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1. Introduction and main result

It is well known that there are many solutions in integers to the equation 2% +y? =
22, for instance (3,4,5); (5,12,13). Around 1500 B.C, the Babylonians were aware of
the solution (4961, 6480, 8161) and the Egyptians knew the solutions (148, 2736, 2740)
and (514, 66048, 66050). Also Greek mathematicians were attracted to the solutions
of this equation. In 2021, Mouanda introduced a powerful new method of generating
galaxies of sequences of Pythagorean triples [1]. Fermat’s Last Theorem states that
the equation

2yt =2"n >3,

has no positive integer solutions [2—4]. In 1966, Domiaty proved that the equation
X4+ Y4 = Z%is solvable in M(Z) [5]. Let GL,(Z) be the group of units of ring
M,,(Z). Denote by

SLo(Z) = {A € Mp(Z) : detA = 1}.

In 1989, Vaserstein investigated the question of the solvability of the Diophantine equa-
tion
X"+ Y"=27"n>2, @)

for matrices of the group GLy(Z) [6]. In 1993, Frejman studied the solvability of the
Diophantine Equation (1) in the set of positive integer powers of a matrix A with el-
ements a1; = 0,a12 = ag1 = agse = 1 [7]. In 1995, the same case was studied by
Grytczuk [8]. The same year, Khazanov proved that in GL3(Z) solutions of the Dio-
phantine Equation (1) do not exist if n is a multiple of either 21 or 96, and in SL3(Z)
solutions do not exist if n is a multiple of 48 [9]. In 1996, Qin gave another proof of
Khazanov’s result on the solvability of the Diophantine Equation (1) in SLo(Z) [10].
In 2002, Patay and Szakacs described the periodic elements in GLy(Z) and gave the
answer to some problems concerning the Diophantine Equation (1) in matrix groups
and in irreducible elements of matrix rings [11]. In 2021, Mao-Ting and Jie proved that

Fermat’s matrix equation has many solutions in a set of 2-by-2 positive semi-definite
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integral matrices, and has no nontrivial solutions in some classes including 2-by-2 sym-
metric rational and stochastic quadratic field matrices [12]. Fermat’s Last Theorem
has been extended to the field of complex polynomials of one variable [13]. In 2022,
Mouanda, Kangni and Tsiba proved the equation X? + Y2 = Z? admits matrix solu-
tions in the set of circulant matrices with positive integers as entries [14]. The same
year, Mouanda noticed that

0001000009 0001000009
0000 1O0O0O0TDO 0000 1O0O0OO0TDO
000 0O0OT1O0O0ODO0 0000O0OT1O0O0O0
000 O0O0O0O0OOT1FPO0 000 0O0OO0OO0OT1O0
000 O0O0O0OO0OT 0?9 +]1000O0O0O0O0O0 16 =AY
0000O0OO0ODT1TTUO0OTDO 0000OO0OO0OT1TUO0OO
100 00O0O0O0TO 100 00O0O0O0O
01 00O0O0OO0OUO0ODO 01 000O0OO0OOO
001 00O0O0OO0OTDO 001 00O0O0OO0OO
with 0
0001 0O0O0OO0OO
0000 1O0O0O0TDO
0000O0OT1O0O0TDO0
00 00O0OOOT1O
A= 0 0 0 0 0 0 0 0 25
0000O0OO0OT1TUO0OO
100 00O0O0O0TDO
01 000O0OO0OOO
001 00O0O0OO0O O

Pythagorean triples have many applications in Cryptography.
In this paper, we introduce a new method of generating the galaxies of sequences

of Toeplitz matrix solutions of the Diophantine equation
X"+Y"=27"n>3,X,Y,Z € M,(N),

linked to Pythagorean triples.
Theorem 1.1. There exists an infinite number of galaxies of sequences (X, Yi, Z) k>0
of Toeplitz matrix triples of M, (N) such that

X+ Y = 20, Xy, Yie, Zi € Mp(N), k,n € N,n > 3.

2. Proof of the main result

In this section, we investigate the Toeplitz matrix solutions of the equation X" +
Y = Z"n >3,
Definition 2.1. A4 triple (x,vy, z) € N? is said Pythagorean if x* + y? = 2°.
Denote by F222(N) = {(a,b,c) € N*: a? + b? = ¢?} is the set of Pythagorean
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triples. Therefore, we can denote by
Frnn(Mm(C)) = {(A,B,C) € My(C)*: A"+ B"=C"} ,n>2,neN
In 2022, Mouanda proved that the universe
Fooo(M,(N)) ={(X,Y,2): X*+Y? =2 X,Y,Z € M,,(N)}

has an infinite number of elements [14]. Fermat’s Last Theorem allows us to claim
that the Diophantine equation 2™ + y"™ = 2", n > 3, has no positive integer solutions.
The idea of finding all the sequences (X, Yy, Zy) x>0 of matrix triples with positive

integers as entries which satisfy
Xp+Y!' =2 kneNmn>3,

is an unthinkable idea. Mouanda’s recent work on this direction allows us to believe
that these sequences of matrix triple solutions do really exist because they are linked to
Pythagorean triples.
Definition 2.2. 4 finite matrix A = [a; ;|7 ;_, is called a Toeplitz matrix if a;1,j+1 =
Qg 5.

