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Abstract: This paper summarizes results recently obtained from simulation of transient 

temperature excursions in filamentary and thin film superconductors. Under multi-component 

heat transfer in the complicated conductor cross sections and materials composition of 

present High Temperature Superconductors, numerical, Finite Element and Monte Carlo 

simulations are applied to solve Fourier’s differential equation with high spatial and temporal 

resolution. The overall aim was to encircle the quench problem in superconductors and to 

provide new stability criteria from correlations between superconductor critical current 

density, density of electron pairs, and relaxation time and entropy. Relaxation, correlation 

and entropy analysis presented in this paper extends the spectrum of standard methods to 

avoid quench to a new tool. As results, quench starts always locally, and as a highlight of this 

investigation, a second “critical” temperature, TQuench, has been identified that with high 

probability exists below standard critical temperature. Entropy is the driving force for 

relaxation of the superconductor to new equilibrium after a disturbance. 
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1. Introduction 

Energy levels and their occupation by electrons in superconductors are 
differentiated by ground and excitation states, like in other solids (Figure 1). Excitations 
of the many-particle, superconductor electron system, which means disturbances of its 
thermodynamic equilibrium, may result from absorption of radiation, from electron 
injection or from the frequently neglected, “flux flow”-loss mechanism, see Chap.7 in 
the study of Huebener [1]. This loss mechanism exists, even below critical temperature, 
TCrit, when the superconductor, if charged by a large transport current, is exposed to a 
magnetic field (see later for explanation). Disturbances in superconductors trivially arise 
also from insufficient or break-down of the cooling system. Even any increase of 
temperature can be considered a disturbance. 

Disturbances, when they cause increase of local temperature, T (x, y, t), not 
necessarily proceed at constant or at uniform rates in the conductor cross section. 

The energy gap, ΔE, the light-yellow shaded area in Figure 1(a), separates ground 
state from excited electron states. Existence of the energy gap results from quantum-
mechanical selection rules. A very small part of the total number of electrons is coupled 
to electron pairs. Width of the energy gap depends on temperature, T, and decreases with 
increasing temperature, T < TCrit. 
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Figure 1. Electron state diagrams in a superconductor. 

Figure 1 shows energy states of the disturbed electron system and describes decay 
of excited electron states (recombination to electron pairs) in the superconductor, under 
conservation of energy and momentum, after end of a thermal disturbance (all diagrams 
are schematic, not to scale). The figure shows density, ρ(E) = dN(E)/dE, of single 
particles states (solid curve, proportional to E1/2) vs. energy, E, the energy gap, ΔE 
(yellow shaded area) at the Fermi energy, EF, the sections (dark-blue) to which electrons 
from the energy gap are driven (in the literature: “smeared out”), and an escaping phonon 
of energy ΔE’ of at least 2ΔE to fulfil energy and momentum balance. The dashed curve 
at EF around the full circles indicates an electron pair, (2e)k of a very large number 1 ≤ k 
≤ (N − 1) of other pairs (2e). Each shaded, red circle, still in Figure 1(a), denotes an 
elementary electron excitation. The “source” from which single electrons are selected to 
condense to pairs consists of (but is not restricted to) the ni, nj from the decay of pairs, 
(2e)k. It is statistically selected following quantum-mechanical principles if conservation 
of energy (and momentum) can be fulfilled. Far below critical temperature, its number, 
in dynamic equilibrium, constituting a pair, is a fraction in proportion to (ΔE/EF)2 [2] of 
the number of electrons originally contained in ΔE, a very small percentage of the total 
electron body. The lower Figure 1(b) is included to highlight a very large multiple of 
electron pairs as being positioned, schematically in this diagram, closely to the lower 
edge of the energy gap (the top, EF, of the Fermi Sea); standard interpretation is that all 
these states are described by a single, coherent wave function, which facilitates 
simulations. Figure 1(c) schematically indicates overlapping coherence volumes (VC, 
large circles) with their diameter, dVC, within which electron pairs (solid, black circles, 
interconnected by dashed lines) and single electrons overlap (solid red circles, the decay 
products from the previous decay). Also compare Note 3 how decay and relaxation are 
modelled in this paper, in contrast to the ideas how relaxation has been be understood in 
other publications 

Electrons, electron pairs and phonons (excitations of the ionic lattice) are 
responsible for electrical and thermal transport in superconductors. Below critical 
temperature, current transport is almost entirely by electron pairs, if other critical 
parameters (concerning magnetic field, current density) are not exceeded. Electron pairs 
bypass the electrical resistance of the normal conducting electrons. 

An attempt is made in Figure 2 to schematically explain, in a resistance network, 
the contributions by electrons, electron pairs, all in parallel to electrical, and by phonons 
to thermal transport. 
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Figure 2. An attempt to explain electrical current transport (a) and thermal conduction 
heat transfer (b) in superconductors, the latter by a pseudo-resistance network. In both 
diagrams, vertical length of the rectangles schematically indicates temperature 
dependency.  

Figure 2(a), above, shows current transport at different temperature (schematic, 
qualitative, and strongly simplified). Numbers 2 to 4 in the rectangles denote: (2) (light-
green): Single, not condensed electrons, strongly bound in the Fermi Sea that (without 
existence of  electron pairs) would generate large electrical resistance to current; (3) 
(dark-red): Excited single electrons or quasi-particles states (both at energy levels above 
the gap) generating finite, non-zero resistance; (4) (dark-blue): “pseudo-resistance” of 
electron pairs for application in numerical simulations  ( in reality: almost zero). The 
resistance of electron pairs (4) is by orders of magnitudes below the resistance of metals; 
contribution to current transport through the whole sample therefore is only by electron 
pairs. In order to design a conduction or resistance model that is applicable for numerical 
simulations, a “pseudo-resistance” of the electron pairs, at least 20 orders of magnitude 
smaller value than the resistance of normal (metallic) electrical conduction, was assumed 
in the calculations. A “phonon rectangle” (1) is omitted in this diagram (the 
corresponding resistance to current transport would be infinitely large, under standard, 
low temperature conditions).  

Figure 2(b), below, shows conduction heat transfer at different temperature 
(schematic, again qualitative and strongly simplified). (1) (dark-brown, non-zero 
thermal, phonon resistance, RPh; (2) to (4): thermal resistances generated by items (2) to 
(4) in the current transport (upper) diagram; the short, dark-blue rectangles in the lower 
diagram do not indicate vanishing thermal resistivity because electron pairs do not 
contribute to heat transfer (no collisions with the lattice); a corresponding, thermal 
pseudo-resistance, R∞, if it existed at all, would have to be treated as “diverging” in the 
numerical simulations. 

At very low temperature, heat transfer is subject to resistances RPh > REl, the thermal 
conductivity of the superconductor to the most part is by single (not condensed) 
electrons. The solution of Fourier’s differential equation yields phonon temperature, that 
at any co-ordinate, and if relaxation is not completed, is different from electron 
temperature in resistances 2 and 3, in particular if coupling between electrons and lattice 
is weak. Temperature of rectangle 3 like rectangles 1, 2 and 4, is below TCrit (approaches 
equilibrium temperature after a disturbance when relaxation is completed). 
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1.1. Relaxation in superconductors 

Excitations in superconductors increase occupation of electron energy levels above 
ΔE. The reverse process, relaxation of excited electrons to electron pairs and to a new 
dynamic equilibrium, involves correlations among excited electrons with those below the 
energy gap. 

Relaxation needs time. Calculation of relaxation time that an excited 
superconductor needs to relax to a new thermodynamic equilibrium hardly ever has been 
investigated in the superconductor literature. But impacts of relaxation and relaxation 
time on critical current density, JCrit (because of its strong dependence on temperature), 
and also impacts on all those observables that depend on critical current density (like 
levitation height of a sample in magnetic field, or distribution of shielding or transport 
currents), are too important to be neglected. A method to estimate relaxation time will be 
explained in this paper. 

How to obtain relaxation time in normal conductors (metals) has been reported in 
the literature; a particular method will be referenced in part B, Sect. 6.2, of this paper. 
But the method assumes diffusion processes and energy exchange proportional to the 
temperature difference between electrons and lattice ions. This is not applicable in 
presence of electron pairs in superconductors. 

In strong contrast, electron pairs in superconductors do not feel electrical resistance 
since they would be typical for diffusion processes. There is no unprofitable diffusion of 
electron pairs across classical resistive obstacles. 

The present paper revisits a recently suggested method to calculate relaxation rates 
and relaxation time. The paper investigates how and to which extent entropy production 
during the relaxation process is important for stability of superconductors against quench. 
Entropy yields the answer why excited electron states at all should relax to recover from 
disturbances to a new thermodynamic equilibrium and to superconductor stability. 

A superconductor is stable if it does not quench, during or after a disturbance. 
During quench, electromagnetic energy stored in a magnetic field may suddenly be 
released from the superconductor volume. This very quickly raises superconductor 
temperature and may lead to its destruction. 

Quench can be avoided by application of stability models to design, manufacture 
and operation of superconductor devices. 

Standard stability models [3–5] essentially are stationary energy balances, 
frequently applied assuming worst case conditions. But quench, as a short-time, and as 
we will see, a multi-physics problem in highly diversified, superconductor cable cross 
sections, cannot adequately be analysed by stationary energy balances. 

As a step forward, numerical simulations have been suggested by the present author 
[6–9]. The simulations have demonstrated that after disturbances, the temperature fields 
in filamentary and in thin film superconductors not only are transient but also non-
uniform, T = T (x, y, t), contrary to the simplified assumption, T = T(t). The latter is the 
traditional view. It has been applied not only in the special case of standard stability 
models but can been found also in the overwhelming, general part of traditional 
superconductor literature. 

Contrary to the traditional view, local temperature variations, in case there are local 
heat sources in the conductor cross section, may amount to 4 K between four nodes of a 
small, materials volume element which means, within a rectangle of just 2 μm × 30 μm, 
the size of a single plane, 4-node element in a Finite Element simulation scheme of a thin 
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film superconductor. Likewise, temperature variations, in the order of up to 106 K/s, may 
arise under disturbances.  

This prediction has far-reaching consequences: When the simulated, transient 
temperature fields are mapped onto the field of critical current density, JCrit, also JCrit, 
becomes non-uniform and transient, JCrit = JCrit [T (x, y, t)]. Traditionally, JCrit is a unique 
function of temperature (injective in the mathematical sense), JCrit (T) = JCrit0 (1 − 
T/TCrit)n, with JCrit0 a constant and the exponent n of about 0.5 (see later for tests made 
using different values of n). 

Non-uniformity of T (x, y, t) and, as the consequence, also of JCrit (x, y, t), in type II 
superconductors, e. g. by the flux flow mechanism, may cause the material to locally 
become “flux flow”-resistive, in the first instances during or after a disturbance1. Impacts 
of this disturbance on conductor temperature is significant, as can be seen by inspection 
of transient temperature excursions when flux flow losses quickly raise conductor 
temperature to values above TCrit, which means create also Ohmic resistive states. See 
later, the excursion with time of temperature in part B of the paper. Flux flow losses 
invariably lead to a quench if no measures can be taken to instantaneously distribute the 
losses, within the material or to a coolant, or to interrupt transport current. 

Superconductor temperature, and flux flow, Ohmic resistance and quench, all to be 
uniformly distributed and obtained simultaneously in the whole conductor cross section 
(and volume), would request uniform materials properties, and in case of a single, 
isolated disturbance, infinitely large, thermal transport properties of the superconductor 
material. These conditions are fulfilled neither in superconductors, not in any realistic 
solid material. Therefore, quench in superconductors, too, will not occur uniformly and 
simultaneously in the total conductor cross section. Contrary to standard assumptions, 
quench always starts locally. 

This process, the distribution of hot spots and local quench, can be analysed by 
numerical calculations with high spatial and temporal resolution [6–9]. But numerical 
solution of temperature excursion, energy balances and of the quench process is not the 
end of investigating superconductor stability. 

In a superconductor, we have a variety of different particle and quasi-particle sets 
(including excitation of the lattice if one imagines also contributions from wave/particle 
dualisms). All these sets determine distribution of local temperature, of critical current 
density, resistances, magnetic field penetration and distribution of transport current. For 
the special case of electrical current transport and of internal heat transfer, a minimum of 
sets is listed below that has to be taken into account in stability analysis2. 

Each of these sets obeys different transport, decay and interaction rules. The 
wave/particle dualism, for example, enables radiative transfer to be treated as a particle 
flow in Monte Carlo simulations of the distribution of photons and their 
absorption/remission, while temperature fields result from solution of Fourier’s 
differential equation, a continuum theory. 

This means, if we wish to improve understanding the physics behind quench, and 
how to avoid quench, a new holistic, multi-physics approach is needed to complete the 
solution of the stability problem. 

Stability against quench has frequently, and honestly speaking, quite successfully 
been discussed in the literature though under engineering aspects only. Analysis and 
solution of the quench problem by engineering aspects has successfully been 
demonstrated also in practice (with painful exceptions, however). In contrast, the 
numerical approach presented in this paper has to integrate superconductor relaxation, 



Mathematics and Systems Science 2024, 2(1), 2510.  

6 

which means a description of origin and, most importantly, lifetime of disturbed states 
(the relaxation time). This is because the number NEq of electron pairs necessary to 
provide zero-loss current transport under equilibrium conditions is subject to lifetime of 
disturbances and of disturbed states during which the number NEq might become too 
small. 

The literature describes no efficient method to calculate relaxation time in 
superconductors. We find only more or less inappropriate (Sect. 6), sometimes even 
questionable explanations. Let us consider the following: 

Buckel and Kleiner [10], 1st paragraph, explain “In conventional superconductors, 
with decreasing temperature the concentration of unpaired electrons decreases 
exponentially. Hence, the probability that an unpaired electron finds a suitable partner 
for the recombination to form a Cooper pair also decreases” end of this citation3. 

Likewise, investigating the time-dependence of the decay of trapped magnetic flux 
is frequently realized by means of considering the time dependence of magnetisation, M 
~ t−α, of a sample, but this, too, does not provide a systematic model, and reported results 
usually provide just fit to experimental data. 

As a step forward, a “Microscopic Stability (relaxation) Model” [11] has been 
suggested previously. A first application of this model was reported in Reiss [12]. As a 
corollary, the present paper revisits this model to investigate a possible existing second 
critical temperature below the traditional one, and of correlations between critical current 
density, JCrit, relaxation time and entropy production. 

Dynamic equilibrium, the electron state obtained after completion of the relaxation 
process, is achieved after a multiple of discrete sequential [11], “repair” (i.e. relaxation) 
steps. A minimum number of electron pairs are necessary to provide zero-loss current 
transport. The question is whether this minimum number safely can be determined in 
view of the strongly temperature dependent critical current density. We will see later that 
calculation of “stability functions” provides an instrument helpful for solution of this 
problem. 

As an example, how relaxation time becomes important, a levitation experiment 
shall be mentioned. A non-zero, stable levitation height, Z, is obtained only if the 
Meissner effect is established in a large (a minimum) part of the total conductor volume 
when a superconductor pellet is exposed to magnetic field, and this process can be 
completed within the period τ, the relaxation time. 

Focus of the Microscopic Stability Model [11] thus is on calculation of relaxation 
time, τ, and of relaxation rates of the disturbed electron system. 

1.2. Organization of the paper 

The paper is divided into parts A to B: We first concentrate on general issues of the 
superconductor stability problem and its consequences. 

Part A (Figures 1–14) explains that traditional stability problems thoroughly have 
to be updated, from their solely engineering, analytical methods to numerical simulation 
of temperature fields in superconductors, with high spatial and temporal resolution. 
Contrary to traditional understanding of superconductivity, we make an attempt to also 
demonstrate existence of a second critical temperature; this prediction is tightly related to 
relaxation of an excited superconductor and is explained as a corollary obtained from the 
foregoing numerical temperature field calculations. We present a correlation analysis and 
the investigation because why at all an excited superconductor should relax to a new 
thermodynamic equilibrium (See the same figures). 
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Part B of the paper is fully dedicated to description of the multi-physics methods 
applied for simulation of transient temperature fields, of relaxation time and relaxation 
rates and their consequences for zero-loss current transport. Emphasis is laid on the 
radiative contribution, how it can be included in parallel to conductive heat transfer and 
how serious numerical convergence problems have been solved and the solution was 
confirmed. Encircling the local origin of a quench is successfully demonstrated by the 
new, numerical method, a result that cannot be obtained with traditional stability models. 

Finally, experiments are suggested to check whether the predictions made in part A 
and B can be verified (Sect. 7). 

2. The suggested “Microscopic Stability Model” 

The overall concept of the model, with a description of its details and some first 
applications, has been explained by Reiss [11,12] and will not be repeated here. The 
following is a short overview: 

Focus of the model is on decay of electron pairs under temperature increase, and the 
reversal process, i.e. re-condensation of the decay products to pairs in a new dynamic 
equilibrium4. 

By a very large number of single, successively performed “repair” (relaxation) 
steps each of which takes the electron system a time interval, ∂t, in the order of 10−14 s, 
the time to obtain the new dynamic equilibrium is calculated by summation of these 
microscopic time intervals to total relaxation time, τ. The large number of individual 
relaxation steps results from the number M of individual electrons taken from the whole 
electron body (indicated by the shaded light-green and dark-blue sections in Figure 1(a)), 
not only of the previously excited ones, N (for specification of M and N compare again 
Note 3). The individual ∂t in the present paper is calculated from analogies to nuclear 
physics (exchange Boson, Yukawa interaction, and the “time of flight”-concept)5. 

The model applies a multi-physics approach using analogies between relaxation in 
superconductors with re-organisation of the occupation of nuclear energy states, theory 
of heat transfer, in case of thin films or filaments not only by solid conduction but also, 
and in parallel, by radiation heat transfer. The calculations apply solutions of the 
Equation of Radiative Transfer and of the Equation of Conservation of Energy, see later, 
Equations (12) and (13), of which diffusion approximations, all assisted by application of 
the Monte Carlo method, are very helpful. Besides, the model applies statistical methods 
to cover deficiencies (random deviations from perfect, uniform materials properties) that 
may arise during manufacture, handling (winding) and practical application of these 
materials in energy technology (cables, transformers, current limiters). 

Once relaxation time is obtained [11] from these calculations, the question then is 
whether relaxation rates in superconductors, possibly under accelerated thermal run-
away, are large enough to successfully re-organize the decay products to the new 
dynamic equilibrium of the electron system, in due time before quench, finally in the 
whole conductor cross section, becomes inevitable. 

“In due time” means: Relaxation rates must be large enough to complete the total 
relaxation process (to zero loss current transport) within the relaxation time and before 
another disturbance might arise that possibly would push the superconductor beyond a 
critical excitation state (a possibly existing “state of no return”), an item that will be 
addressed in Sect. 3. 
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At temperature clearly below critical temperature, T << TCrit, time to complete 
relaxation is expected, and will be shown below, to be so small that it hardly can be seen 
in standard experiments. But relaxation time may strongly diverge if T closely 
approaches TCrit. Compare again Note 3, experiments to determine relaxation time are 
suggested in Sect. 7 of the present paper. 

