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1. Introduction and main result

It is well known that there are many solutions in integers to the equation x2+y2 =

z2, for instance (3,4,5); (5,12,13). Around 1500 B.C, the Babylonians were aware of
the solution (4961, 6480, 8161) and the Egyptians knew the solutions (148, 2736, 2740)
and (514, 66048, 66050). Also Greek mathematicians were attracted to the solutions
of this equation. In 2021, Mouanda introduced a powerful new method of generating
galaxies of sequences of Pythagorean triples [1]. Fermat’s Last Theorem states that
the equation

xn + yn = zn, n ≥ 3,

has no positive integer solutions [2–4]. In 1966, Domiaty proved that the equation
X4 + Y 4 = Z4 is solvable in M2(Z) [5]. Let GLn(Z) be the group of units of ring
Mn(Z). Denote by

SLn(Z) = {A ∈ Mn(Z) : detA = 1} .

In 1989, Vaserstein investigated the question of the solvability of the Diophantine equa-
tion

Xn + Y n = Zn, n ≥ 2, (1)

for matrices of the group GL2(Z) [6]. In 1993, Frejman studied the solvability of the
Diophantine Equation (1) in the set of positive integer powers of a matrix A with el-
ements a11 = 0, a12 = a21 = a22 = 1 [7]. In 1995, the same case was studied by
Grytczuk [8]. The same year, Khazanov proved that in GL3(Z) solutions of the Dio-
phantine Equation (1) do not exist if n is a multiple of either 21 or 96, and in SL3(Z)
solutions do not exist if n is a multiple of 48 [9]. In 1996, Qin gave another proof of
Khazanov’s result on the solvability of the Diophantine Equation (1) in SL2(Z) [10].
In 2002, Patay and Szakacs described the periodic elements in GL2(Z) and gave the
answer to some problems concerning the Diophantine Equation (1) in matrix groups
and in irreducible elements of matrix rings [11]. In 2021, Mao-Ting and Jie proved that
Fermat’s matrix equation has many solutions in a set of 2-by-2 positive semi-definite
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integral matrices, and has no nontrivial solutions in some classes including 2-by-2 sym-
metric rational and stochastic quadratic field matrices [12]. Fermat’s Last Theorem
has been extended to the field of complex polynomials of one variable [13]. In 2022,
Mouanda, Kangni and Tsiba proved the equation X2 + Y 2 = Z2 admits matrix solu-
tions in the set of circulant matrices with positive integers as entries [14]. The same
year, Mouanda noticed that

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0



9

+



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 16

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0



9

= A9

with

A =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 25

0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0



9

.

Pythagorean triples have many applications in Cryptography.
In this paper, we introduce a new method of generating the galaxies of sequences

of Toeplitz matrix solutions of the Diophantine equation

Xn + Y n = Zn, n ≥ 3, X, Y, Z ∈ Mn(N),

linked to Pythagorean triples.
Theorem 1.1. There exists an infinite number of galaxies of sequences (Xk, Yk, Zk)k≥0

of Toeplitz matrix triples of Mn(N) such that

Xn
k + Y n

k = Zn
k , Xk, Yk, Zk ∈ Mn(N), k, n ∈ N, n ≥ 3.

2. Proof of the main result

In this section, we investigate the Toeplitz matrix solutions of the equation Xn +

Y n = Zn, n ≥ 3.
Definition 2.1. A triple (x, y, z) ∈ N3 is said Pythagorean if x2 + y2 = z2.

Denote by F2,2,2(N) =
{
(a, b, c) ∈ N3 : a2 + b2 = c2

}
is the set of Pythagorean
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triples. Therefore, we can denote by

Fn,n,n(Mm(C)) =
{
(A,B,C) ∈ Mm(C)3 : An +Bn = Cn

}
, n ≥ 2, n ∈ N.

In 2022, Mouanda proved that the universe

F2,2,2(Mn(N)) =
{
(X,Y, Z) : X2 + Y 2 = Z2, X, Y, Z ∈ Mn(N)

}
has an infinite number of elements [14]. Fermat’s Last Theorem allows us to claim
that the Diophantine equation xn + yn = zn, n ≥ 3, has no positive integer solutions.
The idea of finding all the sequences (Xk, Yk, Zk)k≥0 of matrix triples with positive
integers as entries which satisfy

Xn
k + Y n

k = Zn
k , k, n ∈ N, n ≥ 3,

is an unthinkable idea. Mouanda’s recent work on this direction allows us to believe
that these sequences of matrix triple solutions do really exist because they are linked to
Pythagorean triples.
Definition 2.2. A finite matrix A = [ai,j ]

n
i,j=1 is called a Toeplitz matrix if ai+1,j+1 =

ai,j .
Each descending diagonal from left to right of a Toeplitz matrix is constant. For

instance, the matrix 
1 2 3 4 5

5 1 2 3 4

4 5 1 2 3

3 4 5 1 2

2 3 4 5 1


is a Toeplitz matrix. Let Aα,n = [ai,j ]

n
i,j=1 ∈ Mn(N) be a Toeplitz matrix such that

a1,3 = 1,

an−1,1 = α,

ai,j = 0, ∀i /∈ {1, n− 1} , ∀j /∈ {1, 3} .