Each descending diagonal from left to right of a Toeplitz matrix is constant. For

instance, the matrix

1 2 3 45
5 1 2 3 4
4 51 2 3
3 4 5 1 2
2 3 4 5 1
is a Toeplitz matrix. Let Aqn = [a; ]} ;1 € M, (N) be a Toeplitz matrix such that
CL1’3 = 1,
ap—-1,1 = Q,

a;; =0,Vi ¢ {1,n—1},Vj ¢ {1,3}.

In other words,

0010 0000
0001 0000
0000 0000
0000 ..1000
Aap=1 1 1 i 1 1 i i | € Mp(N),aeN.
0000 0010
0000 0001
a 0 00 0000
0 a 00 0000



Mathematics and Systems Science 2024, 2(1), 2623.

The matrix A, is called a Rare matrix of order n and index 2 [15]. The matrix A,

is an n X n— matrix. For example,

00100
00 10
0 001 000710
Ay = Aus=1 0000 1|,
a4 o 0 0 0 a,b
@« 0 00 0
0 a 00
0 a 000
001000
0007100
000010
A e
>0 000001
@« 0000 0
0 a 0000

are Rare matrices of index 2. The matrices of the set { A, : @ € N} allow us to con-
struct the matrix triple solutions of the Diophantine equation X™ + Y™ = Z". The
most interesting part of this study is the seize of the matrix solutions. In our case, n is
the seize of the matrix solutions. This observation allows us to claim that it is practi-
cally impossible to write down on a computer or on a board the matrix solutions of the
Diophantine equation X™ + Y™ = Z" for n sufficiently large.

Remark 2.3. Let

0 010 0000
0 0 01 0000
0 000 0000
0 00O 1 000
Ao =1+ ¢+ ¢+ 1 ottt €My(N),aeN,
0 00O 0010
0 00O 0001
a 0 0 0 0000
0 a 00 0000
be a Rare matrix of order n and index 2. Then
a> 0 0 0 0 0 0 O
0 o> 0 0 0 0 0 ©
0 0 o®> 0 0 0 0 0
0 0 0 o 0 0 0 0
Apn = SR : Do € My(N)
0 0 0 0 a> 0 0 0
0 0 0 0 0 a> 0 0
0 0 0 O 0 0 a®> 0
0 0 0 O 0 0 0 o
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*  Assume that (a,b,c) € F222(N). In other words, a? + b% = 2. Let us consider

the Toeplitz matrices

0 0 1 00 1
Ag=| a 00 |, 4= b 00 |, 4= ¢ 00
0 a 0 0 b 0 0 ¢ 0
A simple calculation shows that
a2 0 0 0 0 2 0 0
AB=10 a* 0 |,A=[0 » 0 [, 2= 0 & 0
0 0 da? 0 0 v 0 0 2
It is clear that
a? 4+ b2 0 0 2 0 0
A3 4 AP = 0 a4+ 0 =l 0 & 0 | =42
0 0 a? + b? 0 0 2

Therefore, A3 + A3 = A2. This implies that (A4, Ap, Ac) € Fs33(M3(N)). Fi-
nally, every Pythagorean triple generates a Toeplitz matrix solution of the Diophantine
equation X3 + Y3 = 73,

+  Assume that (a,b,c) € Fo22(N). In other words, a® + b? = 2. Let us consider

the Toeplitz matrices

0010 0010 0010
1 1 1
Aazooo ,Ab—OOO ,AC:OOO
a 000 b 000 c 000
0 a 0 0 0b 0O 0 c 00
A simple calculation shows that
a2 0 0 0 ¥» 0 0 0
|0 a2 0 0 i |0 ¥ 0 0
o 0 0 a 0 |77 0 0 » 0 |
0 0 0 a? 0 0 0 b
2 0 0 0
|0 2 0 0
¢ 0 0 ¢ 0
0 0 0 ¢
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It is clear that

a® + b? 0 0 0 2 0 0 0
0 a?+0? 0 0 0 2 0 0
Ar 4 oAl = = = A%,
a 0 0 a?2+b 0 0 0 & 0 ¢
0 0 0 a®>+0b? 0 0 0 ¢

Therefore, A% + Ag‘ = A% This implies that (A,, Ay, A.) € Fuaaa(My(N)).
Finally, every Pythagorean triple generates a Toeplitz matrix solution of the equation
Xt+yt=2%