Other methods to calculate relaxation time and relaxation rates, alternative to the 
study [11], might exist or be found in future. But relaxation time obtained from any 
model reasonably would be non-zero and, like found in the study [11], should strongly 
increase when approaching the superconducting/normal conducting phase transition. 

The numerical, Finite Element simulations using the model [11] have been applied 
to the “first generation” (1G), multi-filamentary BSCCO 2223, and to the (2G) thin film, 
coated, multi-layer YBaCuO 123 superconductors. Shorthand notations like BSCCO 
2223 and YBaCuO 123 are frequently used in the literature, for Bi2Sr2Ca2Cu3O10 and 
YBa2Cu3O7, respectively, some with indication also of oxygen deficiency. Both 
conductors are addressed as “High Temperature Superconductors, HTSC, of TCrit = 108 
(BSCCO 2223) and 92 K (YBaCuO 123)., Presently, the thin film, coated, multi-layer 
YBaCuO 123 is preferred for industrial applications of superconductivity in energy 
technology. 

Figure 3 shows the cross sections of a first generation (1 G), multi-filamentary 
superconductor tape consisting of 91 single filaments of BSCCO 2223 material. 

 
Figure 3. Overall view of the cross section of one tape of the BSCCO 2223/Ag Long 
Island, multi-filamentary cable (schematic, not to scale). Reprinted from J. Supercond. 
Novel Magnetism 29 (2016) 1449–1465, Figure 1a. 

The number N = 91 of identical filaments is in parallel integrated into this tape, and 
a large number of tapes is switched in parallel to yield total superconductor cross section 
(10−4 m2). Dimensions of filaments and tape in x (horizontal) and z (vertical) directions 
are: x = 280 µm (filament) and 3.84 mm (total tape width), and z = 20 µm (one filament) 
and 264 µm (total tape thickness), respectively.  

For a second generation (2G) superconductor, a coil using 100 turns of a multi-layer, 
thin film coated, YBaCuO 123 superconductor, the cross section of a single turn is 
shown in Figure 4.  

 
Figure 4. Overall view of a second generation (2G) thin film, coated conductor 
(schematic, not to scale; geometry and dimensions according to Freyhardt, 2004, lecture 
notes, apparently unpublished). The Figure is copied from Fig. 6a of [8]. Reprinted from 
J. Supercond. Novel Magnetism 33 (2020) 3279–3311, Figure 6a. 
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The vertikal, dashed-dotted line denotes the axis of symmetry of the target (the 
symmetry axis of the target plane (z = 0, solid red circle) is perpendicular to the 
conductor (x, y)-plane. Preferentially, crystallographic c-axis of the YBaCuO material is 
oriented parallel to the z-axis in this figure, to achieve favourable current transport and 
solid thermal conduction properties in the YBaCuO film. The target indicates position of 
local heat sources within the conductor cross section (item 1), or (item 2, the red circle). 
For the simulations, the heat source is located on the upper surface of the superconductor 
thin Film. Thickness of the film is 2 μm, with its width of 6 mm. Protective coatings (not 
shown in the figure) serve for thermal/mechanical stabilisation of the conductor and, if 
necessary, as bias for temporarily taking over transport currents if they exceed critical 
current of the film, to avoid flux flow losses in a magnetic field. The substrate is 
prepared by rolling-assisted bi-axial texturing of Ni or Ni-alloys like NiW, NiCr or NiV 
that are mechanical supported by additional stainless-steel layers soldered on substrate 
materials. Buffer layers (CeO, YSZ) by epitaxial growth serve for gradual adapting the 
bi-axial texture from the substrate to the YBaCuO film. The simulation scheme of a coil 
with 100 windings that applied this conductor will be shown later in part B of the paper. 
Current transport is almost entirely within the x, z-cross section, i.e., parallel to the (x, y)-
(the crystallographic ab-) plane (the crystallographic c-axis of the YBaCuO material 
accordingly is (anti-) parallel to the z-axis of the co-ordinate system). The target 
indicates position of sudden, conductive and radiative heat sources. For more details of 
the composition of this conductor see Figure 15.  

 
Figure 5. Distribution of conductor temperature (top), flux flow resistivity, ρFF (below), 
and of transport (fault) current, I (bottom of the figure), in the x,z-cross section (Figure 3) 
of the multi-filamentary BSCCO 2223 tape, for a low-voltage application. The figure is 
copied from Fig 5a–5c [6]. Reprinted from J. Supercond. Novel Magnetism 29 (2016) 
1449–1465, Figure 5a, b. 

Simulated temperature distribution in the (1G) multi-filamentary superconductor are 
shown in Figure 5, with its 3D-plot of T (x, y, t), and in Figure 6, the temperature 
excursion of the centroid element in turn 96 of the thin film, multi-layer superconductor 
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(results obtained also for filamentary NbTi superconductor have been reported in the 
study [13]). 

In Figure 5, only the left half of the cross section, x ≤ 1.92 mm, z ≤ 264 µm, is 
shown. Results are presented at t = 8.3 ms (1.8 ms after start of the disturbance). Flux 
flow resistivity ρFF > 0 at positions x, y exists only if transport current density at these 
positions exceeds critical current density, JTransp > JCrit, and if local conductor 
temperature, T (x, y, t), is below local critical temperature. Resistive and zero loss states 
co-exist in parallel if over-current cannot be compensated, e.g. by switching it to a shunt. 
Transport current then circumvents resistive transport channels (Ohmic and flux flow). 
Heat sources in the present case are distributed in the conductor. The distribution of 
transport current may be different at different length (y-co-ordinates of the tape. Note 
orientation of the coordinate axes. The number NEl of elements in this Finite Element 
simulation and in one tape is NEl = 4032.  

 
Figure 6. Superconductor temperature distribution (nodal values, at t = 8 ns). Reprinted 
from J. Supercond. Novel Magnetism 33 (2020) 3279–3311, Figure 7. 

In Figure 6, results are shown at increasing vertical co-ordinates (depth of the 
YBaCuO 123 thin film explained in the text), z, when a rectangular heat pulse of total Q 
= 1.25 × 10−12 Ws, is incident on the target (z = 0; its position is indicated by the red 
circle in Figure 4. Total duration of the pulse is 8 ns. Penetration depth of the radiation is 
parallel to the axial direction of its co-ordinate system. The combined Monte Carlo/Finite 
Element method is applied under the Additive Approximation. In steps of 0.1 μm, the 
figure shows temperature between 0 ≤ z ≤ 2 μm and within 0 ≤ x ≤ 1.2 μm (of in total x ≤ 
5 μm extension in the simulations) of the thin film. The (z-) direction is (anti-) parallel to 
the crystallographic c-axis of the superconductor material. The figure covers one half of 
the total x,y-plane and demonstrates anisotropic scattering of incident radiation. The 
figure is copied from Figure 3 [8].  

How these temperature distributions have been obtained, by which numerical 
procedures (coupled Monte Carlo and Finite Element calculations, to solve Fourier’s 
differential equation, will be described in part B of this paper. 

From the obtained transient conductor temperatures, three very interesting 
conclusions can be drawn on: 

1) Prediction of the existence of a second critical temperature. 
2) Correlation between relaxation time and critical current density. 
3) Correlation between relaxation time and entropy. 
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These items are described in the following (Sects. 3 to 5). This is not “new physics” 
but solely results from interconnection of simulated temperature excursions with 
traditional physics disciplines. 

3. Prediction of a second critical temperature 

First, Figure 7 shows calculated relaxation time for the YBaCuO 123 thin film 
superconductor. It immediately demonstrates that an additional critical temperature, 
TQuench, should exist in the superconductor: 

The dashed-dotted, horizontal lines in this figure indicate process times (measuring 
or simulated intervals, δt) during which experiments or simulations are performed. We 
provisionally assume δt as 50 or 1 μs (justification of these values will be given in 
Subsects. 3.1 and 3.2). For practical JCrit-measurements, length δt would certainly be 
larger than these intervals, see later. 

 
Figure 7. Relaxation times, τ, that the electron system of the YBaCuO 123 
superconductor needs to arrive at a new dynamic equilibrium after a disturbance. 
Reprinted from J. Supercond. Novel Magnetism 31 (2018) 959–979, Figure 8. 

Conductor architecture and its materials composition will be shown in Figure 15. 
The disturbance to the most part originates from transport current density locally 
exceeding critical current density (flux flow resistance). The corresponding flux flow 
losses steadily increase local conductor which finally may become larger than critical 
temperature, TCrit, to complete a quench. Results are calculated from the model [11,12] at 
temperatures in the centroid of turns 96 (light-green, lilac, orange and blue diamonds, 
respectively) and 100 (red diamonds) of a coil of in total 100 turns. All diamonds 
indicate relaxation times obtained when using element temperatures resulting from the 
Finite Element (FE) simulations, while dark-brown circles are calculated for an arbitrary 
temperature sequence. The dashed-dotted horizontal lines indicate tentatively assumed 
process times, δt (50 or 1 μs) that intersect (open circles) with the τ-curve (solid, dark-
brown circles) at temperatures T1,2 of 91.925 or 91.995 K, respectively. As soon as 
element temperature (experimental or simulated in the FE calculations) exceeds T1,2, the 
corresponding τ are larger, and coupling of all single electrons in this thin film 
superconductor to a new dynamic equilibrium can no longer be completed within the 
assumed δt. With modifications (insertion of the relaxation times, τ1,2, in the open, black 
circles, and the inset to the right), the figure is copied from Fig. 8 [12]. The inset in the 
present figure shows that if temperature closely approaches TCrit and when using the 
Fermi distribution function, or a Boltzmann factor (though this violates the condition E − 
EF >> kT), or to save computation time, the occupancy number (the probabiltiy to 
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occupy energy levels above the energy gap) even was neglected (curves 1 to 3, 
respectively), the results obtained for the relaxation time become very close, and again 
all results diverge.  

The large number of decimal points in T1,2 of 91.925 or 91.995 K (Figure 8) and in 
particular at T = 91.99999 K in the same figure seems to be unphysical. But this solely 
serves for numerical demonstration of the divergence of relaxation time near the phase 
transition. This is because the probability FE, in Note 9 approaches the more closely a 
constant, while nS(T)/nS(4K) diverges (see below, Figure 9), the more temperature 
approaches TCrit. 

Existence of TQuench then follows from intersections (open circles) of the horizontal 
lines with relaxation time, the τ-curve (dark-brown circles). By close inspection of the 
curves, the points of intersections in this example are identified at temperatures T1,2 of 
91.925 or 91.995 K, respectively. 

As soon as element temperature (experimental or as simulated in simulations) 
exceeds T1,2, the requested relaxation times τ will increase, and coupling of all single 
electrons to pairs in the investigated thin film superconductor to a new dynamic 
equilibrium can no longer be completed within the given intervals, δt. 

Corresponding to Figure 7, density nS(T)/nS(T0), of electron pairs is shown in 
Figure 8, a result obtained with again the model [11] (it has been explained [12] that this 
ratio is closely related to the Ginzburg-Landau “order parameter” [14]). 

Note the strong, diverging decrease of the density of electron pairs in Figure 8 
when T approaches TCrit, which explains that near the phase transition, it becomes more 
and more difficult to provide a sufficiently large number of electron pairs to support JCrit, 
for zero loss current transport of practical value. 

The result obtained in Figure 8 is at least qualitatively in agreement with an 
analytical solution reported in the study of Flik and Tien [15], by the sharp decrease of 
nS(T) when T very close approaches TCrit. A critique of this solution presented in the 
study [12] explains the differences seen in Figure 8 between the two approaches. 

 
Figure 8. Relative density fS, the order parameter defined as fS = nS(T)/nS(T = 4K) of 
electron pairs (dark-blue diamonds), in dependence of temperature, calculated for the 
YBaCuO 123 superconductor during warm-up. Reprinted from J. Supercond. Novel 

Magnetism 32 (2019) 1529–1569, Figure 11b. 

From density fS, relaxation rates are obtained as dfS/dt. Dark-yellow diamonds 
indicate minimum relative density of electron pairs that would be necessary to support a 
critical current of density 3 × 1010 A/m2 in this superconductor, at 77 K and in zero 
magnetic field. The diagram compares predictions of the microscopic stability model [11] 
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with analytical results (light green, from the study of Flik and Tien [15]). Decay rates 
calculated from this figure are shown in Figure 9. Compare figure caption to Figure 7.  

 
Figure 9. Repair rates, dn(t)/dt, of excited electrons (lifetime of the disturbed state) and 
decay rates, dnS(t)/dt, of electron pairs (that in this numerical model equals the repair 
rates of electrons) in YBaCuO 123 at temperature very close to critical temperature, TCrit 
= 92 K.   

At T = 91.99 K and even more at T = 91.999 K, the system, though in dynamical 
equilibrium, should increasingly be unstable in relation to the state at T = 91.5 K or to 
any other, earlier state because of the fast decrease of the decay rates with increasing 
temperature. This must be reflected by the entropy differences calculated in Sect. 4. 
Compare figure caption to Figure 7 that applies to also this figure.  

This corollary of the model [11] accordingly predicts that quench might be 
initialized, and possibly become inevitable as soon as local temperatures, T (x, y, t), well 
below critical temperature, TCrit (x, y, t), exceeds a second critical value, TQuench (the 
points of intersections, here the temperatures T1,2). Quench would become inevitable not 
just at TCrit, the standard assumption, but earlier in the nS (x, y, t) vs. T-diagram. 
Incomplete relaxation then would not provide JCrit large enough to allow substantial 
zero-loss current transport, at least in energy technology. 

This is in strong contrast to all traditional stability models and to all existing 
stability calculations that agree a quench of the superconductor occurs only if sample 
temperature exceeds standard critical temperature, TCrit (x, y, t). 

The principal existence of TQench, while already obvious from Figure 7, has to be 
discussed either in case of JCrit-measurements (Sect. 3.1) which typically are realized in 
longer, practical time intervals (much longer than the intervals δt assumed in Figure 7) 
and at constant temperatures, or in case experiments are performed under continuously 
increasing temperature, like in a resistive current limiter. This case will be discussed in 
Sect. 3.2. 

3.1. Constant sample temperature, like in JCrit-measurements 

Standard experiments to measure critical current density usually are performed in 
discrete time steps of extended length (against the δt applied in Figure 7), practically in 
the order of seconds, preferentially within minutes. This yields a series of JCrit [T(t)] 
taken at selected discrete temperatures, T(t), with the T mostly given by decision of the 
experimenters or from time constraints arising from the experimental set-up. 

If, and only if, the relaxation process can be completed, within the δt, at time 
intervals between successive measurements of JCrit, which means if relaxation time τ < δt, 
no repair steps are left to be performed, and the JCrit [T (x, y, tEq)], are the dynamic 
equilibrium values. These, and only these should be accepted for calculation of any JCrit-
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dependent variables within periods δt, like for dimensioning superconductor cables for 
magnets, transformers or current limiters. 

However, if τ > δt, which may happen when after a disturbance, the electron system 
is already close to the thermal phase transition from super- to normal conduction at TCrit 
(Figure 7), a large number, NnonEq, of single electrons (residual decay products) would 
remain that have not been, and cannot be, re-organised to electron pairs and therefore do 
not result in a new thermodynamic equilibrium. This means: It is only a reduced number 
of electron pairs (reduced against the dynamic equilibrium value, at the given 
temperature) that partly, by a possibly strongly reduced JCrit level, would be able to 
contribute to zero-loss current transport. This is not an equilibrium situation. 

Fortunately, residual decay products left at discrete temperatures in standard JCrit-
measurements, or single electrons (provided from the shaded light-green and dark-blue 
sections in Figure 1) yet have the potential to be re-organised to electron pairs, if the 
lengths, δt, between successive measurements, efficiently could be extended. If they can 
be extended, they give the electron system more time to complete its total relaxation. 
This can be realised, for example, and trivially, by increase of cooling rates or by 
reducing transport current or magnetic field. 

3.2. Continuously increasing temperature, like in a resistive current 

limiter 

The temperature TQench is the limit below which all decay products, given in relative 
units, fS = nS(T)/nS(T =4 K), can potentially be reorganised to electron pairs within a 
given period. At T < TQuench, the number fS equals 1, while at T = TCrit, we have fS = 0 
(compare Figure 10). 

 
Figure 10. Residual number, NEq, of electron pairs (relative numbers). Reprinted from J. 
Supercond. Novel Magnetism 31 (2018) 959–979, first published in: arXiv 2212.09333 
(Dec 2022), Figure 13a. 

As a consequence, within T < TQuench, relaxation safely will be, but between TQuench 
≤ T ≤ TCrit potentially could be completed, in the latter case not without additional 
actions taken by the experimenters.  
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The corresponding number, 1 − NEq, of non-condensed single electrons, as decay 
products from a previous thermodynamic equilibrium state, increases with temperature. 
Temperature TQuench is obtained in Figure 7 from the intersection (open circles) of the 
curve relaxation time, τ, vs. temperature, T, with the horizontal δt-levels. Decreasing the 
process time intervals, δt, from 50 µs (above) to 1 μs (below) is used to approach a 
continuous warm-up process (like in operation of a current limiter) where continuously 
δt → 0. As a result, dynamic equilibrium cannot be obtained (the system is not given 
enough time to relax completely). As soon as element temperature exceeds the limit 
TQuench = 91.925 or 91.995 K, respectively, at least one but potentially all coupling 
“channels” become closed. The electron system then remains in a local, highly disturbed, 
non-equilibrium but still dynamical state. Part of the results was shown already in Fig. 11 
[12].  

Conversely, the number (1 − fS), again in relative units, denotes the number of 
electron pairs that within the given simulation or operation time, δt, cannot be obtained 
by condensation or re-condensation of all available single electrons. 

At T < TQuench, the number NNonEq of residual, uncoupled electrons, if they result 
from previous decay of pairs, accordingly is zero, while at T > TQuench the number N 
increases very strongly, NNonEq = 2(1 − fS) nS(T0), until at TCrit all electrons remain 
uncoupled. Trivially, the resistance then would become Ohmic, with all current transport 
“channels” switched in parallel. The number NnonEq could be measured by electron spin 
resonance. 

The NnonEq, as they cannot contribute to equilibrium, to zero loss current transport, 
to full levitation (“full” means: to stable levitation position) and, therefore, also cannot 
contribute to stability of the superconductor, increase the resistance of the whole electron 
body. But if the number NEq, the number of electron pairs, is not zero (strictly speaking: 
if it is still large enough to in parallel by-pass Ohmic resistances, zero loss current 
transport, at reduced JCrit, would be possible). A check of whether, and to which extent 
this can clearly be realized and might be interesting for technical applications of 
superconductivity, can be performed by calculation of stability functions, Φ(t): 

For Φ(t), we have to integrate, at given time t, the JCrit over all positions (x, y) of 
conductor cross section, 

0 ≤ Φ(t) = 1 − ∫ JCrit[T(x,y,t), B(x,y,t)] dA/ ∫JCrit[T(x,y,t0),B(x,y,t0)] dA ≤ 1 (1)
using differential cross section elements, this can be approximated by 

0 ≤ Φ(t) = 1 − ΣJCrit[T(x,y,t), B(x,y,t)] dA/ ΣJCrit[T(x,y,t), B(x,y,t0)] dA ≤ 1 (2)
The summations have to be taken over all superconductor elements of the sample, 

with their individual JCrit and small, but finite cross sections, dA. Equations (1) and (2) 
have been applied in previous papers of the author [6–9]. Later, results of sample 
calculations of Φ(t) show Φ(t) under solid conduction plus radiation heat transfer within 
the superconductor (and solid/liquid heat transfer at the solid/coolant contacts) in the thin 
film, YBaCuO 123 material. Results apply to turns 96 to 100 of coated conductor 
windings (see later, Figure 15). The calculations assume sudden increase of transport 
current above its nominal value beginning at t = 3 ms after start of the simulations. Flux 
flow resistances then are responsible for thermal losses that locally increase conductor 
temperature. 