In other words,

Aα,n =



0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0

0 0 0 0 . . . 1 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

α 0 0 0 . . . 0 0 0 0

0 α 0 0 . . . 0 0 0 0



∈ Mn(N), α ∈ N.
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The matrix Aα,n is called a Rare matrix of order n and index 2 [15]. The matrix Aα,n

is an n× n− matrix. For example,

Aα,4 =


0 0 1 0

0 0 0 1

α 0 0 0

0 α 0 0

 , Aα,5 =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

α 0 0 0 0

0 α 0 0 0

 ,

Aα,6 =



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

α 0 0 0 0 0

0 α 0 0 0 0


are Rare matrices of index 2. The matrices of the set {Aα,n : α ∈ N} allow us to con-
struct the matrix triple solutions of the Diophantine equation Xn + Y n = Zn. The
most interesting part of this study is the seize of the matrix solutions. In our case, n is
the seize of the matrix solutions. This observation allows us to claim that it is practi-
cally impossible to write down on a computer or on a board the matrix solutions of the
Diophantine equation Xn + Y n = Zn for n sufficiently large.
Remark 2.3. Let

Aα,n =



0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0

0 0 0 0 . . . 1 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

α 0 0 0 . . . 0 0 0 0

0 α 0 0 . . . 0 0 0 0



∈ Mn(N), α ∈ N,

be a Rare matrix of order n and index 2. Then

An
α,n =



α2 0 0 0 . . . 0 0 0 0

0 α2 0 0 . . . 0 0 0 0

0 0 α2 0 . . . 0 0 0 0

0 0 0 α2 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . α2 0 0 0

0 0 0 0 . . . 0 α2 0 0

0 0 0 0 . . . 0 0 α2 0

0 0 0 0 . . . 0 0 0 α2



∈ Mn(N).
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• Assume that (a, b, c) ∈ F2,2,2(N). In other words, a2 + b2 = c2. Let us consider
the Toeplitz matrices

Aa =

 0 0 1

a 0 0

0 a 0

 , Ab =

 0 0 1

b 0 0

0 b 0

 , Ac =

 0 0 1

c 0 0

0 c 0

 .

A simple calculation shows that

A3
a =

 a2 0 0

0 a2 0

0 0 a2

 , A3
b =

 b2 0 0

0 b2 0

0 0 b2

 , A3
c =

 c2 0 0

0 c2 0

0 0 c2

 .

It is clear that

A3
a +A3

b =

 a2 + b2 0 0

0 a2 + b2 0

0 0 a2 + b2

 =

 c2 0 0

0 c2 0

0 0 c2

 = A3
c .

Therefore, A3
a + A3

b = A3
c . This implies that (Aa, Ab, Ac) ∈ F3,3,3(M3(N)). Fi-

nally, every Pythagorean triple generates a Toeplitz matrix solution of the Diophantine
equation X3 + Y 3 = Z3.
• Assume that (a, b, c) ∈ F2,2,2(N). In other words, a2 + b2 = c2. Let us consider

the Toeplitz matrices

Aa =


0 0 1 0

0 0 0 1

a 0 0 0

0 a 0 0

 , Ab =


0 0 1 0

0 0 0 1

b 0 0 0

0 b 0 0

 , Ac =


0 0 1 0

0 0 0 1

c 0 0 0

0 c 0 0

 .

A simple calculation shows that

A4
a =


a2 0 0 0

0 a2 0 0

0 0 a2 0

0 0 0 a2

 , A4
b =


b2 0 0 0

0 b2 0 0

0 0 b2 0

0 0 0 b2

 ,

A4
c =


c2 0 0 0

0 c2 0 0

0 0 c2 0

0 0 0 c2

 .
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It is clear that

A4
a +A4

b =


a2 + b2 0 0 0

0 a2 + b2 0 0

0 0 a2 + b2 0

0 0 0 a2 + b2

 =


c2 0 0 0

0 c2 0 0

0 0 c2 0

0 0 0 c2

 = A4
c .

Therefore, A4
a + A4

b = A4
c . This implies that (Aa, Ab, Ac) ∈ F4,4,4(M4(N)).