«  Assume that (a, b, c) € Fo22(N). In other words, a? + b? = ¢%. Let us consider

the Toeplitz matrices

00100 00100
000710 00010
Ao=1 00001 |,4=|00001]/1,
a 0000 b 0000
0 a 000 0b 000
00100
00010
Ac=100 0 0 1
0000
c 000
A simple calculation shows that
a> 0 0 0 0 ¥ 0 0 0
0 a2 0 0 0 0 b 0 0
A= 0 0 a2 0 0 [,48=] 0 0 0 0
0 0 0 a* 0 0 0 v 0
0 0 0 0 a? 0 0 0 0 b
and
2 0 0 0 0
0 ¢2 0 0 0
A=10 0 ¢ 0 0
0 0 0 ¢ 0
0 0 0 0 ¢

Therefore, A3 + A;:’ = A5, This implies that (A,, Ay, Ac.) € Fs55(Ms5(N)).
Finally, every Pythagorean triple generates a Toeplitz matrix solution of the equation
X54+Y5 =25
+  Assume that (a, b, c) € Fo(N). In other words, a® + b> = c2. Let us consider the

Toeplitz matrices
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0010O0O0O00Q 0
0001O0O0O00QO0

00 0O01O0O0O0

000O0O0OT1TTUO0O0

000O0O0OO0OT10P0

000O0O0GO0OGO0OT1

b 00 0 O0O0O0O
0b 0 0O0O0O0O

0010O0O0O0GO
00 010O0O0GO

000O01O0O0O

00 0O0O0OT1TO0TP O

00 0O0O0OOTF® O

00 0O0O0OO0O01

a 000 0O0O0O0
0 a 00 0O0O0O

a

<t

and

001 0O0O0O0OQO
0001 00O0O0O0

000 01O0O0O0

000 0O0OT1TO0TPO0

000 0O0O0OT1FPO0

000O0O0O0TCO0T1

c 000 0O0O0O
0 c0O0O0O0O0O

A simple calculation shows that

b2

0 0 »¥ 0 0 0

0

0

b2
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and

0 0 0

2

0 0 ¢
0 0

0
0

2

0

62

0
0

0 0 0 O
0 0 0 O

0

0

0

0 O

. In particular, the matrices

8
c

It is quiet clear that AS + A5 = A

001 000O0O0O
0001 00O0O0OQO0

000 01O0O0O0

000 0O0OT1TO0TO0

00 0O0O0OO0OT10P0

000 0O0O0O0GO0T1

400 00O0O00O0

0400000O00O0

001 0O00O0O0O0
00 01 0O0O0O0

000O0T1O0TO0O 0

000O0OT1TTGO0OO0

00 0O0O0OO0OT1F@P0

000O0O0OGO0OGO0OT1

300 00O0O00O0
03 00O0O0O00O0

and

001 0O0O0O0O© 0
0001 0O0O0O0

0 00O01O0O00O0

00 0O0O0O1QO00O0

000 0O0OO0OT1P0

0 00O0O0OO0OG©O0T1

50000000
05000000

satisfy

)

900 0 00 00O

09000000

009 00O0O0O0

000 900O00O0

00009 0O00O0

00 0O0O09CO00

000 O0O0O0O9O0

000 O0O0OO0OTO 029
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%66 0 0 0 0 0O 0 O
0 16 0 0 0 O O O
0O 0 16 0 0 0O O O
A5 = 0 0 0 16 0 0 0 O
0 0 0 0 16 0 0 O
0 0 0O 0 0 16 0 O
0 0 0 O 0 16 0
0O 0 0 0 0O 0 0 16
and
25 0 0 0 0 O 0 O
0 25 0 0 0 O 0 O
0 0 25 0 0 0 O
A8 = 0 0 0 25 0 0 0 O
0 0 0 0 25 0 0 O
0 0 0 0 0 25 0 O
0 0 0O 0O 0 0 25 0
0 0 0O 0O 0O 0 0 25

It follows that Ag + A% = Ag. Let us consider the galaxies of sequences of
Pythagorean triples [1]

ri(a,a) = a? + 6aa®
yr(, a) = 6aa® + 18a%"
zp(a, a) = a? + 6aak + 18a2F
keNyaeN

Za(a,N) = ;o € N.