The stability function assumes values 0 ≤ Φ(t) ≤ 1 of which Φ(t) = 0 is the optimum 
(for zero-loss current transport) and Φ(t) = 1 the worst case where zero loss current 
transport is no longer possible. 
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Note the strong dependency of Φ(t) under variations of the exponent n in the 
relation JCrit(t) = JCrit,0 (1 − T/TCrit)n. Successful application of Equations (1) and (2) 
therefore requires precise, as far as possible, determination of the functional dependency 
of JCrit(t) on temperature. 

A warning sign shall be issued: The condition Φ(t) < 1 does not guarantee that no 
hot spot will be generated in the conductor cross section and during the whole time 
interval within which Φ(t) is calculated.  

Maximum, zero loss current transport is given by 
Imax(t) = JCrit [T (x, y, t0)] [1 − Φ(t)] ASC (3)

with ASC the total superconductor cross section. Time t0 = 0 denotes start of the present 
simulation; at this time, all element temperatures are at their original values. Equation (3) 
follows immediately from Equations (1) and (2). 

According to Equations (1) and (2), Φ(t0) = 0 at t0 = 0, and both critical current 
densities, JCrit (x, y, t0), and zero-loss transport current are maximum. The distribution of 
JCrit accordingly would be uniform at t0, apart from statistical fluctuations of JCrit0 that 
might be caused by possibly existing deficiencies in materials preparation and handling. 
But homogeneity is quickly lost at times t > t0. 

The results obtained for the residual number NnonEq can also be re-plotted (Figure 
11) in terms of relaxation time tEq (instead of temperature, Figure 10) at which the 
system arrives at TEq (this again is shown only for the case TQench = 91.925 K, δt = 1 μs, 
lower diagram of Figure 10). 

 
Figure 11. Same results as in Figure 10 (upper diagram), but here vs. relaxation time, τ, 
using TQuench = 91.925 K that corresponds to τ = 8.388 × 10−7 s (only this case is plotted).  

The difference between times tQuench and tCrit, at which the curve reaches 
temperatures TQuench and TCrit (light-green and red, dashed vertical lines) defines length of 
an at least partly dead time interval within which zero-loss current transport might no 
longer be possible at all or at only reduced critical current density. The figure 
accordingly shows the residual number of electron pairs (relative numbers) that within T 
< TQuench safely will be, but between TQuench ≤ T ≤ TCrit still could be completed, in the 
latter case only by additional actions taken by the experimenters. Within the interval 
between TQuench and TCrit, zero-loss current transport might no longer be possible at all or 
at only reduced critical current density. The red dashed line corresponds to a hypothetical 
T = 91.995 K when it approaches TCrit. At still higher T, but below TCrit, position of this 
line diverges, according to divergence of the relaxation time (Figure 7), on the 
horizontal simulation time scale. 
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Accordingly, the described approach to a new superconductor stability criterion, by 
considering TQuench in addition to the standard TCrit, defines temperature and time limits, 
namely to obtain (recover to) thermodynamic equilibrium, 
 a temperature limit, TQuench < TCrit, 
 a time limit, tEq[TQuench] << tEq[TCrit] 

With increasing temperature, the limits approach TCrit and tEq(TCrit), respectively. If 
the limits are exceeded, both limits initiate quench of the superconductor that invariably 
will be realized completely if not additional measures are taken to increase effectively 
the length of the time intervals. 

In summary of these predictions, the electron system not necessarily “has to wait” 
until its temperature finally, during a disturbance, exceeds TCrit to generate Ohmic 
resistances. Limitations to critical current density, because of too small a number of 
available electron pairs, start earlier, already at TQench, not later and not only at TCrit. 

Temperature TQuench therefore can be interpreted as a “point of no return” beyond 
which quench no longer can safely be avoided. The condition “T > TQench?” can be 
identified as another stability criterion. 

But the question is how TQench can be determined. Not just a trivial task, but see 
Sect. 7 of this paper for suggested experimental setup. The key is: Precise measurement 
of the electric field over the superconductor sample, under variation of current, as far as 
highest accuracy of the experiment can be realized with presently available experimental 
equipment. Or, as will be discussed in Sect. 7, measurement of levitation height or of 
levitation force in dependence of time. 

Contrary to measurements of JCrit at constant temperature, temperature in a current 
limiter under a fault current increase continuously. A problem then arises from 
understanding the process time intervals, δt, in Figure 7. Length of these intervals during 
continuous warm-up reduces to zero. Length δt then no longer is on the decision of the 
experimenters. Within intervals δt of zero length, relaxation because of the divergence of 
τ in Figure 7, so far could not be completed at any temperature below TCrit. How can this 
problem be resolved? 

Diffusion of heat, electric or magnetic field or current or of equilibrium charge 
distribution within infinitely small intervals dT and dt can be described by characteristic 
times, τTh, τm, τC, respectively, as is usually done in all diffusion models. For this purpose, 
it has to be shown that the τTh, τm, τC are very small to yield an approximate solution of 
the divergence problem arising from Figure 7. 

The three characteristic diffusion times describe within which period of time, or 
over which distances, diffusion of the concerned variables cause substantial variations 
(reductions) of their magnitude, usually by exponential damping and with phase 
differences6. 

Characteristic diffusion times thus indicate over which a “system” (here the 
superconductor material) imposes limits to propagation of the said variables into sample 
depth. The limits represent “quasi-operation intervals” of the system itself, existing 
without interventions by experimenters. 

Length of these intervals (τTh, τm, τC) is estimated in the Appendix to this paper; 
each of these is between 10−7 and 10−6 s. Determination of relaxation time thus follows 
from the lower dashed horizontal line in Figure 7, and if temperature exceeds the 
intersection point, T(τ), relaxation no longer will be completed. 
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4. Entropy production during electron pair decay and relaxation 

Decay rates of electron pairs from the excited YBaCuO 123, thin film 
superconductor is shown in Figure 9. After this decay, why should the decay products at 
all be motivated to re-combine (relax) to electron pairs and to thermodynamic 
equilibrium? 

This question at first sight might appear trivial. But can it also be demonstrated, 
numerically or otherwise, and from the results be concluded that the relaxation process 
reduces entropy of the final (again equilibrium) state? And can correlation also between 
relaxation time and entropy, and between charge carrier density, nS(T), be demonstrated? 
Their correlation, if their existence could be demonstrated, would put the present 
procedure (estimating relaxation time) on safe grounds.  

Calculation of the entropy in the following is performed as in case of mixing 
entropy of two ideal gases. Initially, the gases each are assumed to occupy constant 
volumes V1 and V2 contained in a closed, constant total volume, V = V1 + V2. As soon as 
an un-permeable wall that separates V1 from V2 is removed, the two gases diffuse into 
each other. Calculation of the entropy assumes that both gases behave as if the other is 
not present at all. This situation resembles penetration of two sets of electrons into each 
other. Since the rate of electron/electron scattering is very small, regardless of their spin 
orientations, the sets behave as if the other is not present. 

The mixing of two ideal gases and entropy production is explained by Falk and 
Ruppel [16] (“Energy and Entropy” by G. Falk and R. Ruppel). The solution can be 
found in its Chaps. 16, 19 and 20 (indicating single equations would not be very helpful 
because of the complexity of the entropy problem). 

For decay of electron pairs and their relaxation, instead of expanding two ideal 
gases, we formally consider two sorts of electrons, i) decay products (normal conducting 
electrons or quasi-particles) and ii) the electrons that already have recombined to 
superconducting electron pairs. 

But both sorts of electrons are identical: i) single electrons, as Fermions, that cannot 
be distinguished, and ii) electron pairs, composed of other identical electrons, a situation 
that can be seen as correlation of two single electrons that in dynamic equilibrium 
continuously decay and recombine, at any temperature above zero. 

But if seen from the energy aspect, electrons in the ground state (electron pairs) and 
excited electron states (single electrons above the energy gap) are separated by at least 
the width of the gap. After completion of decay of pairs and during the relaxation 
processes, they expand to the final total state, with NTotal electrons that comprise the 
remaining single, normal N1 conducting electrons and N2 the electrons that are correlated 
to pairs. “Correlation” means with no change of their nature (unit quantum of electrical 
charge) or origin (Fermions, that remain Fermions even if separated on the energy scale 
by the energy gap) with NTotal = N1 + N2. All their constituents are identical. 

The next question then is whether electrons originating from decay of electron pairs 
may be considered not only as identical but also as absolutely independent particles for 
the suggested entropy calculations. 

Electrons, because of their electrical charge, may be seen as quasi-particles (a 
mathematical concept to incorporate a “queue” of interactions arising during motion 
through the ion lattice). But also quasi-particle can be treated as independent of the 
others7. We have taken this into account during the calculations in the study [11] by 
screening factors, χ, that essentially modify the dielectric constant. In the solid, the 
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electrostatic (repulsive) Coulomb potential consists of (a) the repulsive interaction 
(interpreted as a mean field), and (b) the (attractive) positive ion charges in the solid. The 
two contributions are superimposed. The Thomas-Fermi potential, as the classical 
example of a screened Coulomb potential, was well approximated by application of the χ 
to the proper Coulomb potential. It is within this approximation (by integration of their 
interactions with other quasi-particles and with the lattice, all treated as identical) that 
electrons can be considered also as independent of each other in the entropy calculations 
performed in the following. 

The entropy difference of two ideal gases that initially occupy volumes, Vi, and that 
expand to the total volume, Vf, by analogy transfers from to the entropy difference of two 
ideal gases to the two indistinguishable sorts of electrons. 

∆ei − ∆ef = N k ln (Vf/Vi) (4)
∆ei − ∆ef = 1/Ti,f ln[Nf(Ti,f)/Ni(Ti,f)] (5)

Particle number, N, replaces volume, V, because both N and V are extensive 
variables, in the sense of the Gibb’s fundamental, total differential dE (expansion of dE 
in a series of products Zi dXi wherein both Z and X are physical observables). This yields, 
for example, dE = TdS – pdV + μdN for a single component gas. Z denotes the intensive 
variable (in this example, T, p, μ, and X the extensive variable (S, V, N); μ denotes the 
chemical potential. 

The electrons, Ni, at given temperatures Ti (during the decay and relaxation 
processes) “expand” (fill-up) to their final number, Nf, like volumes Vi expand to final Vf. 

Absolute values of entropy cannot be calculated. Only entropy differences can be 
found, between temperatures, Ti and Tf, in Equation (5), and particle numbers, Ni,f

8. 
Temperatures Ti and Tf in Equation (5) are not identical: Decay of electron pairs is 
initialized just by temperature increase from Ti to Tf (otherwise there would be no decay), 
but relaxation occurs, and is completed, at the final Tf that results from the disturbance 
(the system does not cool-down under relaxation; we are in a warm-up process, the 
associated temperature increase generates the disturbance). Relaxation of the electron 
system is not subject to thermal energy transfer or temperature exchange but is solely a 
quantum-mechanically driven, entropy-decreasing selection process. 

Results of the calculation of the decay rates, delta S1, and of the total process (decay 
followed by relaxation), delta S1 + delta S2, are shown in Figure 12). The value Ti = 91 K 
is arbitrarily chosen; other values 77 ≤ T < TCrit, too, would allow calculation of entropy 
change (except for limitations by computational efforts). 

 
Figure 12. Entropy differences, delta S, calculated using Equations (4) and (5). 
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The results shown in Figure 12 are obtained at initial (i) and finally (f) completed 
processes: (1) decay of electron pairs when temperature increases from initial Ti to final 
Tf (using Ti = 91 and 91.2 ≤ Tf < 92 K), followed by (2) re-condensation at the constant 
Tf), All S1 and S1 + S2 are positive (while delta S2 for the completed relaxation process (2) 
is negative), which in Figure 12 reduces delta S1 + delta S2 (decay plus relaxation) to 
below delta S1 (decay only). This means increase of disorder and of entropy. The 
calculations take into account a possibly existing limit, the “availability” of the electrons 
for relaxation. The calculations apply any (relative) values, frel, between 0 and 1 of the 
total body of excited electrons. For the present figure, we have in a test calculation 
applied almost complete availability, frel very close to 1. The parameter “availability” in 
the present and in our previous papers (like Appendix A1 in the study of Reiss [13]) is 
used as just a statistical parameter. It checks sensitivity of the simulation results on the 
number of single electrons that must find partners for relaxation to pairs from the 
existing total body of temporarily uncoupled, “available” electrons 

Why in Figure 12 is delta S1 + delta S2 not zero? The results confirm the 
expectation that decay of electron pairs at any temperature below TCrit, provides positive, 
while relaxation to pairs provides negative contributions to entropy production. Decay 
means transition from high order (pairs) to low order (unpaired electrons), and relaxation 
is the reverse process that reduces entropy of the electron system (here we have to note 
that we speak of entropy production, not of entropy exchange). 

5. Correlations 

In a superconductor, all currents flow with critical current density, JCrit. If the 
standard relation, J = n v e, is provisionally transformed, from normal conductors to 
superconductors, we arrive at the same relation, but only under equilibrium conditions. If 
applied to superconductors, Equation (6) could be used at temperature clearly below TCrit, 
in homogeneous material, again with uniform charge density distribution and without a 
magnetic field. 

JCrit = nS vFermi 2e (6)
But this is a very rough approximation only since the plot of JCrit vs. nS taken at 

same temperatures shows a quite different behaviour (Figure 13): Dependence of JCrit(T) 
on nS(T) in the thin film YBaCuO 123 superconductor appears to be strongly exponential. 

While Figure 13 apparently confirms an expected (one might even say: “felt”) 
physical, causal correlation between both variables, final proof by numerical, standard 
statistical methods still has to be given, see below. 

 
Figure 13. Relation between critical current density, JCrit(T), and density, nS(T), of 
electron pairs in YBaCuO 123 superconductor material. 
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Results are shown (upper diagram) for different values of the exponent n in the 
standard relation JCrit = JCrit0 (1 − T/TCrit)n. For T = 77 K, JCrit = 3 × 1010 A/m2, for all 
values of the anisotropy parameter X = Dab/Dc. The figure solely applies equilibrium 
values of JCrit(T) and nS(T), compare text. The inset (lower diagram) shows the identical 
data but on double logarithmic scale. From solely physical aspects, the relation as a 
conclusion should be causal, not spurious. But tentative calculation of the correlation 
coefficient yields r = 0.805 that indicates only weak (if any) correlation. 

We therefore make a second correlation attempt, again provisionally in a simple 
plotlike Figure 13, here between entropy differences, S2, of the relaxation process after 
its completion, with relaxation time, τ, all in dependence of temperature (91 ≤ Tf < 92 K). 
The result is shown in Figure 14: 

 
Figure 14. Correlation of entropy difference, S2, with relaxation time, τ, after completion 
of the relaxation process. 

Note the double logarithmic scale in the upper diagram. The inset (below) shows 
that on double logarithmic scale the relation between entropy difference, S2, and 
relaxation time, τ, is approximately linear, which reflects the value of the correlation 
coefficient, r = 0.933. The values of relaxation time (and the temperatures at which these 
are obtained from the model [11]) are those of Figure 7. 

The more the system approaches TCrit, or the larger the relaxation time, the more 
negative becomes the difference, Delta S2, between the entropy at Ti = 91 K (with Ti the 
said, arbitrary reference value) and at 91 ≤ Tf < 92 K (with Tf the temperature to which 
temperature increases under a disturbance). The difference delta S2 does not become 
positive anywhere on the horizontal scale, τ, in Figure 14 (note the double logarithmic 
scale and the plot of minus delta S2). 

The driving force onto the system to relax to an equilibrium state (the entropy 
change) increases the more the temperature approaches critical temperature! 

But there are problems: Correlations can be causal or spurious, and it is not clear 
that they always would be transitive. This means, if there are correlations between 
variables V1 and V2, and between V2 and another variable, V3, it is not clear that V1 
uniquely would be correlated also with V3. In the present case, this means it is not clear 
that the two following, obviously physical causal correlations between V1 and V2, i.e. 
between T and JCrit(T), and between V1 and V3, i.e. between T and electron pair density, 
nS(T), above the energy gap, with an appropriate temperature dependence9 would be 
transitive so that also V2 and V3, i.e. JCrit(T) uniquely would be correlated with nS(T). 
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It is not sufficient to rely on the common dependency on temperature of both 
variables V2 and V3. Instead, the correlation between V2 and V3 is uniquely fulfilled only 
if also the temperature dependency of both V2 and V3 is uniquely defined, i.e. if both V2 
and V3 in parallel and in equal-directional increase or decrease with temperature. 

Fortunately, both variables, JCrit(T) and nS(T), decrease with increasing temperature, 
as is well known. From the physics aspect, this speaks in favour of causal correlation10. 

The nS(T) used on the abscissa of Figure 13 are equilibrium values only if T < 
TQuench. If during measurements of JCrit the system is given more time (seconds to 
minutes) to complete relaxation, the range of validity of the abscissa values in this figure 
within which correlation could be confirmed, would increase to values beyond this 
TQuench and beyond also to τ1. 

Support of the correlation between JCrit and nS(T)/nS(T0) and strength of the 
correlation between relaxation time, τ, and entropy differences, S2, now shall be found by 
application of elementary statistical methods described in standard textbooks on statistics 
(e.g. [17]). 

First, consider a number of N value pairs (x1, y1), (x2, y2), … (xN, yN) which within 
77 ≤ T ≤ TQuench are applied as two sets (i and ii), a number of N value pairs (JCrit(1), nS(1)), 
(JCrit(2), nS(2)),… (JCrit(N), nS(N)) comprising critical current and electron pair densities, 
JCrit(T) and nS(T), both at temperature, T (set 1) a number of N value pairs (S2(1), τ(1)), 
(S2(1), τ(1)),… (S2(N), τ(N)) comprising entropy differences, S2 = ∆ei − ∆ef, see, Equation (5), 
and relaxation times, τ (set 2). 

JCrit and nS depend on temperature and are separately calculated, which means JCrit 
and T, and nS and T, are strongly correlated, but the correlation analysis should 
demonstrate that also JCrit and nS are correlated. 

For this test, we use a finite number N of value pairs that represent sections of the 
corresponding, in principle unlimited, parent populations. 

The calculations apply the data shown in Figures 12–14 (pairwise considered, at 

same temperature). 
First, the anticipated correlation between JCrit(T) and nS(T), solely from physics 

behind, seems to be reasonable (large current needs large number of charge carriers), but 
correlation is strongly questionable, from formal aspects of correlation analysis, in view 
of the strongly non-linear increase of JCrit(T) with increasing nS(T), see the upper diagram 
in Figure 13. 

