𝑥 + 𝑡)||sin (𝑡)|𝑑𝑡 ≤ 𝑀(𝑥 − 𝑎) = 𝑀𝑥
𝑥

0

 

Hence, the iterative method will converge if; 

1) 𝑀𝑥 ≤ 𝛼 (𝑖. 𝑒. 1.0 ≤ 1) 

2) 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐾 = 𝑀 (𝑖. 𝑒. 1 ≤ 1) 

In Figure 2, again the blue curve represents the iterative method's approximation 

of the solution to the Volterra integral equation (Example 2). This curve is obtained 

by iterating the given scheme until convergence. The orange dashed curve represents 

the true solution to the Volterra integral equation. In this example, the true solution is 

𝑦(𝑥) = sin (𝑥). 

Similar to Example 1, the iterative method appears to converge to the true 

solution. Convergence is achieved when the iterative process stabilizes, and the 

solution stops changing significantly between iterations. The difference between 

consecutive iterations is measured by the tolerance level (tol = 1 × 10−6 in the code). 

If the difference falls below this tolerance, the iteration stops. 

The convergence analysis graph provides a visual representation of how well the 

iterative method approximates the true solution over the specified range of 𝑥. If the 

method converges, the iterative solution should approach the exact solution as the 
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number of iterations increases. In this case, it seems that the iterative method is 

successfully converging to the true sine function over the given range. 

 

Figure 2. Convergence analysis of iterative method using Example 2. 

4.3. Example 3 

𝑦(𝑥) = 𝑥2 +∫ (2𝑡 + 𝑦(𝑡))𝑦(𝑡)𝑑𝑡
𝑥

0

 

Let 

𝑦0(𝑥) = 𝑥
2 

𝑦𝑚+1(𝑥) = ∫ (2𝑡 + 𝑥2). |𝑦(𝑡)|𝑑𝑡 ≤ 𝑀(𝑥 − 𝑎)2 = 𝑀𝛼2
𝑥

0

 

Assuming 𝑀𝛼2 ≤ 𝛼 , the Lipschitz constant is 𝐾 = 2𝛼 + 𝑀  and the series 

converges. 

  
(a) (b) 

Figure 3. Convergence analysis of iterative method using Example 3. (a) Original data; (b) Adjusted data. 
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Just as has been used in all the figures above, the Figure 3a also has the blue 

curve, though absent, representing the iterative method's approximation of the solution 

to the Volterra integral equation. This curve is obtained by iterating the given scheme 

until convergence. The orange dashed curve represents the true solution to the Volterra 

integral equation. In this example, the true solution is 𝑦(𝑥) = 𝑥2. 

In Figure 3a, the absence of the blue curve gives an indication that the iterative 

method, when applied using example three may not converge with the data set used. 

It is important to note that the choice of parameters, including the range of 𝑥 values 

and the tolerance level, can impact the convergence behavior. If needed, further 

adjustments to these parameters may be considered for better convergence. 

Figure 3b gives a diagrammatic representation of the convergence analysis of 

the iterative method when the data set is adjusted differently from the original data 

used for all the other examples. The range of 𝑥 values used here was set to [0, 1]. This 

defines the interval over which the Volterra integral equation is analyzed. The 

tolerance level was set to 1 × 10−6. This value determines the stopping criterion for 

the iterative method. If the maximum absolute difference between consecutive 

iterations falls below this tolerance, the iteration stops. The number of points used for 

discretizing the 𝑥 values was set to 100. This affects the resolution of the plot. 

Again, for Figure 3b the blue curve represents the iterative method's 

approximation of the solution to the Volterra integral equation. The iterative process 

involves updating the solution until convergence is achieved. The orange dashed curve 

on the other side, represents the exact solution to the Volterra integral equation. In this 

example, the true solution is 𝑦(𝑥) = 𝑥2. 

From Figure 3b, the iterative method appears to converge to the true solution. 

Convergence is observed when the blue curve stabilizes and closely follows the true 

solution curve. The adjustments made in the code aim to provide a clear visualization 

of the convergence behavior of the iterative method for Example 3 over the specified 

range of 𝑥 values. 

5. Conclusion 

In conclusion, this paper has presented an innovative iterative method for solving 

nonlinear Volterra integral equations, providing a systematic and theoretically 

grounded approach to address these challenging mathematical problems. The series 

representation of the solution, coupled with the decomposition of the nonlinear 

operator, forms the basis of the proposed method, ensuring absolute and uniform 

convergence. 

Stability analysis has been a key focus, emphasizing the importance of ensuring 

that small perturbations in initial conditions do not lead to divergent solutions. The 

Lipschitz condition has served as a crucial criterion for stability, contributing to a 

comprehensive understanding of the behavior of the iterative process. 

Illustrative examples involving power nonlinearity and trigonometric functions 

have demonstrated the practical application and versatility of the proposed method. 

Convergence analyses, supported by graphical representations, have validated the 

effectiveness of the iterative approach in approximating true solutions, even in 

scenarios with diverse nonlinearities. 
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Furthermore, this work has provided a thorough theoretical foundation, drawing 

on concepts from functional analysis, nonlinear dynamics, and numerical methods. 

The inclusion of references to relevant literature ensures the integration of established 

mathematical principles and methodologies into the proposed iterative approach. 

6. Recommendations for future research 

While the presented iterative method has shown promise in solving nonlinear 

Volterra integral equations, there are avenues for further research and refinement. The 

following recommendations offer directions for future exploration: 

1) Extension to Higher Dimensions: Investigate the extension of the proposed 

method to higher-dimensional systems, providing solutions for integral 

equations in multiple variables. 

2) Adaptive Strategies: Explore adaptive strategies within the iterative process to 

enhance efficiency and convergence rates, potentially incorporating adaptive 

step sizes or refinement techniques. 

3) Generalization to Fractional Integral Equations: Extend the methodology to 

address nonlinear fractional Volterra integral equations, broadening the 

applicability of the proposed iterative method. 

4) Comparison with Existing Methods: Conduct comparative studies with other 

existing numerical methods for solving nonlinear Volterra integral equations, 

evaluating the strengths and limitations of each approach. 

5) Applications in Interdisciplinary Fields: Apply the iterative method to real-

world problems in various interdisciplinary fields, such as biology, physics, and 

engineering, to further validate its effectiveness and versatility. 

By addressing these recommendations, future research can contribute to the 

continuous advancement of numerical techniques for solving nonlinear integral 

equations, broadening the scope of applications and enhancing the overall 

understanding of complex systems. 

Conflict of interest: The author declares no conflict of interest.  
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