Finally, every Pythagorean triple generates a Toeplitz matrix solution of the equation
X4 + Y 4 = Z4.
• Assume that (a, b, c) ∈ F2,2,2(N). In other words, a2 + b2 = c2. Let us consider

the Toeplitz matrices

Aa =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

a 0 0 0 0

0 a 0 0 0

 , Ab =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

b 0 0 0 0

0 b 0 0 0

 ,

Ac =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

c 0 0 0 0

0 c 0 0 0

 .

A simple calculation shows that

A5
a =


a2 0 0 0 0

0 a2 0 0 0

0 0 a2 0 0

0 0 0 a2 0

0 0 0 0 a2

 , A5
b =


b2 0 0 0 0

0 b2 0 0 0

0 0 b2 0 0

0 0 0 b2 0

0 0 0 0 b2


and

A5
c =


c2 0 0 0 0

0 c2 0 0 0

0 0 c2 0 0

0 0 0 c2 0

0 0 0 0 c2

 .

Therefore, A5
a + A5

b = A5
c . This implies that (Aa, Ab, Ac) ∈ F5,5,5(M5(N)).

Finally, every Pythagorean triple generates a Toeplitz matrix solution of the equation
X5 + Y 5 = Z5.
• Assume that (a, b, c) ∈ F2(N). In other words, a2 + b2 = c2. Let us consider the

Toeplitz matrices
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Aa =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

a 0 0 0 0 0 0 0

0 a 0 0 0 0 0 0


, Ab =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

b 0 0 0 0 0 0 0

0 b 0 0 0 0 0 0


and

Ac =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

c 0 0 0 0 0 0 0

0 c 0 0 0 0 0 0


.

A simple calculation shows that

A8
a =



a2 0 0 0 0 0 0 0

0 a2 0 0 0 0 0 0

0 0 a2 0 0 0 0 0

0 0 0 a2 0 0 0 0

0 0 0 0 a2 0 0 0

0 0 0 0 0 a2 0 0

0 0 0 0 0 0 a2 0

0 0 0 0 0 0 0 a2


,

A8
b =



b2 0 0 0 0 0 0 0

0 b2 0 0 0 0 0 0

0 0 b2 0 0 0 0 0

0 0 0 b2 0 0 0 0

0 0 0 0 b2 0 0 0

0 0 0 0 0 b2 0 0

0 0 0 0 0 0 b2 0

0 0 0 0 0 0 0 b2
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and

A8
c =



c2 0 0 0 0 0 0 0

0 c2 0 0 0 0 0 0

0 0 c2 0 0 0 0 0

0 0 0 c2 0 0 0 0

0 0 0 0 c2 0 0 0

0 0 0 0 0 c2 0 0

0 0 0 0 0 0 c2 0

0 0 0 0 0 0 0 c2


.

It is quiet clear that A8
a +A8

b = A8
c . In particular, the matrices

A3 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0


, A4 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

4 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0


and

A5 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

5 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0


satisfy

A8
3 =



9 0 0 0 0 0 0 0

0 9 0 0 0 0 0 0

0 0 9 0 0 0 0 0

0 0 0 9 0 0 0 0

0 0 0 0 9 0 0 0

0 0 0 0 0 9 0 0

0 0 0 0 0 0 9 0

0 0 0 0 0 0 0 9


,
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A8
4 =



16 0 0 0 0 0 0 0

0 16 0 0 0 0 0 0

0 0 16 0 0 0 0 0

0 0 0 16 0 0 0 0

0 0 0 0 16 0 0 0

0 0 0 0 0 16 0 0

0 0 0 0 0 0 16 0

0 0 0 0 0 0 0 16


and

A8
5 =



25 0 0 0 0 0 0 0

0 25 0 0 0 0 0 0

0 0 25 0 0 0 0 0

0 0 0 25 0 0 0 0

0 0 0 0 25 0 0 0

0 0 0 0 0 25 0 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 0 25


.

It follows that A8
3 + A8

4 = A8
5. Let us consider the galaxies of sequences of

Pythagorean triples [1]

Za(α,N) =


xk(α, a) = α2 + 6αak

yk(α, a) = 6αak + 18a2k

zk(α, a) = α2 + 6αak + 18a2k

k ∈ N, a ∈ N

 , α ∈ N.