Only when re-plotting this diagram on logarithmic scales, the observed linear 
increase (lower diagram in Figure 13) suggests that the correlation coefficient, r, should 
not be too small (not very small against r = 1). But the tentatively calculated result using 
standard relations for variances and co-variances yields finally r = 0.805 for set 1 of N = 
21 data pairs. Correlation thus is weak, at the best. 

An explanation is: While the relation between JCrit(T) and T is analytical and both 
variables, from physical reasons, must be correlated, the density, nS(T), as it results from 
the model [11], is only statistically correlated with T, so that a correlation between JCrit 
and nS, other than from physical background, remains doubtful. 

The situation with S2 and T, and τ and T seems to be different. Solely from physics 
behind (Sect. 4), the entropy difference, S2, should more definitely be correlated with 
relaxation time, τ, than JCrit with the statistical nS. Figure 14 (upper and lower diagram) 
demonstrates that this expectation really seems to be fulfilled, we have r = 0.933, for set 
2 of N = 13 data pairs, which is, in the meaning of correlations, much better than the 
value r = 0.805. 
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It is therefore expected for set 2 (entropy difference, S2, vs. relaxation time, τ) that 
both reflect the identical physical process (relaxation), both are correlated, and therefore, 
entropy is the driving force for relaxation. 

6. Overall concept to simulate total thermal energy transfer 
through superconductors 

6.1. Motivation from thin film, normal conductor investigation 

The procedure originates from a numerical method [18–22] to remotely determine 
thermal diffusivity of transparent or semitransparent thin films. The papers suggest a 
“Front Face Flash Method”. The experiments require laser pulses of very short duration 
(like 8 ns in our papers) onto a “target” (like the red solid circle in Figure 4) and fast 
measurements of transient temperature excursions. 

Instead of taking temperatures directly in the pulsed heating region or on the rear 
sample surface, the method works also when it takes temperature solely at the front side 
and, which has a great advantage, at any distance from the irradiated target [18–22] for 
more detailed descriptions. It is sufficient to take data in only radial directions, which by 
both simplifications demonstrates great flexibility of the method. Flexibility was also 
demonstrated, after only slight modifications, to apply principles of the method to an 
exotic situation11. 

In an extension of the simulations reported in studies [18–22] to superconductors in 
the present paper, the core of the method is to numerically calculate solutions of 
Fourier’s differential equation, see below, Equation (10), If extended to inclusion of 
radiative diffusion, Equation (13), the solution shall be found also in complicated 
geometry and boundary conditions and with all heat transfer mechanisms (transport 
“channels”) included that contribute to total thermal transport within the samples and at 
boundaries to different, neighboring materials. 

The numerical procedure involves Finite Element and Monte Carlo simulations. It 
was applied first to non-conductors. Transient temperature distributions were obtained 
using experimentally known ZrO2 and SiC thermal diffusivity, solid conduction and 
extinction coefficients (but in principle, the calculations could be performed to any thin 
solid). 

For a test of the method, simulated temperature distributions obtained by the FE 
method that used the thermal diffusivity, D, as input into the calculations, was applied to 
in turn extract the diffusivity from the calculated results for T (x, y, t) by application of 
Equation (8), see below (the diffusivity, D, accordingly was extracted from the output of 
the calculations and, hopefully would equally reproduce its input value). 

Equation (7) is standard, but Equation (8) was derived before 1999 by the late co-
author, Oleg Yu. Troitsky, of our papers, see the reference list. The origin of this 
expression is found in a superposition method that was presented in a paper on the pulse 
method by Grigoriev (for its citation see the study of Troitsky and Reiss [18]). As a great 
success, the method was confirmed, see below. 

Transfer of the numerical method, from thin film normal conductors to 
superconductors, was made by considering the (1 G) multi-filamentary BSCCO 
superconductor with its geometry already shown in Figure 3, and the coil prepared with 
100 turns from the (2 G), coated thin film YBaCuO 123 superconductor of which the 
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geometry (the cross section in one single turn was shown in Figure 4). Coil architecture 
and its details are shown in Figure 15. 

 
Figure 15. Principal Finite Element simulation scheme of a coil and its thin film 
conductor geometry (schematic, not to scale. Reprinted from J. Supercond. Novel 
Magnetism 31 (2018) 959, Figure 1. 

Figure 15(a) shows the coil consisting of 100 turns of the “second generation” (2G) 
coated, YBaCuO 123 thin film superconductor (Figure 4) of which only turns 96 to 100 
are simulated, Figure 15(b) layers in immediate neighbourhood of the superconductor 
(SC) thin film (as an example in turn 99), Figure 15(c) overview of turn 99 showing 
simulated, very thin interfacial layers between superconductor film and Ag (metallization) 
and between superconductor and MgO (buffer layer; dimension of the roughness is 
highly exaggerated in this diagram of which details used in the numerical calculations 
are shown in Figure 15(d), with cross section and meshing of the superconductor thin 
film in one turn. Superconductor layer thickness is 2 μm, its width is 6 mm, thickness 
and width of the Ag elements is like the data of the superconductor thin films. 
Crystallographic c-axis of the YBaCuO-layers is parallel to y-axis of the overall co-
ordinate system. Thickness of the interfacial layers is estimated as 40 nm. In SC, Ag and 
interfacial layers, we have 5 × 200-line divisions for creation of the Finite Element mesh.  

The analysis was confined to isotropic (constant, independent of temperature) 
materials properties (conductivity, specific heat, extinction coefficient, albedo), i.e. to 
idealistic conditions. But the procedures in principle are straightforward (though 
becoming increasingly laborious) when analysis is performed for anisotropic, 
temperature or wavelength-dependent parameters, or for layered samples. 

In a step 1, thermal homogeneity, T0(x, t), at any constant sample depth y, 
preferentially at y = 0, has to be controlled, for its origin see the study of Reiss and 
Troitsky [21,22], 

T0(t) = T(t)/t/dT(t)/dt (7)

It identifies the region of Fourier numbers, Fo = Dt/L2 (using 0.16 ≤ Fo ≤ 0.25), to 
yield the time interval during which the heating regime is regular and where Step (2), 
below, may be applied to measured temperature excursions, T(t). Results for T0(t) are 
shown in the study of Troitsky and Reiss [22], its Figs 10a–11b (it would be useless to 
apply the Front Face Flash method, step 2, to regions where T0(t) oscillates). 
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Figure 16. Horizontal section of a cylindrical pellet of radius, rp, or a cylindrical section 
of a thin film (schematic). The figure is copied from Fig. 6b [8]. First published in arXiv 
2212.09333 (Dec 2022), Figure 3. 

The conductor section shown in Figure 16 includes the symmetry axis (x = 0, thick 
dashed-dotted line). Right and left halves of the pellet are divided each into a number of 
1000 area elements (i ≤ 50, j ≤ 20) that are meshed with in total about 8 × 104 plane finite 
(FE) elements (not shown in this figure). Area elements (i, j) are indicated dark-grey, and 
radiation bundles by thick black lines. Rotation of the area elements against the axis of 
symmetry (x = 0) generates volumes elements (cylindrical concentric shells). The target 
of radius rt = 120 mm, identified by the horizontal thick red line, is irradiated or 
otherwise flash-heated during 8 ns (rectangular pulse), with uniform total energy 
depositions, Q0 (Ws), onto the target elements (volume elements, cylindrical shells 
occupying the first row, j = 1, of the discrete co-ordinates i, j); since their cross sections 
increases with distance from x = 0, thermal power (W/m2) decreases with larger co-
ordinates, x. Scattering angle is denoted by θ. Bundles either are absorbed/remitted (red 
circles) or scattered and may escape from the sample (blue circles, index “Escaped”) 
after a series of absorption/remission or scattering interactions within the sample material. 
The scheme is used in both Monte Carlo and Finite Element (FE) calculations. The 
figure is copied from Fig. 3a [9]. 

 
Figure 17. Angular distribution (spider diagram) of bundles remitted from volume 
elements, in dependence of anisotropy factor, mS (solid symbols) and random variable, 0 
≤ R(θ) ≤ 1 (on the periphery, in steps of 0.1). Reprinted from Horizons in World Physics 
276 (2012) Chap. 1, Sect. 9, Figure A1. 
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The diagram illustrates that remission or scattering angles, 0 ≤ θ ≤ 180° (ordinate), 
are the smaller the larger mS. For example, if mS = 18 and R(θ) = 1, the cone angle θ < 
27.3° against normal to the surface is identified from the ordinate. The figure is copied 
from the study of Reiss and Troitsky [21]. 

 
Figure 18. Scattering phase function, Ψ, calculated from a total set of bundles (M = 105) 
in the Monte Carlo simulation and with random values R(θ). Reprinted from J. 
Supercond. Novel Magnetism 33 (2020) 3279–3311, Figure 8a. 

The phase function is represented by the number of bundles, n(θ), scattered under 
angles, θ, within the conductor against surface normal of concentric rings (generated by 
rotation of the plane elements, Figure 16). Results apply to the 2 μm thin film YBaCuO 
123 superconductor and are given for different values of the (scattering) anisotropy 
factor, mS, at mid positions within Δθ = 10 deg intervals. The larger the values of mS, the 
more bundles are concentrated at small (forward) scattering angles. When mS = 162 
(light-grey diamonds), the bundles are sharply focussed to θ < 10 deg.   

For Step (2), the diffusivity, D, was extracted from absolute temperatures, Ti
k, by 

the following approximation [22]. 

 

(8)

It replaces the analytical solution for radial heat flow, usually an infinite series 
expansion, by a comparatively simple, straight-forward finite difference relation. The Ti

k, 
with indices i and k, denote temperature measured or simulated at time, tk, at position 
number, i, with r = ri at front sample surface (y = 0); the co-ordinate r is parallel to x-

direction. Time and radial co-ordinate intervals are defined by t = tk  tk  1 = tk + 1 − tk, 

and r = ri + 1 − ri. The ri + 1 and ri are taken outside the target. Temperatures applied in 

Equation (8) are nodal values. With the fine mesh and correspondingly improved spatial 
resolution, divisions by zero in Equation (8) are avoided. 

For solely solid conduction, there is good (SiC) and in case of ZrO2 almost perfect 
agreement, for thin film Cu and AlN samples where the extracted diffusivity reproduces 
the reference values of D within just 4 to 8 per cent uncertainty (note that measurement 
of thermal conductivity and of diffusivity is extremely difficult to be realized if the 
uncertainty shall be below 10 per cent). Also, literature values of the diffusivity, D, of 
SiC and ZrO2 ceramics are strongly different, by more than one order of magnitude, and 
the D of AlN is very large (it exceeds the D even of metallic Al). 
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Accordingly, we were motivated to apply the numerical method to also 
superconductors, to thin film samples. Extension of the Front Face Flash method to 
superconductors introduces a solely diffusion heat transfer-oriented method to 
investigation of radiation contribution to total heat flux in these materials. This is a new 
method to complete investigations of superconductor stability. 

Temperature distributions obtained in simulations, or in experiments with 
superconductors, constitute the basis from which all conclusions and predictions in the 
present paper have been drawn. 

6.2. Overview: How to numerically simulate temperature fields and to 
avoid quench 

From a general viewpoint, the stability investigations in this paper are 
predominantly oriented on simulation and analysis of transient temperature fields. These 
are subsequently applied to determine electrical and magnetic properties using empirical 
relations. These are relevant for description of the energy balances in the 
superconductors. Both temperature and magnetic field are thermodynamic variables, 
while critical current is not. This suggests treatment of the stability problem from 
predominantly energy balances. All results are local values, with space and time 
resolutions as far as available from converged numerical simulation in complicated 
conductor architecture. 

The method does not treat the stability problem as a continuum problem. This is 
contrary to the continuum approximations and H-formulations, the solution of Maxwell’s 
equations, reported by different authors in contributions to the International Workshops 
on Numerical Modelling of High Temperature Superconductors (the “HTS mod” 
workshops). Continuum approximations of in reality highly detailed superconductor 
geometry and materials compositions neglect variations of just the very detailed 
superconductor tape and cable architectures, in particular the electrical, interfacial 
resistances between different grains or layers in filamentary and thin film 
superconductors, respectively. Readers are kindly invited to think over relevance of this 
approximation and report possibly existing justifications to the author. 

Interfacial resistances not only constitute barriers against thermal energy flow but 
also allocate the very critical, weak-link problem arising in superconductor materials 
development and applications. A continuum theory hardly can be expected to yield 
reliable solutions in tiny filaments and highly structured compositions of thin film arrays, 
all of very small thickness, of strongly different materials properties and of strongly 
anisotropic transport properties, see later. 

It is also important to note that analytical or numerical methods, like Finite Element 
software, to solve Fourier’s differential equation, yield stationary or transient 
temperature of the lattice of a superconductor, not of its electron system (except that 
after completion of relaxation both temperatures in the final equilibrium, numerical 
convergence state hopefully will coincide). 

This is contrary to a description of how to obtain electron temperature in 
experiments [23] when normal conductors (metals) were exposed to powerful femto-
second or pico-second laser pulses. Evolution with time of ion and electron temperatures 
were described separately using a transport equation, Equation (1) of this reference that 
considered divergences of thermal gradients multiplied by conductivities. But this does 
not apply to electron pairs since they do not experience thermal resistances (like there are 
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no electrical resistances except interfacial) that could support application of this method 
to also superconductors. As a consequence, the method suggested by Agranat et al. [23] 
also cannot deliver relaxation time. 

Assume for the moment that the electromagnetic energy, E, provided by a transport 
current of momentary density, J, in a magnetic field, is distributed by a disturbance to the 
volume of a superconductor, a thin film, for example, wherein the source, E, leads to an 
increase of its temperature. A simple electrical/thermal energy balance (see below, 
Equation (9)) estimates the mean (stagnation) temperature, Tm, by conservation of energy, 
to which the system temperature gradually converges, assuming for simplicity adiabatic 
conditions. In Equation (9), ρel and ρ denote electrical resistivity and materials density, 
and cp its specific heat. The electromagnetic energy shall be distributed, after each 
variation of J or of ρel, to the thin film. If then Tm exceeds TCrit, the superconductor 
experiences the phase transition from superconducting to normal conducting state, the 
quench. Equation (9) thus constitutes an overall criterion how to determine stability. This 
means uncertainties in the prediction of quench by Equation (9) mainly relies on 
accuracy of simulated or measured temperature fields (by the way, the problem 
“accuracy” arises also when the second critical temperature, TQuench, shall be determined 
(as mentioned already in part A, Sect. 3.2; Sect. 7 of this paper suggests high precision 
experiments that could yield the solution how to find this second critical temperature). 

න 𝜌௘௟(𝑡) 𝐽ଶ(𝑡) 𝑑𝑡 =

ஶ

଴

න 𝜌 𝑐௣(𝑇) 𝑑𝑇

೘்

଴

 (9)

Fourier’s differential equation, if considering, again for simplicity, only solid 
conduction is a special form of the continuity equation, ∂ρQ/∂t = div jQ, wherein jQ 
denotes heat flow density and ρQ the density of thermal energy. If we accept that heat the 
quantity Q, an energy form, cannot be destroyed, Fourier’ differential equation reads [24], 

ρ cp dT/dt = div q + Q(t) (W/m3) (10)
using the thermal conduction equation, in any conductor, here with λ = λCond the solid 
thermal conductivity, ρ the density of a substance (here the solid superconductor) and cp 
its specific heat. From Equation (10), we have D = λ/(ρ cp), the thermal diffusivity. 

q = − λ grad T (W/m2) (11)
The operators div and grad denote divergence (of the vector q, the conduction heat 

flow density) and gradient (of the temperature field), respectively. A term Q(t) = Q (x, y, 
t) describing losses, e.g. to the coolant, at interfacial slid/liquid positions (x, y); it would 
be added appropriately to the thermal source function. 

The solutions to obtain temperature excursions from Equations (10) and (13), below, 
in the present paper are calculated by the Finite Element method, in the simple 
cylindrical geometry in case of a single, isolated filament, or for a complete, (1G) 
superconductor (Figure 3), and in the very complicated conductor geometry shown in 
Figures 4 and 15 for the 2G thin film, multilayer superconductor. 

Needless to say, that the step from a single filament to highly diversified 
geometrical structures of the superconductor cross section means an enormous challenge 
to Finite Element calculations (in principle to all numerical methods). It becomes 
increasingly difficult to achieve convergence of the solutions. A new, tentatively applied, 
multiple repetitions Finite Element scheme (see later) finally had to be constructed, 
tested by trial and error, and applied to successfully achieve numerical convergence 
within tolerable computation times. 
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6.3. Radiation heat transfer in thin film superconductors (the small 
optical thickness case) 

If thickness of a sample is small, like in case of thin films, and if also optical 
thickness is small (below about 10 to 15, see later for its justification), the Equation of 
Radiative Transfer (ERT) together with the Equation of Conservation of Energy (the 
“Energy Equation”, EQ) have to be solved: Omitting for simplicity a wavelength index, 
Λ, the ERT within the object under study reads [24], at a given time, 

di’(τ)/dτ = − i’(τ) + [(1 − Ω) i’BB(τ) + Ω/(4π) ∫Ψ(ωi,ω,τ) i’(τ) dω] (W/(m2 µm sr) (12)
with i’ the directional radiation intensity, τ the optical thickness, dτ = E ds (τ not to be 
confused with relaxation time), E the extinction coefficient, E = A + S, with A and S the 
absorption and scattering coefficients, ds a differential of the radiation path length, i’BB 
the directional, black body (BB) intensity, Ω = S/E the Albedo of single scattering, and 
Ψ the scattering phase function. The quantities ωi and and ω indicate solid angles and 
apply to incident radiation (index i) and to the total unit sphere over which scattered and 
remitted radiation intensity has to be integrated. The term in square brackets denotes the 
“source function” (without the source function, Equations (12) and (14) reduce to the 
Lambert-Beer law when directional intensity, i’, is measured in transmission experiments 
in one direction only). It concerns absorption/emission and scattering light sources 
internal to the volume of the superconductor. 

Once directional intensity, i’, now (as an extension of Beer’s laws) including the 
source term is obtained from Equations (12) or (14) and is integrated over the total solid 
angle to yield total radiation, qRad, the vector has to be inserted into the “Energy 
Equation”, namely Equation (13), the equation of conservation of energy. With qCond and 
qRad denoting the vector of solid conduction and radiative heat transfer, the energy 
equation reads using ρ and cp for density and specific heat, respectively, of the sample 
material. Equation (13) yields the field of transient temperature distribution, T(x,y,t), that 
now accounts for all relevant contributions to heat transfer (but additional contributions, 
if any become relevant, could easily be included). When this field is mapped onto the 
field of critical current density, the stability function Equations (1) and (2) can be 
calculated. 

ρ cp ∂T/∂t = div (qCond + qRad) (W/m3) (13)
The above explanations presented for the problem heat transfer in general, and 

“radiative transfer” in particular, provide just a short summary of the principal solutions 
available for the complex heat transfer problem. In reality, the analysis of conductive and 
radiative transfer in thin films, especially in superconductor thin films, is much more 
complicated: This is because we also have to take into account preparation of the films 
and its impacts on conductive and radiative heat transfer. 