2

It is clear that 74 (a, a)? + yi(a, a)? = z1(, @)%, a,a € N. The matrices

zg(a,a) =

S
~—

8
o
—
S O O O O o O O

O O O O o o o o

S
S—
O O O = O O O O

o O = O O O O O

o O O O O O O
o O O O O O~ O
o O O O O = O O
o O O O = O O O

8
e
—

Yk (ara) =

s
~—

<
=
—
SO QO O o o o o

O O O o o o o o

S
~—

O O O O o o O
o O O O o o~ O
oS O O O o = O O
O O O O = O O O
SO O O = O O O O
o O = O O O o O

N~
B
—
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and
0 0 100 000
0 0 01 0000
0 0 001000
0 0 000100
Azk(a,a):
0 0 000010
0 0 000O0O0°1
zi(a, a) 0 000000
0 zk(ayba) 0 0 0 0 0 O
satisfy Aik (@) T Aik(a,a) = Agk(a,a). We can claim that
Axk(a,a)
A
La(a, Ms(N)) = |~ | C Fs(Ms(N)), a0 €,
Azk(a,a)
keNaeN

are galaxies of matrix solutions of the Diophantine equation X® + Y® = Z® This
implies that (A, (a,a)> Ay, (a,a)) Az (a,a)) € Fs,88(Ms(N)), k € N. We cannow prove
our main result.

Proof of Theorem 1.1

Let
0 010 0 0 0O
0 0 0 1 00 0O
0 0 0O 00 0O
0 0 0O 1 0 00
Ao =1 ¢ + 1t €My(N),aeN,
0 0 0O 0010
0 0 0O 0 0 01
a 0 0 0 0 00O
0 o 0O 00 00

be a Rare matrix of order n and index 2. Remark 2.3. allows us to claim that

> 0 0 0 0 0 0 ©
0 o> 0 0 0 0 0 0
0 0 a*> 0 0 0 0 O
0 0 0 o 0 0 0 ©
Ajn = R SR € My(N)
0 0 0 0 a®> 0 0 0
0 0 0 O 0 o> 0 0
0 0 0 O 0 0 o> 0
0 0 0 O 0 0 0 o

The structure of the matrix A, ,, could allow us to construct the Toeplitz matrix
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solutions of the Diophantine equation X" 4+ Y = Z"™. Indeed, let us consider the

galaxies of sequences of Pythagorean triples [1]

rr(a,a) = a? + 6aa®
yr(a,a) = 6aa® + 18a%F

Za(aN) = zi(a,a) = a2 + 6aa” + 18a%* xR,
keNaeN
Denote by
0 0 10 00 0O
0 0 01 00 0O
0 0 0 0 0 00O
0 0 0 0 1 0 00
Ay (aa)n = f : A
0 0 00 0010
0 0 0 0 0 001
xi (o, a) 0 0 0 0 000
0 zp(a,a) 0 0 0 00O
0 0 10 0 00O
0 0 01 0 0 0O
0 0 00 00 0O
0 0 0 0 1 0 0 0
Ay, (a)m P P :
0 0 00 0010
0 0 00 0 0 01
Yk (o, a) 0 0 0 00O
0 ye(a,a) 0 0 0000
and
0 0 10 0 00O
0 0 01 0000
0 0 00 0 00O
0 0 0 0 1 0 0 O
Az (aa)m o Do :
0 0 00 0 010
0 0 0 0 0 1
zi(a, a) 0 0 0 0000
0 zu(a,a) 0 0 000 0

11
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A simple calculation shows that

z(a, a)? 0 0 0 0
0 ri(a, a)? 0 0 0
n 0 0 ri(a, a)? 0 0
zk(ea)n 0 0 0 zp(, a)? 0 ’
0 0 0 0 . 2, a)?
Y (e, a)? 0 0 0 0
yr(a, a)? 0
" 0 0 yr (o, a)? 0 0
yk(a,a)n = 0 0 0 yr(a, a)? 0
0 0 0 0 oo (o, a)?
and
21(a, a)? 0 0 0 0
ze(a, a)? 0 0
. 0 0 zp(a, a)? 0 0
Zr(va)n = 0 0 0 (e, a)? 0
0 0 0 0 oo 21y a)?
Therefore, A:k(a’a),n + AZk(a,a),n = Agk (), O T s k € N. Finally,
Azk(a,a),n
A
T, My(N)) = |~ @9 | B, (M, (N)),a,n € N,
Azk(a,a),n
k,a €N

are galaxies of Toeplitz matrix solutions of the Diophantine equation X" + Y = Z".
O

The equation X" + Y™ = Z" n > 3, always has an infinite number of ma-
trix solutions in M,,,,(N). The sequences of the matrix triples (X (c, A), Yi(c, A),
Zy(ar, A))ken of the galaxy

Xi(a, A) = oI, + 222 AF
Yi(a, A) = 202 AF 4+ 2A%
Zi(a, A) = oI, + 202 AF - 2A%F
ke N, Ae My,(N)

Wa(a, My, (N)) = ,a €N,

could allow us to construct the matrix solutions in M, x,,(N). In our case, (A Xp(a,A)ms

AYk(a,A),m AZk (a,A),n) € fn,n,n (Mnm (N))
Our next work will be focused on finding all the structures of matrix solutions of

this Diophantine equation for n sufficiently large.

12
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