It is clear that xk(α, a)2 + yk(α, a)
2 = zk(α, a)

2, a, α ∈ N. The matrices

Axk(α,a) =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

xk(α, a) 0 0 0 0 0 0 0

0 xk(α, a) 0 0 0 0 0 0


,

Ayk(α,a) =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

yk(α, a) 0 0 0 0 0 0 0

0 yk(α, a) 0 0 0 0 0 0
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and

Azk(α,a) =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

zk(α, a) 0 0 0 0 0 0 0

0 zk(α, a) 0 0 0 0 0 0


satisfy A8

xk(α,a)
+A8

yk(α,a)
= A8

zk(α,a)
. We can claim that

La(α,M8(N)) =


Axk(α,a)

Ayk(α,a)

Azk(α,a)

k ∈ N, a ∈ N

 ⊂ F8(M8(N)), α ∈ N,

are galaxies of matrix solutions of the Diophantine equation X8 + Y 8 = Z8. This
implies that (Axk(α,a), Ayk(α,a), Azk(α,a)) ∈ F8,8,8(M8(N)), k ∈ N. We can now prove
our main result.
Proof of Theorem 1.1

Let

Aα,n =



0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0

0 0 0 0 . . . 1 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

α 0 0 0 . . . 0 0 0 0

0 α 0 0 . . . 0 0 0 0



∈ Mn(N), α ∈ N,

be a Rare matrix of order n and index 2. Remark 2.3. allows us to claim that

An
α,n =



α2 0 0 0 . . . 0 0 0 0

0 α2 0 0 . . . 0 0 0 0

0 0 α2 0 . . . 0 0 0 0

0 0 0 α2 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . α2 0 0 0

0 0 0 0 . . . 0 α2 0 0

0 0 0 0 . . . 0 0 α2 0

0 0 0 0 . . . 0 0 0 α2



∈ Mn(N).

The structure of the matrix Aα,n could allow us to construct the Toeplitz matrix
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solutions of the Diophantine equation Xn + Y n = Zn. Indeed, let us consider the
galaxies of sequences of Pythagorean triples [1]

Za(α,N) =


xk(α, a) = α2 + 6αak

yk(α, a) = 6αak + 18a2k

zk(α, a) = α2 + 6αak + 18a2k

k ∈ N, a ∈ N

 , α ∈ N.

Denote by

Axk(α,a),n =



0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0

0 0 0 0 . . . 1 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

xk(α, a) 0 0 0 . . . 0 0 0 0

0 xk(α, a) 0 0 . . . 0 0 0 0



,

Ayk(α,a),n =



0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0

0 0 0 0 . . . 1 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

yk(α, a) 0 0 0 . . . 0 0 0 0

0 yk(α, a) 0 0 . . . 0 0 0 0


and

Azk(α,a),n =



0 0 1 0 . . . 0 0 0 0

0 0 0 1 . . . 0 0 0 0

0 0 0 0 . . . 0 0 0 0

0 0 0 0 . . . 1 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

zk(α, a) 0 0 0 . . . 0 0 0 0

0 zk(α, a) 0 0 . . . 0 0 0 0



.
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A simple calculation shows that

An
xk(α,a),n

=



xk(α, a)
2 0 0 0 . . . 0

0 xk(α, a)
2 0 0 . . . 0

0 0 xk(α, a)
2 0 . . . 0

0 0 0 xk(α, a)
2 . . . 0

...
...

...
... . . .

...
0 0 0 0 . . . xk(α, a)

2


,

An
yk(α,a),n

=



yk(α, a)
2 0 0 0 . . . 0

0 yk(α, a)
2 0 0 . . . 0

0 0 yk(α, a)
2 0 . . . 0

0 0 0 yk(α, a)
2 . . . 0

...
...

...
... . . .

...
0 0 0 0 . . . yk(α, a)

2


and

An
zk(α,a),n

=



zk(α, a)
2 0 0 0 . . . 0

0 zk(α, a)
2 0 0 . . . 0

0 0 zk(α, a)
2 0 . . . 0

0 0 0 zk(α, a)
2 . . . 0

...
...

...
... . . .

...
0 0 0 0 . . . zk(α, a)

2


.

Therefore, An
xk(α,a),n

+An
yk(α,a),n

= An
zk(α,a),n

, α, n, a, k ∈ N. Finally,

Γ(α,Mn(N)) =


Axk(α,a),n

Ayk(α,a),n

Azk(α,a),n

k, a ∈ N

 ⊂ Fn(Mn(N)), α, n ∈ N,

are galaxies of Toeplitz matrix solutions of the Diophantine equationXn + Y n = Zn.
□

The equation Xn + Y n = Zn, n ≥ 3, always has an infinite number of ma-
trix solutions in Mnm(N). The sequences of the matrix triples (Xk(α,A), Yk(α,A),
Zk(α,A))k∈N of the galaxy

Wa(α,Mm(N)) =


Xk(α,A) = α4Im + 2α2Ak

Yk(α,A) = 2α2Ak + 2A2k

Zk(α,A) = α4Im + 2α2Ak + 2A2k

k ∈ N, A ∈ Mm(N)

 , α ∈ N,

could allow us to construct the matrix solutions inMn×m(N). In our case, (AXk(α,A),n,
AYk(α,A),n, AZk(α,A),n) ∈ Fn,n,n(Mnm(N)).

Our next work will be focused on finding all the structures of matrix solutions of
this Diophantine equation for n sufficiently large.
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