In thin film superconductors, we roughly can distinguish three layers generated 
during film preparation (like evaporation, sputtering, of by chemical vapour deposition, 
CVD). We then have thin boundary layers each of about 100 to 150 nm thickness that in 
the simulations account for irregularities of the materials properties arising from 
substrate, superconductor thin film and stabiliser. While the solid/solid contacts can be 
modelled with random variations of electric and thermal transport parameters within the 
thin boundary layers against the superconductor thin film core, more complications arise 
in description of radiative transfer. We have investigated this problem in Sect. 4 [8]; just 
a short summary of how it can be solved shall be given here: 
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Consider a beam that is incident on the outer layer, ζ, of optical thickness, τζ, of a 
thin superconductor film. While insertion of a term (1 − R) Aζ i’ (τ = 0, t) exp(−τζ) into 
Equation (12), with 0 ≤ R ≤ 1 the reflectivity, would describe attenuation of an incoming 
radiation beam, e.g. a laser at its particular wavelength, the attenuation by absorption (of 
radiation that is not reflected), within the thin boundary layer (or in a coating) of the 
superconductor, invariably initiates thermal, Black Body radiation and remission. Then 
we have to account in core of the superconductor thin films for the full Black Body 
spectrum, not only for just one wavelength (the wavelength of the incoming beam). A 
similar problem arises in the frequently cited Parker and Jenkins experiments [25] in 
which excitation of outer, here a normal or non-conducting layer, is initiated by an 
electron beam. 

It is not clear that the outer layer, ζ, of the superconductor after deposition should 
have much stronger absorption properties (to become non-transparent at all wavelengths) 
than the interior of the 1.8 μm core; rather the contrary is to be expected: With thin (e.g. 
100 to 150 nm) evaporated or sputtered or CVD thin surface films, homogeneity is not 
guaranteed, and extinction coefficients would be smaller. 

It is obviously not helpful (and even is meaningless) to simply add to the ERT a 
term containing a factor exp(−τζ,λ), with Λ the wavelength of incident radiation,  to 
account for absorption of this radiation in the thin surface layer and with another 
wavelength, Λ’, for propagation of radiation in the core and to look for closed form 
solutions of the ERT. The optical properties of the surface layer might too strongly be 
different from those of the core. Extension of the ERT, Equation (12), by an 
exponentially decreasing absorption term in which the term enclosed in curly brackets 
contains a wavelength, Λ’, different from the Λ of the core, cannot be integrated 
analytically, 

di’Λ(τΛ)/dτΛ = −i’Λ(τΛ) + [(1 − ΩΛ) i’b,Λ(τΛ) + ΩΛ/(4π) ∫Φ(ωi,ω,τΛ) i’Λ(τΛ) dω]  
+ {(1 − Rζ Λ,’) Aζ,Λ i’Λ’(τζΛ’) exp(−τζ,Λ’)} 

(14)

Instead, a procedure substantially different from standard radiation transport theory 
and from the Parker and Jenkins approached has to be found. 

In a first step, a Monte Carlow approach to the exact solution (if a solution exists at 
all) serves for realizing this procedure. It concerns determination of the path lengths of 
photons during transition of a sample. This procedure immediately leads to a central 
problem of radiation heat transfer: Time dependence of the solution when scattering 
becomes important. 

Scattering becomes important if the Albedo Ω is large. The Albedo of the YBaCuO 
123 superconductor exceeds Ω = 0.8 (decreases from about 0.94 to 0.8 within the 
temperature range between 92 and 91 K, respectively). Near the phase transition, 
scattering clearly exceeds absorption/remission. But scattering is a “fast” process in 
relation to absorption/remission, see below, Figure 19 (and Figs. 11 and 12a [9]). 
Solutions of the ERT and of the EQ therefore have to be found in specific time intervals. 

Extension of the single, standard ERT and Energy Equations to a “Matrix Method”, 
to cover also variations of parameters during simulation time and taking into account of 
in these time intervals the dominating wavelengths has recently been suggested [9], see 
below, Equation (16). Possible impacts on stability predictions would be important. 

By its structure, the Matrix Method reflects “Discrete Ordinates” approximations 
[24,26], a type of quadrature formula (the Discrete Ordinates Method turns out as very 
successful in case there is strong anisotropic scattering). 
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The Matrix Method replaces the single Equations of (radiative) Transfer and of 
Energy Conservation by a system of transfer and energy equations. The ERT, Equation 
(12), is solved, roughly speaking, in a number of discrete directions, the “ordinates”, 
with the directions optimally selected, and the solutions are integrated over the solid 
angle to provide a corresponding system of energy equations. 

In the Matrix Method, the scattering integral in Equation (12) is replaced by an 
expansion ∑aj f(τ, µj); in this expression, τ denotes optical thickness, µj are optimum 
directions and aj are corresponding weights. In case only one or two directions have to be 
considered, the method reduces to the said “Two Flux Approximations” [24], if 
scattering is isotropic. Application of the Two Flux Approximation to a superconductor 
thin film has been reported in our previous papers, see the summary [13], Sect. 4. But the 
Matrix Method as suggested [9], in comparison to the discrete ordinate’s solutions, takes 
into account also the time and wavelength dependence of the conductive and radiative 
parameters, respectively. 

In this approximation, the different heat transfer mechanisms are separated, in a 
matrix, M, line by line, according to the speed by which photons propagate through the 
superconductor (transit time through the sample depends on the number of interactions 
experienced by the photons12). Division into intervals separates “fast” from “slow” 
transport phenomena in radiation (scattering vs. absorption/remission), and in general, in 
multi-component heat transfer (solid conduction, radiation). 

Figure 19 shows transition time of photons through the 2 µm thin film YBaCuO 
123 superconductor, in dependence of temperature and for different absorption/remission 
and scattering situations. 

By Figure 19, the sequence of equations in the Matrix formalism can be identified 
from Figure 20. For simplicity, the figure applies hemispherical spectral emissive Black 
Body radiative power to identify the sequence during warm-up of intervals between 
times θ1, θ2, θ3, ..., like ΔθK,j = Δθ2,1 = θ2 − θ1, all within the three regions that cover the 
surface layers, ζ, and the 1.8 µm core of the superconductor thin film. The Matrix 
Method thus separates time intervals, ΔθK,J that are adjusted to the different transit times 
and corresponding values of the Albedo that are tested in Figure 19. 

 
Figure 19. Transit time of solid conduction and radiation signals proceeding by different 
heat transfer mechanisms through the 2 μm YBaCuO 123 thin film. First published in 
arXiv 2111.09825 (Nov 2021), Figure 8b. 

In Figure 19, we have simulated (1) solely absorbed/remitted radiation, (2) solely 
solid conduction, (3) solid conduction in parallel to absorbed/remitted (not scattered) 
radiation, (4) solely elastically scattered radiation. Cases (1) to (3) are calculated from 
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the diffusion approximation, see basic literature on heat transfer [27]. 
L = C (aTh t)0.5 (15)

if heat transfer is conductive (which in case of radiative heat transfer means: if optical 
thickness is large) and using anisotropy factors, mS, indicated in the figure, and the 
Albedo Ω. Case (4) results from the Monte Carlo simulations. Time spans, s1, denotes 
time lag between two, fundamentally different, separate heat transfer mechanisms (solely 
solid conduction, radiation), s2 is the maximum difference between two different, 
radiative transport processes. 

 
Figure 20. Hemispherical spectral emissive power, eλb (solid blue circles, schematic), of 
Black Body radiation into vacuum. Reprinted from J. Supercond. Novel Magnetism 33 
(2020) 3279–3311, Figure 9b. 

In Figure 20, the eλb are calculated using the Planck formula applied to temperature 
that increases with time in the superconductor under a short time disturbance. The 
dashed, horizontal red line indicates the eλb that would be emitted at T = TCrit = 92 K 
const. Times θ1, θ2,...θJ, θK,...and their sub-divisions t1, t2, ... tj, tj+1, tj+2, ... tN, tN + 1, ... tk − 1, 
tk of each of the intervals [θJ, θK] indicate the intervals within which solution of the ERT, 
Equation (14), and the energy equation, Equation (13), shall be calculated by application 
of the Matrix method, Equation (16).  

It is within these time intervals where solutions for the transport mechanisms under 
different wave lengths and parameters (Albedo, reflectivity, optical thickness) have to be 
found. 

The matrix concept to solve the combined conduction plus radiative transfer 
problem, at every instant, ti, tj, (with two transfer mechanisms that operate in parallel) of 
course is laborious. But if the object under study is non-transparent, modelling of 
radiative transfer drastically simplifies to diffusion solutions (see Sect. 6.5), and the 
concept reveals an ideal condition for application of Monte Carlo (for radiative 
contributions) combined with Finite Element (for conduction heat flow) simulations. 

A column vector, N, contains the corresponding energy equations. The Albedo in 
both M and N is selected in time intervals within which radiative or conductive transport 
mechanisms constitute (or both in parallel) contribute to total heat transfer by the matrix 
Equation (16), 

 

(16)

Temperature is obtained in the results column vector, T = M × N, by coupling 
matrix M with column vector N, like in a vector cross product of real matrix or column 
elements, to yield the temperature column elements, T. Elements (lines) of the Equation 
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of Radiative Transfer (contained in M) are folded with elements of the Energy Equation 
(arranged in N). The elements of M and N (all of which are equations, not just real 
numbers) for solution of the total heat transfer problem have to be applied with 
appropriate materials and boundary conditions. The method also allows considering 
spectral properties of refractive indices, Albedo and of the extinction coefficients. 

This method to solve the combined conduction/radiation problem, in dependence of 
the speed by which energy transfer is realized, which means, within specific intervals of 
the simulation time, apparently has never been reported in the literature. 

We will later present results obtained with Matrix and standard methods to solve 
the combined conduction plus radiation transfer problem in thin film superconductors. 
See arXiv 2102.05944 (Feb 2021), Figure 6a-c, for example. 

The differences seen between both methods obtained for temperature excursion and 
stability functions apparently are small. It is not clear that small differences would result 
also from simulation of other materials (ceramics, metals, polymers). During numerical 
simulations, decisions must be made from comparison of e.g., actual (simulated) 
temperature, T, and superconductor critical temperature, TCrit. Both are given as real 
numbers, which means even tiny differences between both quantities, in a numerical 
quest, may lead to different decisions how to continue with the simulations (zero-loss or 
resistive current transport?). This far-reaching decisions, and similar ones, could lead to 
enormous differences in the simulations, following such quests. The Matrix Concept, 
accordingly, will have to be re-visited in near future. 

The small differences, on the other hand, qualify both methods as suitable for 
investigating the impacts of parameter variations. This is reported below. 

But how do we get the phase function in Equations (12) and (14)? 

6.4. Monte Carlo method 

Monte Carlo (MC) simulations yield the angular distribution of scattered radiation 
(the scattering phase function). This step is needed to also find realistic, efficient values 
of extinction coefficient (different from the result obtained in simple transmission 
measurements) and of optical thickness of the sample. The Monte Carlo simulation 
accordingly accounts for the integral, spatial distribution aspect of radiation energy 
within the combined parallel, conduction plus radiation heat transfer problem (Figure 
19). 

The Monte Carlo approach considers a large number M of beams that after emission 
experience a total N of interactions on their transit path of total length, L, through an 
object, like a superconductor filament or thin film (length, L, not necessarily equals 
sample thickness). Each beam shall be emitted from any position within a target area, at z 
= 0 and under arbitrary angles, θ, against the surface normal (“any position” means an 
extension of standard Monte Carlo simulations where it is assumed radiation is emitted 
from just one, single position; somehow unrealistic an assumption). Its transit time can 
be calculated for arbitrary events of absorption/remission and scattering interactions. 

In the Monte Carlo language, beams are called “bundles”. For the general 
description of Monte Carlo simulations, when they are applied to radiative heat transfer 
[24]. 

The part Ω < 1 (the Albedo) is responsible for the thermal energy remaining from 
the bundles after absorption/remission processes; this part is remitted or re-scattered (the 
case Ω = 1 describes pure scattering, no absorption/remission events, no radiative 
equilibrium). 
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For the Monte Carlo method, the scattering angle, θ, under elastic scattering can be 
defined as a random variable to yield, as explained in a study [24], wherein 0 ≤ R(θ) ≤ 1, 
the probability to find a bundle emitted or scattered at angle θ (we have 0 ≤ θ ≤ π). Large 
mS indicate strong forward scattering, compare the spider diagram in Figure 17, 

θ = arccos [1 − R(θ)/mS] (17)
In ceramic samples, the angular distributions of scattered radiation approach the 

better the theoretical cos(θ)-distribution (when bundles leave the rear sample surface), 
the larger the extinction coefficient (and the larger the number of bundles). 

All disturbances, here by absorption/remission, are the source of large numbers of 
radiation beams, first from foot-points in Figure 16 at (x > 0, z = 0) and, subsequently, of 
secondary beams after their absorption at random interior positions of the solid. The 
beams create internal heat sources, QV (x > 0, z > 0, t). The Monte Carlo (MC) simulation 
yields spatial distribution and magnitude of these sources. More beams (in the language 
of Monte Carlo simulations: more bundles) are remitted from interior solid positions, z > 
0, to create new sources, QV (x > 0, z > 0, t), again simulated in the MC simulation. 

After each absorption event along a bundle, the magnitude of the QV (x, z, t) 
decreases until the bundle energy is completely extinguished. The total number of 
bundles in the Monte Carlo simulations performed in the present paper is N = 5 × 104; 

this number proved to be sufficiently large in our calculations. 
The scattering phase function, Ψ, in the superconductor materials is shown, first as 

the principal spider diagram in Figure 17, and explicitly for the YBaCuO 123 thin film 
material in Figure 18. When the scattering parameter, mS, increases, scattering becomes 
increasingly forward oriented, but the spatial distribution of radiation leaving the rear 
surface, y = L, after multiple scattering interactions, finally reproduces the Lambert 
cosine law the better, the larger optical thickness, τ. A limit of τ = 15, is found from 
experience. This can be concluded also from Figure 21. 

 
Figure 21. Angular distribution, n(θ), calculated at 2 μm thickness (coordinate y = L in 
Figure 16) by Monte Carlo simulation of in total M = 5 × 104 bundles. Reprinted from J. 

Supercond. Novel Magnetism 33 (2020) 3279–3311, Figure 16. 

In this figure, the bundles are emerging from y = 0 (compare Figure 16) that leave 
the rear sample surface (thin film YBaCuO 123 superconductor). Results are shown vs. 
angle θ against surface normal of the volume elements (concentric rings generated by 
rotation of the area elements of Figure 16) and in dependence of the (scattering) 
anisotropy factor mS. The curves (solid diamonds) are indexed as mS1, mS2, mS3 (running 
from 2 to 18; these are the same mS that are applied in the spider diagram in Figure 17 
and the phase function (Figure 18). The mS-factors in this figure are assumed as identical 
in inner (index 1) and outer, about 0.1 μm thin boundary layers (index 3) and in the 1.8 
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μm thick central core (index 2) of the thin film (for variations of the inner and outer 
layers see Figs. A2 and A3 [8]). The same applies to values of the Albedo (Ω = 0.912 in 
the three layers, the value is taken from the study of Reiss [8]). Extinction coefficients in 
the three layers are E1 = E3 = 3.417 × 106 and E2 = 1.409 × 107 1/m, respectively [8]. 
Solid symbols approach the theoretical cos(θ)-distribution (open circles) of the residual 
beams leaving the sample on the rear surface. The figure is copied from Figure A1 [8].  

All items to determine the QV (x, z, t), and the positions within the target plane from 
which bundles are emitted, in the MC simulation are treated as random variables. 

According to a theorem by Carslaw and Jaeger [28], an initial distribution of 
sources, here radiative heat sources, is equivalent to a distribution of initial temperatures, 
to be taken into account for the solution of Fourier’s differential equation (Sect. 6.5), 
here by the Finite Element method. This theorem provides another strong simplification 
of the combined conduction/radiation problem. 

6.5. Optically thick superconductor samples 

The criterion to reduce the general radiative transfer problem (previous Section) to 
a diffusion-like process, and to justify applicability of the so called “Additive 
Approximation” (see below) is given by the minimum optical thickness, τ = E s = 15, of 
the sample [29] for justification of this condition; s denotes a distance within the sample, 
s < sample thickness, D. 

While it seems no problem to fulfil the condition τ ≥ 15 in direction of transport 
current flow, the y-direction in Figures 3 and 4, it is not clear this criterion will be 
satisfied also in the other directions in a filament or in a thin film. With their thickness in 
the order of 20 or only 2 µm, respectively, an extinction coefficient of the thin film 
material of at least E = 7.5 × 106 (1/m) is requested, which might become a problem 
under dependent scattering. 

If this approximation is allowed (if optical thickness is large), the integro-
differential ERT, Equation (12) or Equation (14), reduce to a comparatively simple, 
second order (in terms of the spatial co-ordinate, x) differential equation, like Equation 
(10) or Equation (13). From the obtained, diffusion-like radiative heat flow, q = qRad, a 
“radiative conductivity”, λRad can be derived. 

The radiative conductivity reads, after inclusion of a correction to anisotropic 
scattering to an effective value by the factor Ωμm, with μm the mean value of cos(θ), θ as 
before the scattering angle, n the refractive index, and σ the Stefan-Boltzmann constant. 
See the study [30] for derivation of Equation (18). 

λRad = 16 σ n2 T3/[3 E (1 − Ω μm)] (18)
The radiative conductivity, λRad, is added to λCond. to yield total thermal conductivity, 

λ = λCond + λRad. This “Additive Approximation” of total thermal conductivity is not 
trivial, yet in good believe has it frequently been used in the literature. But its 
applicability was confirmed only recently in numerical experiments by the present author, 
see the study of Reiss [29], part A and B; (not really a surprise, it works only if optical 
thickness is large, which means λRad is a small correction only, in the total conductivity, 
to λCond). 

The factor μm Ω in the denominator of Equation (18), with µm a mean of the µ = 
cos(θ) directions, reduces extinction coefficient and optical thickness to effective values, 
which means the radiative contribution may significantly be increased by strong forward 
scattering and the diffusivity aRad accordingly increased. 
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6.6. Solid thermal and electrical conduction contribution 

6.6.1. Heat transfer 

If optical thickness is large, heat transfer in superconductors like in other solids is 
reduced to solid conduction. In our reports, we have applied solid thermal conductivity 
as temperature-dependent parameters obtained from experiments, the results either taken 
from the literature or, for thin films, determined in laser-flash or 3ω-measurements 
performed in the Department of Physics of the University of Wuerzburg. 

6.6.2. Normal conduction, electrical resistances 

Resistance under normal conduction is important for estimation of the flux flow 
resistivity, ρFF, arising in magnetic fields if, as mentioned, density of transport current 
exceeds critical current density. With the actual, local magnetic field induction, B (x, y, t) 
used in the simulations, and BCrit,2 the corresponding upper critical value of type II 
superconductors, the flux flow resistivity reads see Equation (7.10) by Huebener [1], 
with ρNC the normal conducting state resistivity. In the literature, Equation (19) has been 
used with ρNC stilla uniform materials constant, 

ρFF (x, y, t) = ρNC B (x, y, t)/BCrit,2 (19)
For improved estimates of ρFF (x, y, t), a more detailed value of ρNC in a cell model 

was designed [6] that reflects also the inner geometry and the materials composition of 
BSCCO 2223 multi-filament and YBaCuO 123 thin film conductors (Figures 3 and 4). 
The cell model in particular takes into account the microscopic, layered crystallographic 
structure of the BSCCO 2223 superconductor material (Fig. 2.13 of the study of Buckel 
and Kleiner [10]) and in particular the interfacial resistances (the weak-link problem in 
superconductors (while standard literature takes ρNC as just a continuum property of 
uniform value). All components of ρFF (x, y, t) are treated as temperature-dependent 
quantities. 

Design, and results obtained with the improved calculation of ρFF (x, y, t) and the 
cell model are reported in Figures 22 and 23, respectively, showing how strongly ρFF (x, 
y, t) increases with temperature and increasing magnetic field. 

 
Figure 22. Geometrical cell model for the calculation of the resistivity, ρNC, for the 
estimate of the flux flow resistivity, ρFF, in the Finite Element simulations. Reprinted 

from J. Supercond. Novel Magnetism 29 (2016) 1405–1422, Figure 5a. 

Figure 22, upper diagram to the left, shows three arbitrarily selected filaments 
(black, flat rectangles, schematic, no to scale. Circular cross sections could be modeled 
as well). Each filament (first detail, right, below) consists of a number M × N domains 
(clusters of orthorhombic plate-like, parallel oriented grains) each of which incorporate a 
superconductor core (large black rectangle) and a shell of weak link material (light-gray). 
Each of the M × N domains is divided into a number N = m × n grains (second detail, 
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bottom part of the figure, left) each with again a superconductor core (small black 
rectangles) and a thin sub-shell of weak link material (white lines); this hierarchy of 
large and small superconductor cores in domains and grains and of correspondingly thick 
and thin shells and sub-shells facilitates modeling resistances of grains and weak link 
materials of different size, thickness, materials composition, physical properties and field 
dependence, respectively. See caption to Figure 22 for detailed positions of domains the 
corresponding weak links sections. Dimensions are given below, Figure 23. Total 
simulated conductor length, z, taken over large numbers of grains, domains and filaments 
is arbitrary. Numerical values indicating size of cross section of one filament are in 
micrometer. The geometrical model assumes roughly layered grains and filaments. 
Resistances to current flow, in this figure in y-direction, of all domains and grains, 
filaments and Ag-matrix material are switched in parallel. The multi-filament conductor 
in Figure 3 incorporates 91 filaments.  

 
Figure 23. Flux flow resistivity, ρFF, calculated from the effective ρeff and with the field 
factor B/BCrit,2 to current transport in a multi-filamentary BSCCO 2223 conductor. 

Reprinted from J. Supercond. Novel Magnetism 33 (2020) 629–660, Figure 17. 

The calculations in Figure 23 applied local (constant) magnetic flux density, B = 10 
and 100 mT (solid dark-green and light-green diamonds, respectively). Dimensions of 
domains, x1, y1 and z1, are 70, 6 and 70 µm, thicknesses dx1, dy1 and dz1 of weak link 
shells enclosing domains are 100, 10 and 100 nm, respectively (these are defined in 
Figure 15). Dimensions of grains, x2, y2 and z2, are 20, 1 and 20 µm, thicknesses dx2, dy2 

and dz2 of weak link shells surrounding grains are 1, 1 and 1 nm, respectively. Solid blue 
circles indicate ρGrain as solely the grain core (bulk) material without magnetic field and 
under zero current (note the temperature range reduced to 96 ≤ T ≤ 108 K). Open dark 
green diamonds denote ρFF calculated with B = 10 mT. For comparison, dark-grey 
diamonds indicate resistivity of the Ag-matrix material. The upper critical magnetic field, 
at T = 4.2 K, is BCrit,20 = 200 T giving BCrit,2 (T) = BCrit,20 [1 − (T/TCrit)2]. Critical 
temperature (vertical, dashed red line, for B = 0 and very small current) is 108 K. 

In the BSCCO 2223 conductor, each of the filaments is embedded in a Ag-matrix to 
improve mechanical stability during winding and, as a normal conducting by-pass, to 
protect the conductor against quench. 

6.7. The finite element model (description, results and achieved 
convergence) 

6.7.1. Description of the FE model 

In the previous Subsection we have shown that if radiation heat transfer can be 
simulated as a diffusion-like process, the solution of also the total heat transfer problem 
is enormously simplified, from the complicated Equations (12)–(14), and if they are 
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elements of the matrix equation, also from Equation (16), to the simple, 2nd order, 
Fourier’s differential Equation (10). 

The solution can be found by analytical or Finite Differences or Finite Element (FE) 
methods (FE procedures would be preferred in case of complicated conductor 
architecture). Heat sources, Q0 (x > 0, z = 0, t) and the QV (x > 0, z > 0, t), are applied as 
input into a rigorous FE scheme to calculate thermalization of the sources and the 
transient temperature evolution T (x, z, t), which in turn serves for determination of the 
field JCrit (x, z, t) of critical current densities of the superconductor and thus of the 
distribution of transport current. Mapping of the field T (x, z, t) onto the field JCrit (x, z, t) 
is single-valued (injective) if there is no magnetic field. 

Monte Carlo simulation to obtain the phase function is requested to correct 
extinction coefficients, E, to effective values, like in Equation (18) by the factor (1 − 
µmΩ). Extinction coefficients are obtained from directional transmission measurements, 
or they can be calculated if complex refractive indices of the material are available in the 
appropriate range or wavelength. Also, the Albedo Ω should experimentally be 
determined of, like the extinction coefficient, calculated using methods described in 
traditional volumes on light scattering by small particles, for example Bohren and 
Huffman [31]. 

To obtain correct (converged) results of the excursion of T (x, z, t) by the numerical 
FE integration of Equations (12) or (14) and (13), the whole simulated period in this and 
in our previous papers extended over up to 20 milliseconds (AC, one swing of 20 ms, ω 
= 50 Hz). It has been split into 200 equal length periods, sub-steps Δt = 10−4 s. The 
procedure within each period Δt had to be repeated by up to N = 10 iterations (repetitions) 
of the proper (standard), one-turn integration loop in the FE process; this iterative 
repetition is indicated by the dark-yellow turn in Figure 243. 

Figures 24 schematically shows the “master scheme” for the FE-simulations, a 
flow diagram that explains the applied series of repeated, iterative Finite Element 
calculation steps. Predictions of the calculation steps and the saw tooth structure of the 
results are indicated in Figure 25, and the results confirming the predictions are found in 
Figures 26 and 27.   

 
Figure 24. Flow chart (the “master scheme”) that has been used for an extended 
application of the Finite Element code Ansys Release 16.2 for simulation of the 
temperature fields. First published in arXiv 2212.09333 (Dec 2022), Figure 22a. 
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The master scheme shown in Figure 24, in strong contrast to traditional Finite 
Element procedures, incorporates two iteration cycles (i, j) and one time loop (tj) of the 
numerical simulation. Light-green circles and indices, i: Sub-steps, the proper Finite 
Element (FE) calculations; Light-yellow indices, j: Load steps involving FE and, within 
the blue rectangles, critical current, magnetic field and resistance (flux flow, Ohmic) 
calculations; Dark-yellow arrow, t: Time loop, lines of a matrix M. The blue rectangles 
with sub-step numbers i = 1, 2, 3, ..., N are defined as 1: First FE step, j, with data input 
of start values of temperature distribution, specific resistances, critical parameters of J, B 
and of initial (uniform) transport current distribution or of single, isolated radiation heat 
pulses, respectively; 2: Results obtained after the first FE step (i), if converged, using 
identical parameters in the same load-step, j; Calculation of TCrit, BCrit, JCrit; 3: 
Calculation of resistance network and of transport current distribution (if applicable), all 
to be used as data input into the next FE calculation (sub-step i + 1), within the load step, 
j; 4: Results like in 2; Sub-steps 5, 6, ..., N: Results like in 3 or 4, convergence yes or no ? 
If “no”, return to 1 (iteration i = 1, in load step, j). If “yes” go to next load step j + 1, 
continue with 1. The number N of FE cycles (green circles) may strongly increase 
computation time. Length of simulation time, t ≤ tmax, within each of the individual 
intervals, with tmax indicating the maximum time of a corresponding interval, is selected 
according to the different transit times (these result from Monte Carlo simulations, 
source functions, different radiation propagation mechanisms, different ratios of solid 
conduction and radiation, and from different wavelengths). After slight modifications 
(addition of the dark-yellow, outer time loop, the figure is copied from and extended 
against its original Figure 12 [29], part B.  

Integration time δt within each sub-step Δt/N ≥ 10−5 s is between 10−14 and 10−7 s; 
convergence shall be achieved at the end of each sub-step, Δt and, finally, at the end of 
each period. Length Δt is large against, and safely contains, the three different 
characteristic times, τTh, τm, τC, the items (i) to (iii) of Sect. 3.2 and in the Appendix. 

This procedure considers the strong non-linearity of almost all involved parameters 
and transport processes. It yields a series of converged, quasi-stationary solutions. These 
are found in the “convergence circles” indicated in Figures 25 and 27. 

 
Figure 25. Prediction of “saw-tooth” behaviour of conductor temperature obtained as 
intermediate results during the iterations and the finally achieved convergence in the 
corresponding convergence circles. 
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The figure describes the Finite Element (FE) procedure integrated in the master 
scheme (Figure 24) using the code Ansys. Solution of Fourier’s differential equation, to 
calculate excursion with time of conductor temperature, T(t), proceeds in the intervals Δtj, 

1 = tj,2 − tj, 1 (disturbance, up-heating), Δtj, 2 = tj, 3 − tj, 2 (cool-down to convergence of 
temperature), ..., Δtj,k = tj,k + 1 − tj,k  for given load-step, j; we frequently observe Δti < Δti 
+ 1, depending on strength of the heat sources (not considered, for simplicity, in this 
figure). The dashed black line schematically indicates conductor temperature, T(t), but 
may also indicate the T-dependence of any superconductor property like specific 
resistance, specific heat or thermal conductivity and may also indicate results of the 
analytical calculations (like JCrit or the stability function) in the said master scheme. The 
black arrows schematically indicate the slow convergence behavior of the simulated 
temperature excursion with time. Convergence temperature (or, accordingly, 
convergence of any temperature-dependent property) then is obtained in the large, 
colored “convergence circles” (at the end of each load step wherein relaxation from the 
disturbance is obtained (the Finite Element solution cannot integrate the relaxation 
model). The different colors applied to the diamonds schematically indicate different 
parameters by application of which the calculations will be performed, see captions to 
the figures shown in parts A and B of the study of Reiss [29]. 

 
Figure 26. Verification of the predictions (by Figure 25): The “saw-tooth”-behaviour in 
a YBaCuO 123 filament of conductor temperature resulting from the FE simulations. 

Reprinted from J. Supercond. Novel Magnetism 33 (2020) 629–660, Figure 14. 

Figure 26 shows element temperature under periodic point-like disturbance of DC 
transport in the thin filament of a 1G multi-filament conductor of 200 µm radius (The 
large radius is hypothetical and applies to filaments of this material prepared in the early 
days of HTSC development; actually, filament dimensions of (1G) BSCCO 2223 are 
much smaller, down to 20 µm.). The filaments were assumed as hypothetically being 
prepared from YBaCuO 123 poly-crystalline material (but BSCCO material meanwhile 
is preferred instead; it is only because more reliable YBaCuO 123 materials parameters 
were available at the date when this simulation was performed). Results are calculated 
with the c-axis solid thermal diffusivity parallel to the y-axis of the overall coordinate 
system. Orientation of orthotropic thermal diffusivity components of YBaCuO 123 with 
respect to the overall (x, y) coordinate system is shown in the inset positioned inside this 
figure, wherein the two thick, red solid lines assigned “ab” indicate direction of the 
(large) diffusivity in the crystallographic ab-planes, while the much smaller diffusivity 
component in YBaCuO is parallel to the c-axis. Results are given for solid conduction 
plus radiation thermal transport calculated at increasing radial distances, x, from the axis 
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of symmetry of one filament. The Δt1, Δt2 reflect the two intervals of the integration 
scheme indicated for the first load-step. Because of the logarithmic plot, the following 
load steps cannot clearly be resolved in this figure. The horizontal, dashed yellow in this 
figure line indicates critical temperature (92 K) of this superconductor. The other inset, at 
right hand to this figure, shows the target positioned in the filament cross section. The 
ab-plane is rotated, and the dashed green curve denotes orientation of a circular magnetic 
field. The figure is re-plotted from Fig. 1a [6] and from Fig. 14 [29], part B.  

 
Figure 27. Verification of predictions (by Figure 17) of the “saw-tooth”-behaviour of 
conductor temperature. 

Figure 27 shows conductor (centroid) temperature in the thin film, YBaCuO123 
multi-layers during iterations in the “master scheme”, and black, open convergence 
circles at 4.2 and 4.3 ms. Excursion of conductor temperature, T (x, y, t), proceeds in the 
intervals Δt1 (disturbance, up-heating), Δt2 (cool-down, relaxation); we have Δt1 << Δt2 
(T (x, y, t) decays exponentially). The length of the black arrows schematically indicates 
the (slow) slow convergence behavior of the simulated temperature excursion with time. 
Contrary to Figure 26, the temperature curve results from solely flux flow losses 
distributed in the superconducting conductor cross section (not from a pulse incident 
from outside onto the sample).  

Radiation elastic scattering events, in the interior of the solid, proceed by velocity 
c/n of light (n the refractive index). But propagation of a thermal wave, by solid 
conduction only, is much slower, by orders of magnitude. Absorption and remission of 
radiation emanating from original positions (x > 0, z = 0) and by the QV (x, z, t), at 
interior positions, accordingly, can be considered as initial conditions to the subsequently 
treated thermal conduction problem. This justifies application of the Carslaw and Jaeger 
theorem [28]. 

Thermalisation of the sources QV (x, z, t) can be calculated using any standard, 
reliable FE program. Checking of the accuracy that they provide is recommended, e.g. by 
calculation of stagnation temperatures and of predictions that should be compared with 
experimental results, if available. 

Thermal diffusivity and heat transfer to a coolant in the present calculations have 
been used as input values into the Finite Element simulation as temperature dependent 
quantities. While Rosseland mean extinction coefficients can be found in [24], see 
Equations (15)–(39) of this reference, to account for spectral variations of the extinction 
properties, the present analysis for simplicity is restricted to a constant extinction 
coefficient, E (independent of wavelength and temperature).  
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The Finite Element calculation step solves the differential part of the combined 
conduction plus radiation heat transfer problem. Accuracy of the FE method to a large 
extent relies on adequate meshing. Very fine, if possible, “esthetic” meshing using 
symmetries is helpful and required for the objects under study, filaments and thin films 
(not only the superconductor thin films in Figure 4). 

Figures 28 and 29 show the Finite Element simulation cross sections (both 
schematic) of the (1G) multi-filamentary superconductor and of the (2G) multi-layer, 
coated thin film superconductor architecture (compare Figures 3 and 4, respectively). 

  
Figure 28. Finite Element simulation scheme of the left half of the BSCCO 2223 
conductor cross section. Reprinted from J. Supercond. Novel Magnetism 29 (2016) 
1405–1422, Figure 3 (lower diagram). 

Figure 28 schematically shows the 91 identical superconductor filaments (black) 
and matrix material (Ag, light gray). The thick dashed line at the right denotes axis of 
symmetry, x = 1.92 mm. Thin white lines indicate details of the finite element, mapped 
meshing (with a total number of elements NEl = 4032). In this conductor, and if there a 
heat pulse is applied to test stability of this conductor, a “target” would preferentially be 
positioned onto the cross section of one or of a few of the filaments to initialize heat flow 
in axial, y-direction (compare Figure 26). Otherwise, the heat sources (flux flow, Ohmic) 
result from too large a transport current and are located within the filaments.  

 
Figure 29. Finite Element simulation scheme of coil and of (2G) YBaCuO 1223 
conductor geometry. First published in arXiv 2111.09825 (Nov 2021), Figure 1. 

The figure shows in detail the composition of turns 96 and 97 of the coil (Figure 15, 
again schematic, not to scale). This figure, contrary to continuum approximations, is 
used for detailed specifications of the numerical stability calculations. Crystallographic 
c-axis of the YBaCuO-layers is parallel to y-axis of the co-ordinate system. Conductor 
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architecture and dimensions are standard. Superconductor (SC) layer thickness (red 
sections) is 2 μm, its width 6 mm; thickness; these data apply to also thickness and width 
of the Ag elements (lilac); width of the interfacial layers (IFL, light green) is 40 nm (the 
IFL are included to simulate surface roughness and diffusion of species between the SC 
and its neighbouring Ag- and MgO-layers, respectively). The thick, dashed-dotted line at 
the bottom of this diagram indicates an artificial axis of vertical symmetry introduced for 
support of the Finite Element part of the simulations, compare text for explanation. 
While continuum approximations, like those reported in the 7th International Workshop 
on Numerical Modelling of High Temperature Superconductors (HTS 2020), 
enormously simplify simulations of temperature excursions in superconductor 
applications, they like other continuum models cannot yield temporal and spatial 
resolution. But highly resolved simulations are the prerequisite to development of 
superconductors and to identify onset and expected location of a quench. 

Total number NEl of elements in the half cross sample sections applied to the (1G) 
multi-filamentary superconductor was 1440, 4032 and 12384. Though it yields overall 
agreement with integral results that were obtained with larger numbers of elements (total 
transport current, distribution of hot spots, stability functions), the NEl = 1440 mesh 
resolution turned out to be too coarse for a detailed study of temperature distribution. NEl 
= 4032, found by trial and error, probably is the smallest number that can be tolerated for 
simulation of transient problems in this complicated conductor geometry (and NEl = 
4032 still is an economical measure). 

 For the cross section of the (2G) thin film superconductor cable with its upper 5 
turns, NEl had to be increased strongly, up to 64,000 in total. 

The simulations apply mapped meshing of the cross sections using 4-node plane 
elements, temperature dependent materials properties and boundary conditions. 

Computation time became very critical and almost impractical on a standard PC (4-
core processor) when using NEl > 104. Total simulated period had to be limited to about t 
≤ 12.5 ms. It took about 26 hrs to simulate this period in the simulation of 1G and 2G 
superconductor samples. 

The solution scheme applies sparse matrix, direct solves, with appropriate definition 
of the number of equilibrium iterations. The FE processes are embedded into the already 
mentioned, overall, 4-level calculation scheme (Figure 24). Application of iterative 
solvers did not substantially improve the situation. 

Resistance to magnetic transport has to be considered separately in grains and in 
grain boundaries. A schematic, rather optimistic, c-axis orientation of plate-like grains 
that constitute the filaments, and a circumferential magnetic field, under axial (y-) 
direction of transport current, is assumed. Flux flow, under this condition, would occur in 
horizontal (x, y-) directions (under c-axis orientation of superconductor grains, within the 
crystallographic ab-plane; strictly speaking, current transport in the ab-plane is larger 
(may be larger even by orders of magnitude) against c-axis direction, because of large 
anisotropy ratios). 

Like in our previous reports, we have used data for solid/liquid heat transfer from 
metallic surfaces to boiling LN2, including its dependency on temperature and 
circumferential position. 

Results obtained for both superconductors are shown in Figures 30 and 31, 
respectively. 
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Figure 30. Temperature field (nodal temperatures) in the tape cross section of the 
BSCCO 2223 multi-filamentary conductor (Figures 3 and 28) obtained in a FE 
calculation. First published in arXiv 2102.05944 (Feb 2021), Figure 15b,c. 

In Figure 30, again because of symmetry, only the left half of total conductor cross 
section needs to be shown, and the symmetry axis is on the right. Results are observed at 
t = 8.3 ms (top, with all temperatures, 77.0246 ≤ T ≤ 98.6262 K, below critical 
temperature, TCrit = 108 K at zero magnetic field), and at t = 8.6 ms (bottom), 
respectively (1.8 and 2.1 ms after start of a permanent disturbance initiated by a large 
fault current). Resistances according to the bottom (temperature) diagram partially are 
Ohmic, but are mixed with flux flow resistances as can be expected from Figure 5 (mid 
diagram). The disturbance results from a sudden increase, within 2.5 ms, beginning at t = 
6.5 ms after start of the simulations, of AC transport current to a multiple of 20 times its 
nominal value. Local temperatures are identified by the corresponding horizontal bars 
below the diagrams. Symbols MX and MN indicate positions in the cross section where 
minimum and maximum temperature is observed. Temperature in the upper half of both 
diagrams is larger than in their lower half cross sections; in this example of field 
orientation, magnetic flux density arising at the Ag/filament interfaces in the upper half 
cross section is settled to exceed flux density in the corresponding lower half sections, 
which by reduction of JCrit initiates non-zero flux flow resistances in the (upper) regions. 
Transport and fault over-currents thus preferentially occupy the lower half of the cross 
sections. Even temperature distributions within the tiny filaments, not only over the total 
tape cross section, can be observed in both diagrams.   

Figure 31 shows finally achieved numerical convergence of the results obtained 
during the temperature simulations in the cross section (Figure 4) of the multilayer, thin 
film conductor. An additional, but small heat source (a trigger), is approximated by 
incidence of a short radiation pulse, Q0 (x > 0, z = 0, t), but only on the solid red circle on 
the upper conductor surface in Figure 4. The target plane (z = 0) in this case is located 
on the flat surface of the superconductor (i.e. on the crystallographic ab-plane, with 
favorable c-axis orientation of the sample). 

The solution is cylindrical symmetry. Its cconvergence is demonstrated by 
comparison of conductor temperature at its periphery (i.e. at “cold spots” within the 
conductor) with temperature of the coolant (T = 77.0000 K) and by control of stagnation 
temperature at all positions of the conductor after a disturbance. 

Coolant temperature is the only temperature that must remain absolutely constant, 
strictly at 77 K, at the very interface between coolant and solid (this is a boundary 
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condition, kept constant during the whole simulated period). A sharp criterion for 
convergence is to find exactly this temperature at positions within the conductor but very 
close to the interface, under the enormous geometrical thickness differences, layered 
samples, strongly different materials and their strongly different, anisotropic thermal and 
electrical transport properties. That this condition has been fulfilled in the FE simulations 
is a favourable result that confirms the applied numerical method. 

 
Figure 31. Verification of numerical convergence when using the procedure explained in 
Figures 24 and 25. First published in arXiv 2111.09825 (Nov 2021), Figure 11c. 

In its upper diagram, Figure 31 shows nodal temperature distribution within the 
conductor cross section (turns 96 to 100) in the coated YBaCuO 123 conductors at t = 
4.1 ms after start of the simulations. Coated, thin film conductors using YBaCuO 123 are 
preferentially applied in energy technology. White dashed lines are part of the Finite 
Element mesh (the inner block comprises turns 96 to 100 of the coil; the narrowly spaced 
double, dashed white lines indicate electrical insulation between turns, and the outer 
double lines reflect reinforcement of the casting compound). Again, symbols “MX” and 
“MN” denote maximum and minimum temperature within the total conductor cross 
section. Numerical convergence of the simulation is confirmed by exact reproduction of 
the temperature minimum, 77.0000 K (coolant temperature, pool boiling) in both cases. 
Lower diagram: Nodal temperature distribution between turns 96 and 100. Temperature, 
here shown at t = 4.27 ms, has increased against t = 4.2 ms. No fault, just nominal 
transport current, ITransp/ICrit = 1. Below, the strongly magnified section (inset) shows 
temperature distribution at the left end of the superconductor thin film in turn 96 with a 
“Cold spot” arising during the iterations. The inset identifies materials and their positions 
and their temperature within the conductor cross section around turn 96:1 Stabilizer Cu, 
2 PbSnAg-solder, 3 metallization Ag, followed by interfacial layer Ag/SC, 
superconductor (SC) thin film, interfacial layer SC/Buffer layer, 4 buffer layer MgO, 5 
Hastelloy.   

In the simulations, we have applied random critical superconductor parameters (see 
Figures 32 and 33), with fluctuations of critical temperature, current density, magnetic 
field, weak link behaviour, as a method to (i) approximately account for deficiencies 
(unavoidable, on industrial scale) in materials development, manufacture, handling and 
operation of the sensitive 1G conductor (micro-pores and cracks that result from 
winding). 
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Figure 32. Random variations of ΔJCrit0 of critical current density (upper diagram) and 
of the thermodynamic variable, ΔTCrit0, of critical temperature (below). First published in 
arXiv 2111.09825 (Nov 2021), Figure 2. 

The variations ΔJCrit0 in this figure within 1 per cent around the mean (thin film) 
value JCrit0 = 3 × 1010 A/m2 of YBaCuO 123 in zero magnetic field and at T = 77 K, the 
variations ΔTCrit0 are within 1 K around the mean value TCrit0 = 92 K in zero magnetic 
field. In the lower diagram, the inset shows element temperatures in the immediate 
neighbourhood of the centroid of turn 96 (orange rectangle). Solid green and red lines 
indicate mean values, blue and red, dashed-dotted lines are mean-square deviations. In 
both diagrams, random variations and their mean-square deviations are the start point for 
subsequent, overall variations of these parameters in that multiples of these are used in 
the simulations. Nodal distances in horizontal and vertical directions in the 
superconductor thin films are 30 and 0.4 µm, respectively. These random variations 
applied in the numerical stability calculations accordingly modify the standard 
“existence of superconductivity diagram” (see traditional volumes on superconductivity).   

 
Figure 33. Existence diagram of type II superconductivity (schematic, not to scale; the 
lower critical magnetic field is not shown). The diagram indicates variations of the 
thermodynamic variables T and B and of the variable J. Reprinted from J. Supercond. 
Novel Magnetism 31 (2018) 959–979, Figure 8. 

The dashed blue line and the open blue circles in this figure denote the conventional 
region of existence of superconductivity (the open blue circles accordingly are located on 
the corresponding axes of the diagram). Random variations of TCrit(B), JCrit(B) and JCrit(T) 
against this (conventional) region are indicated by small black dots; this applies 
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(schematically) to the existence diagrams of all elements in the Finite Element scheme. 
The random variations (Figure 32, taken as standard variations in each of the area 
elements) ΔTCrit, ΔBCrit,2 and ΔJCrit of the electrical/magnetic critical parameters against 
the conventional values of YBaCuO 123 in the present paper are within ±1 K, ±5 Tesla 
and ±1 per cent, respectively. For a particular element number, jj, as an example, its 
region of superconductivity existence is indicated by the coloured quadrants that in this 
single, special case are (exaggerated) located all within the conventional region (the 
dashed blue curves). Thick black solid circles indicate for this element the critical values 
TCrit, BCrit, JCrit that, again exaggerated, are shifted against the conventional values.   

A second justification for using randomly scattered critical parameters (against 
mean values) shall be mentioned: (ii) Standard theory of superconductivity interprets 
phase transitions from superconducting to normal conducting states as events that 
sharply (strictly speaking: idealistically) proceed, which means how (by which steps, or 
how quickly) the corresponding limits like TCrit are exceeded. But the transition of 
sample temperature above critical temperature, T > TCrit sharp, hardly can be controlled 
in practice. Instead, interpretation of TCrit as a randomly (but within tight limits) 
fluctuating parameter relaxes the comparison from idealistic to a realistic conditions.  

Further, (iii) during the simulations of transient temperature fields, T(x,y,t), the 
computer permanently checks the condition T(x,y,t) > TCrit(x,y,t) “yes or no”, in order to 
decide whether to continue the simulation with “superconducting or normal conducting 
state of the sample”. The decision “yes” might lead to prediction of hot spots or even of 
quench. The point is: Even tiny differences between T(x,y,t) and TCrit(x,y,t) at constant 
time, t, are sufficient to corrupt the decision (note that both T(x,y,t) and TCrit(x,y,t) are 
real numbers, in the strict mathematical sense). The variations indicated in Figures 32 
and 33 are expected to compensate such corruptions, on a statistical basis.  

By a very large number of elements, trivially the average of the random 
distributions of JCrit0, TCrit0 and BCrit20 almost perfectly coincides with their physical 
(standard) values. But in reality, a number of local values of JCrit, TCrit and BCrit2 possibly 
might diverge from the uncertainty (percentage) range in Figure 32. A specific value T 
(x, y, t) > TCrit (x, y, t) again might initialize development of a hot spot at the temporal 
position (x, y, t) even if the stability function, Φ(t), Equations (1) and (2), remains below 
Φ(t) = 1 (a sample calculation is reported, see later in Figure 36). In other words, the 
stability function, Φ(t) < 1, an integral value taken over the total conductor cross section, 
does not guarantee that no hot spot would be generated. Control of local conductor 
temperature, if Φ(t) closely approaches Φ(t) = 1, would become inevitable.  

 
Figure 34. Stability function, Φ(t), obtained for solid conduction plus radiation heat 
transfer (and solid/liquid heat transfer at the solid/coolant contacts) in the thin film, 
YBaCuO 123 superconductor. Reprinted from J. Supercond. Novel Magnetism 33 (2020) 

3279–3311, Figure 5a. 

Results are shown for turns 96 to 100 (for the numeration see Fig. 4a [13]) of the 
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coated conductor winded to a coil. The calculations assume a sudden increase of 
transport current above its nominal value beginning at t = 3 ms; flux flow resistances 
then are responsible for thermal losses that locally increase conductor temperature. All 
curves in this and in the following figures apply “standard” uncertainties ΔTCrit, ΔBCrit,2, 
ΔJCrit and the anisotropy factor, Δr (within ±1 K, ±5 Tesla, ±1 per cent and ±0.5, 
respectively) of the electrical/magnetic critical parameters TCrit, BCrit,2 and JCrit (92 K, 
240 Tesla and 3 × 1010 A/m2 at T = 77 K) and of the anisotropy factor (r = 10, again at T 
= 77 K) of the thermal diffusivity, as in previous papers (see text and Figure 32 for 
explanation of the uncertainties). Uncertainties of solid thermal conductivity, λCond, and 
of critical current density, JCrit, in the following tests are superimposed on the results 
achieved with the “standard” set (see Captions to the corresponding figures). In the 
present figure, coloured curves are obtained with no random fluctuations of λCond, and of 
JCrit, but the black crosses instead apply to a ±5 per cent random variation of λCond, at 
randomly selected positions within turn 98.   

 
Figure 35. Stability function, Φ(t), of the YBaCuO 123 thin film superconductor 
(showing details near t = 4.1 ms). First published in arXiv 2111.09825 (Nov 2021), 
Figure 9a. 

The figure considers elements of turn 96 (dark-brown diamonds). By its steep 
increase of Φ(t) at t = 4.1 ms, the figure clearly identifies the onset of a first quench. No 
fault current, just nominal transport current, ITransp/ICrit = 1. The calculations apply 
different values n of the exponent in the relation JCrit (x, y, t) = JCrit0 (x, y, t0) [1 – T (x, y, 
t)/TCrit)]n. In this figure, critical current density JCrit0 is considered as uniform, JCrit0 = 3 × 
1010 A/m2 at 77 K in all elements, but of course, JCrit (x, y, t) = JCrit0 (1 − T/TCrit)n, and 
without the other statistical fluctuations. Resistive current limiting is provided, 
apparently almost completely, by turn 96 (light-green and dark-brown diamonds). At t > 
4.115 ms, zero loss transport current would decrease by about 30 per cent when instead 
of n = 1 (light green) the value of the exponent n is reduced to 0.5 (dark-brown 
diamonds). 

 
Figure 36. Stability function, Φ(t), of the YBaCuO 123 thin film superconductor (detail 
near t = 4.1 ms) of the YBaCuO 123 thin film superconductor (all elements of turn 96). 
First published in arXiv 2111.09825 (Nov 2021), Figure 9b. 
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The figure compares results obtained with application of TCrit = TCrit0 uniform and 
TCrit = TCrit (x, y, t). No fault, just nominal transport current. Like in Figure 34, onset of 
the quench is clearly identified from the sudden increase of Φ(t) at t = 4.1 ms. Results are 
obtained with values n = 1.5 (solid diamonds) and 0.5 (open circles) of the exponent in 
the relation JCrit (x, y, t) = JCrit (x, y, t) [1 – T (x, y, t)/TCrit)]n, for constant ratio X = Dab/Dc 
= 5 of the thermal diffusivity and for ITransp/ICrit = 1. Also, critical current density JCrit0 is 
uniform, JCrit0 = 3 × 1010 A/m2 at 77 K in all elements. For the decision whether the 
superconductor is in zero loss, flux flow or Ohmic states, the calculation compares T (x, 
y, t) with locally different values TCrit(x,y,t) under variations within the maximum 
spacing ΔTCrit0. Red, blue and green symbols denote results obtained with differences 
and ratios (i) T (x, y, t) − TCrit0 and T (x, y, t)/TCrit0, (ii) T (x, y, t) − TCrit (x, y, t) and T (x, 
y, t)/TCrit0 and (iii), T (x, y, t) − TCrit (x, y, t) and T (x, y, t)/TCrit (x, y, t), respectively; the 
differences in Φ(t) are greater if n = 0.5. At values of Φ > 0.7, zero loss transport current 
would decrease by about 20 per cent when instead of n = 1.5 the value n = 0.5 is applied. 
Differences among results obtained with options (i) to (iii) at t > 4.14 ms (open circles), 
though below 15 per cent, cannot be neglected, which means item (iii) has to be 
considered for reliable stability calculations. 

However, temperature measurement hardly can be taken at the surface of filaments 
or thin films (and we do not know position of a hot spot before it is encircled closely by 
numerical simulations, like the one reported in Figure 37). The experiments suggested in 
Sect. 7 of the paper would become applicable for also this case. Permanent supervision, 
by detection of minute variations of electrical field over the conductor during warm-up, 
is a practical solution. 

 
Figure 37. Encircling position and growth of a quench. The figure is copied from a 
presentation by the author at the 7th International Workshop on Numerical Modelling of 
High Temperature Superconductors (HTSmod 2020). First published in arXiv 
2102.05944 (Feb 2021), Figure 5b. 

In Figure 37, the temperature distribution under solid conduction plus radiation in 
the 2 μm YBaCuO thin film, is obtained for a strong, rectangular heat pulse of in total Q 
= 2 × 10−9 Ws applied to the target during 0 ≤ t ≤ 8 × 10−9 s. Simulation time is 5 × 10−8 s. 
Temperature of a considerable part of the superconductor cross section exceeds TCrit. 
Zero-loss current transport then is possible only within the shaded (grey) area.  

The Meissner effect is checked separately in each of the finite area and volume 
elements of the numerical calculation scheme. 

The problem emerging from the crystallographic anisotropy in both YBaCuO 123 
and BSCCO 2223 superconductors, frequently expressed by the ratio of thermal 
diffusivity, X = Dab/Dc in ab-plane and c-directions, becomes obvious in their electrical 
and thermal transport properties and in penetration depth of magnetic fields. The 
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anisotropies are strongly different in different orientations of the crystallographic axes. 
In the YBaCuO 123 material, we have the anisotropy ratio, X of up to 20, in BSCCO 
2223, X is even larger, by at least an order of magnitude, and the anisotropy of current 
transport accordingly is comparably large. 

Anisotropy may constitute serious problems to Finite Element simulations. Further, 
we have to treat a variety of temperature-dependent transport parameters, and there are in 
addition the cooling interactions (solid/solid conductive, convective and pool boiling) 
that sensitively depend on temperature differences between solid surface and coolant 
(this dependence is frequently neglected in the literature or has not been seen at all). 

Results obtained with additional, but as well important parameter tests are 
presented in Figures 38 and 39 (in contrast to Figures 32 and 33: not of only statistical 
fluctuations of superconductor thermodynamic critical parameters but, in addition, of 
given, fixed variations of thermal conductivity and of critical current density, and their 
impact on temperature excursions and stability functions). Differences seen between 
results obtained when using the Matrix Method, Equation (16), or the standard, 
traditional method, Equations (12) or (14) and (13) obtained so far were small, at least in 
the superconducting thin films. But even very small differences may corrupt decisions on 
how simulations of the physics behind (super- or normal conducting states) continue 
with on-going time. More simulations are necessary (and will be reported in a 
subsequent paper).  

In summary, the small differences presently observed between both methods 
(Matrix or traditional method) last not least confirm that in general, the approach to 
investigate superconductor stability by numerical simulations, is successfully confirmed. 
However, the complicated stability problem, as has become clear from the preceding 
Sections of this paper, needs more numerical investigations. 

 
Figure 38. Nodal temperature, T(x,y,t) (coloured diamonds), obtained at z = 0 in the 
centre of the target at constant incident power (a rectangular heat pulse of in total Q = M 
1.25 10−12 Ws, here using the factor M = 5, applied at t ≥ 0 onto the circular target of 
duration 8 ns). Reprinted from J. Supercond. Novel Magnetism 33 (2020) 3279–3311, 
Figure 15a. 

In Figure 38, results are shown for the levels i = 1 to 5, thin layers of 0.1 µm 
thickness (counted from the surface into the “depth” of the conductor). Then continue 
with Fig. 6, part b and c [8], for details. Temperature (under adiabatic conditions) is 
obtained for conduction plus radiation (diffusive) heat transfer and random fluctuations, 
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ΔλCond. The fluctuations possibly interfere with random fluctuations, ΔJCrit, within ±1 per 
cent of critical current density that were simulated in this figure. For more details, see the 
description of Fig. 7a [8].  

 
Figure 39. Stability function, Φ(t), calculated from Equations (1) and (2). 

In this figure, a rectangular heat pulse of in total Q = M × 1.25 × 10−12 Ws, using M 
= 5, is incident on the target (z = 0, starting at t ≥ 0) during in total 8 ns. Results using 
the temperature distribution in Figure 38 are shown for the levels i = 1 to 5 of the Finite 
Elements schemes (again, thin layers of 0.1 µm thickness, see Figure 6 [29], part b for 
explanation of “levels”). Results are shown for adiabatic conditions and conduction plus 
radiation (diffusive) heat transfer. The calculations assume random fluctuations, ΔλCond, 
within ±15 in the elements of level 1 and within ±5 per cent in level 2, of the solid 
thermal conductivity, λCond (solid diamonds). Open circles denote fluctuation of ±5% of 
λCond in the elements of both levels i = 1 and 2. The fluctuations possibly interfere with 
those arising fror random fluctuations, ΔJCrit, within ±1% of critical current density, JCrit 
(the uncertainty ΔJCrit). 

6.7.2. Summary of the Finite Element simulations 

As the result of the Finite Element simulations, Figures 5, 6, 27, 30 and 31 have 
shown the temperature fields in the (1G) multi-filamentary tape and in the (2G) thin film 
cross section at different times after start of the simulations (the conductor geometry was 
shown in Figures 3 and 4). Losses are due to a large AC fault current beginning at t = 
6.5 ms after start of the simulations that within 2.5 ms in this simulation is assumed to 
increase by a multiple of 20 times its nominal value. In other words, losses in 
superconductors not necessarily arise only in case of local incident heat pulses, 
absorption of radiations or by insufficient cooling, but it is the flux flow losses that also 
have to be taken into account. 

Finally, Figures 27 (by the obtained temperature distribution), and Figures 34-36 
(by the stability functions) identify onset, and Figure 37 also the position of the onset of 
a quench, at few milliseconds after start of the simulations. 

What remains to be shown is existence of the second critical temperature, TQuench 
(see below, Sect. 7 of the paper). 

 The prediction of a probably existing, second critical temperature that might result 
from incomplete relaxation is in line with problems experienced when in the early days 
of high temperature superconductor development, JCrit-measurements in some 
laboratories were performed with analogue currents. This procedure resulted in a 
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hysteresis-like excursion of the electrical field, like the one observed in Figure 40 (its 
upper part): Voltage detected over 1G multifilament BSCCO samples was not identical 
under increasing or decreasing probing current [32]). Later, the apparent hysteresis was 
avoided when the analogue, continuously increasing probing current was replaced by 
short (3 ms) current pulses (lower part of Figure 40). 

 
Figure 40. Electrical field measured over a YBaCuO sample either with continuously 
increasing probing current (upper diagram) or using a short current pulse, I (below).  

In the upper diagram of Figure 40, the solid red circles are introduced by the 
present author to highlight the strongly different voltages detected when a continuously 
increasing/decreasing probing current is applied to the sample to determine critical 
current from onset of a resistance. Both diagrams, with slight modifications by the 
present author, are copied from internal reports of the ABB Research Centre, Heidelberg 
(unpublished). The reports applied results obtained in a Diploma Thesis [32] prepared by 
Fitzer under the auspices of Prof. W. Jutzi, University of Karlsruhe, Karlsruhe 
(Germany). Under short pulses, the energy supplied to the sample was too small to lead 
to substantial temperature increase that trivially would have reduced JCrit and thus 
increased resistance of the sample. This was the intuitive explanation14 but the electron 
system probably had not been given enough time for completion of relaxation during the 
continuous increase of probing current (the disturbance initiated by J > JCrit). This 
expectation is not contradicted by the lower part of this Figure (the field E vs. time 
triangle). The short pulse avoids generation of a thermal disturbance extended in time 
and magnitude. Experiments are suggested in the following to clarify the situation. 
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7. Concepts to confirm Impact of Relaxation on JCrit and on 
Observables X(JCrit) 

The Meissner effect relies on generation of screening currents to provide 
magnetisation that expels an external magnetic field from the interior of a 
superconductor sample. Screening currents, like all currents within a superconductor, 
flow with critical current density. Control of levitation height, Z, over sufficiently long 
periods of time, the clearest manifestation of the Meissner effect, thus would reveal 
completion of relaxation, which means: When levitation height, Z, finally is constant. 

The excursion of Z(t) with time accordingly has to be measured with great precision. 
Measurement of observables X[JCrit(tEq)], here Z(tEq), can be performed with existing 
optical devices with little technical adjustments. 

This also applies to measurements of any other observable that depends on JCrit. 
For the success of the levitation experiment, any undesired variation of Z(t) of a 

superconducting sample positioned above an array of magnets, or of a magnetic sample 
above superconductors, that might result from e.g. convection in the coolant or from 
condensation of water vapour on the corresponding sample (if it would leave the coolant) 
has to be excluded. The experiment therefore has to be performed in vacuum, with 
cooling solely by radiation exchange with cryogenically cooled walls of a super-
insulated vacuum vessel. After completion of cool-down of the sample to coolant 
temperature, the experiment should be continued under variable sample temperature 
(below critical) in order to generate disturbances by an auxiliary heater. 

The point is: Temperature should, after an initial experiment, in the following not 
be kept constant but the experiment would be performed under variable, preferentially 
increasing temperature, by application of heat pulses, or even under oscillating 
temperature starting with low and continued with increasing frequency (the latter 
performed in order to check whether relaxation can quickly enough can follow the 
temperature variations and be completed or not within given time intervals). Care has to 
be taken to define the range of frequencies, to avoid absorption (and possible collisions 
with ESR), and to avoid hysteresis losses. 

From the results obtained for levitation, the maximum acceptable uncertainty in Z(t) 
near TCrit can be estimated from Fig. 7a–f [13] when several thermal interactions in 
parallel between sample and its environment is taken into account (not just trivial a task; 
interested readers are invited to discuss this with the author). 

Further, it would be very interesting to see how relaxation exerts impacts on 
attractive forces between normal and superconductor samples in magnetic field, like in a 
cryogenically cooled, Cavendish gravitation balance (with m1 magnets, m2 
superconductor samples). In the gravitation balance, the difference between magnetic 
repulsion and gravitational force would be controlled. 

In comparison to measurement of levitation height, planning and realisation of 
these experiments has the advantage that suitable experimental devices already exist that 
need only technical adjustment. Again, these experiments have to be performed in 
vacuum and data should be taken under variable temperature, with the devices super-
insulated against thermal losses. 

Another option would apply a super-insulated cryogenically cooled, magnetic 
suspension balance operated in vacuum, with m1 a strong magnet and m2 a 
superconductor sample hanging above the mass m1, and using a heater to realise 
temperature variations around a level close to the phase transition. Instead of levitation 
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height, levitation force, strictly speaking, the difference between levitation force and 
sample weight, has to be measured, as is schematically indicated in Figure 41. It is 
easier, and yields more reliable results, to control zero force difference (which would be 
observed in the equilibrium state) than measuring absolute values. 

 
Figure 41. Proposed set-up of an experiment (schematic) to control levitation force, Flev, 
after disturbances imposed by radiative heating of the sample after cool-down. 

An interesting variation of the experimental set-up has been shown in Figure 2 of 
the study of Riise et al. [33]. While the reported modelling of the proper levitation 
process is convincing, the experiment is performed with the sample cooled by LN2 in 
open atmosphere and assuming stationary, constant temperature conditions. But it is not 
clear there will be no disturbances of the measurement caused by the boiling liquid and 
by condensation of water, oxygen or nitrogen vapour on samples and magnets. 

The experiments should also yield the number of normal conducting, single 
electrons, at temperature near but below TCrit, by in parallel performed electron spin 
resonance (ESR) measurements. This number, but not all, may originate from decay of a 
previously existing, thermodynamic equilibrium state. They only temporarily, within 
relaxation time, contribute to the total number of normal conducting electrons. The 
higher the temperature, the larger is this number. Since the number of decay products is 
very small against all normal conducting electrons (because the number of electron pairs 
is comparably large as long as T << TCrit), their contribution to the ESR-signal might be 
tiny. 

8. Summary and outlook 

As overall conclusion, we note that numerical simulation of the stability problem, 
by its high spatial and temporal resolution, is superior to continuum approximations (like 
uniform conductor temperature or homogeneous materials composition), and is superior 
also to analytical methods and worst-case conditions, in short: It is superior in relation to 
all existing traditional, analytical stability models. 

These results have been reported by the present author since 2012. From these 
results, the following has been derived as corollary since June 2023 and is reported in the 
present paper. In particular, we have shown, first for practical consequences, that 
Numerical (Finite Element) solution of Fourier’s Differential Equation are by far 
superior to standard stability models; the numerical solution allows to encircle with 
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precision the location of the source of a quench (a hot spot), or the quench itself, in 
filamentary and thin film superconductors. It identifies the time after start of a 
disturbance when it is no longer possible to block its excursion. 

In theoretical aspects, we have found that in strict mathematical interpretation, TCrit, 
can be considered the limes of a series of non-equilibrium states, which means TCrit 
cannot be considered as the equilibrium value of a physical observable (i.e. cannot be 
understood as a uniquely, sharply defined thermodynamic quantity), and that a second 
“critical temperature”, TQuench, as the onset of a quench (and of the onset of the thermal 
phase transition, as a local  hot spot), can be identified; it may be interpreted as a 
“temperature or state of no return” that contrary to the standard TCrit is observable: It is 
the first state that shows non-zero resistance during sample warm-up. 

When inspecting very closely JCrit, not a sharp, instantaneous break down of critical 
current density will be expected when the superconductor approaches its phase 
transitions. JCrit is not switched off suddenly and completely at a hypothetically existing, 
critical temperature, but is reduced continuously when instead the temperature TQuench is 
exceeded. This proceeds mostly within short time intervals that, however, asymptotically 
diverge near the phase transition. 

Approximately fulfilled linear correlation between superconductor critical current 
density and density of electron pairs, together with numerically confirmed linear 
correlation between entropy and relaxation time, extends the spectrum of available tools 
to protect superconductor stability. Besides control of voltage over the sample (the 
traditional tool), also control of temperature TQuench, of relaxation time, of density of 
electron pairs or of single electrons, and of JCrit (sharp break-down or continuous break-
down within minute periods of time?) can be mentioned as alternatives. 

Calculation of entropy differences between initial and final states (after completion 
of the relaxation process) confirms that the expected decrease of entropy really is the 
driving force for relaxation. The driving force increases the stronger the more 
temperature approaches the phase transition. 

These conclusions result from the presented integral, Multiphysics view of the 
quench process. It comprises elementary properties of many-particle systems (analogies 
to nuclear physics exploited in the  microscopic stability model), thermodynamic 
considerations (temperature uniquely defined under solely thermal equilibrium, after 
completion of relaxation), relaxation of the superconductor from excited states back to 
electron pair formation, standard heat transfer principles (solid conduction in filaments 
plus radiation propagation in filaments or thin films, temperature-dependent heat transfer 
to coolant. 

All these steps have been considered to realize the multi-physics investigation of 
the superconductor stability problem. This is not “new physics”. 

Development of a modified version of relaxation model to calculate relaxation time 
also for decay of spin-lattice correlations in paramagnetic substances, or for electron/hole 
transitions in semi-conductors at same or different momentum states, or for nuclear spin 
correlations, would be a challenging future task. 

Declaration: With the exception of Figures 3 and 4 (see Citation in the Figure Captions), 
all figures and results reported in this review paper (numerical simulations and 
experimental data) are elements of lectures “Applied Superconductivity” given by the 
author at the University of Wuerzburg, Dept. of Physics, Wuerzburg, Germany, or the 
results were obtained during experiments performed in the laboratory of the Author's 
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Figures 5, 6, 26, 27, 30, 31, 37, 38, and 39 have been calculated by me using the Finite 
Element code Ansys purchased from Cadfem GmbH, Munich (Germany). No figures 
were copied from other work. 
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Notes 
1. In a type II superconductor, at temperature below critical temperature, an external magnetic field will create single or an 

array of magnetic flux quanta in the superconductor material if the field exceeds the lower critical field of this material. The 

flux quanta usually are “pinned” locally, e.g. by microscopic inhomogeneity of the material that by pinning forces keep their 

positions locally stable. But under a transport current, flux quanta become subject to Lorentz forces, and if current density 

exceeds critical current density, the Lorentz force may exceed pinning force and get part or the whole array of the quanta into 

current-induced motion. Therefore, a voltage is induced over the sample that indicates an electrical resistance, the “flux flow 

resistance, ρFF (Ω m), with corresponding “flux flow losses” if current is not re-distributed or switched off. Compare 

Equation (7.10) in the book of Huebener [1]. 
2. The sets comprise: (a) Normal conducting electrons, the overwhelming number of electrons residing deeply in the Fermi Sea, 

(b) electron pairs in the ground state of the superconductor; these consist of single but correlated electrons that without 

quantum-mechanical principles like the Pauli principle “initially”, as single  particles, would fill the energy gap, but are 

shifted to the upper and lower edges of the energy gap (the dark-blue shaded areas in Figure 1(a); according to standard 

BCS-theory, these electrons together with regular, normal conducting electrons (the light-green sections) constitute the 

source for generation of electron pairs, (c) excited electrons resulting from decay of electron pairs under disturbances, in a 

simplified view either if the decay energy is large enough to lift them over the energy gap, or if they run against and 

statistically penetrate this barrier, (d) excited electrons called “quasi-particles” (we will come back to this item in Sect. 4 

during calculation of entropy production), (e) the ionic lattice of the superconductor material (as it interacts with single 

electrons or quasi-particles), (f) phonons, excitations of the lattice, that as exchange Bosons (spin one particles) provide 

binding (correlation) of single electrons to pairs, and serve as thermal energy transport quanta, (g) photons (mid IR) that 

enhance solid conduction (phononic) thermal energy transport. 
3. This conclusion is misleading and would provide only a qualitative method to determine relaxation time. While the authors 

[10], too, consider states outside thermodynamic equilibrium, their model does not consider decay of previously excited 

states and their recombination to pairs and the selection rules by which recombination (relaxation) has to be realized. And 

two more arguments shall be given here: (i) Electrons injected into the superconductor Al, as in the experiments reported by 

Gray et al. [34,35] are indistinguishable. For comparison, let a few N spheres be added to a system of an already existing 

number, M. If during injection, both N and M, in the total entity N + M, are indistinguishable (like electrons as Fermi 

particles), can these be separated during relaxation into the original N and M? No. Separation can be realized correctly only if 

N and M can be selected according to a new selection criterion (finding this criterion in case of the spheres might become 

difficult). In case of electron injection, however, this means the selection for the relaxation process must be realised with 

respect to angular momentum (the Pauli principle), and to their addition rules that have to be fulfilled for recombination of 

two electrons to an electron pair. The single electrons forming a pair are continuously replaced by others (one might better 

speak of electron correlations to form pairs instead of once forever selected electrons to constitute the pair). The selection 

rules are not restricted to the number N (such a limitation would introduce a method to distinguish the N from the M 

particles). As a consequence, electrons after their injection, for realizing relaxation, have to be selected from the whole 

electron body, M + N, not only from the number N of injected particles, contrary to the study [10], and the selection process 

has to be performed stepwise, in strict successive order, otherwise the Pauli principle would be violated; (ii) When, for 
example, people are displaced, it takes the longer to reunite them the larger this number and the smaller the number of  

remaining partners (if the total number is constant).  In case of electrons, this means the number of “displaced” electrons, N, 

resulting from decay of pairs, increases with increasing temperature, and selection of potential (remaining) “partners” from 

M (again, if the total number is constant), for each of the N, has to be initialized for more and more individual N. 

Accordingly, with decreasing temperature, the solid curve indicating relaxation time decreases with decreasing, and diverges 
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with increasing temperature. The model [11] in contrast to the study [10] provides a method to quantitatively, at least in 

principle, though only in an approximation, determine relaxation time after disturbances.  
4. Starting with two single electrons that by decay of a pair have been excited to energy levels above the energy gap, their re-

condensation to pairs, in logical order of the relaxation process, has to realize the sequence: (i) First, identification of 

potential partners (other single electrons), the identification performed by one electron of these two, that are “suitable” 

(allowed by selection rules) for re-condensation to a pair, (ii) the proper re-condensation process (binding, better addressed as: 

“correlation” oft two electrons to a pair), and (iii) re-location of  the pair to the top of the Fermi Sea (positioned at the Fermi 

level in the energy diagram). The question is how this sequence can be described not only in terms of energy (like in Figure 

1a) but also in terms of temperature. This immediately leads to the central problem raised in this paper: (a) Why at all, (b) at 

which time after decay and (c) at which temperature should the decay electrons recombine to electron pairs? How can the 

temperature of the pairs be defined? See the discussion of these items in Sect. 4 where we consider entropy production during 

the relaxation process. The idea pursued in this paper was to circumvent most of the complications by just counting, stepwise, 

electron by electron, the number of open repair channels” (partners available for pairing), and since each of the minute, single 

repair steps would request a very small-time interval for its realization, they finally must be summed up to total relaxation 

time. Total relaxation time (see Figure 4(a)) immediately leads to the problem of how to define temperature during the 

relaxation process and temperature of its result. 
5. In the Deuteron, the only stable bound, two-particle nucleon system, we have a central binding force (plus a small electrical 

quadrupole moment) and a comparatively small binding energy so that the inter-particle distance between proton and neutron 

even exceeds the range of the nucleon/nucleon interaction force. In the BCS-model, it is sufficient that there is a (negative) 

binding energy that even may be arbitrarily small. Formation of both a nucleonic bound state, like in the Deuteron, and of an 

electron bound state (the electron pair) proceeds within a time interval (the time of flight, or lifetime that the corresponding 

exchange Boson (π or ω, respectively) needs to mediate the binding interaction (or correlate the corresponding single 

particles before recombination).The analogy therefore comprises: (1) In the Yukawa model, time of flight of the mediating 

Pion determines the uncertainty of the size of the nucleon (or the lifetime of two uncoupled nucleons before they combine to 

a nucleon-nucleon pair in a nucleus); (2) In the electron pair, time of flight of the mediating Boson determines the uncertainty 

of the size of the electron pair (or the lifetime of two excited states before they recombine to an electron pair in a 

superconductor). The uncertainty of the size of the electron pair is the average “distance” between the two particles 

concerned. In both cases, dividing this distance by the velocity of the corresponding exchange Boson, d(t)/v, which provides 

a measure for the “lifetime of the interaction” and, if appropriately summed up over all particles concerned, the intrinsic part 

of the “lifetime of the disturbance”, τ = τEl (to be identified with the term ∂c(x, t)/∂t in Equation (4) [11]). There are of course 

differences between the three cases considered (nucleon-nucleon interaction, Deuteron and electron pair) [11]. But electron 

pair formation, i.e. (i) a two-particle interaction, (ii) a Boson (the phonon ω) as the (virtual) exchange particle and (iii) a 

weakly bond, two-particle states, get the electron pair in superconductors, though only from formal aspects, at least 

marginally similar to its nucleon/nucleon analogue. 
6. An example is exponential damping of temperature during propagation into depth under daily and annual variations of 

incident solar energy. A similar case arises in combustion motor construction when after ignition of the combustion gas/air 

mixture a thermal wave penetrates the motor cylinder linings, at high frequency. 
7. An amusing, but correct, informative interpretation of “quasi-particles” given by Mattuck [36] has become well-known in the 

literature: A single particle moving through a system of others (of same type, and through the ion lattice) “pushes or pulls on 

the particles in its neighborhood and becomes surrounded by a cloud of agitated particles similar to the dust cloud kicked up 

by a galloping horse in a western (the real particle plus its cloud constitutes the quasi-particle, and the particle cloud screens 

the real particle.” Mattuck concludes: The quasi-particle can be treated as approximately independent of the others, and 

quasi-particles resemble the real particles quite closely. 
8. In Equation (20.16) of the study of Falk and Ruppel [16], because of p = N k/V in ideal gases, the temperature T cancels (k is 

the Stefan/Boltzmann constant). The system (electron pairs plus single, including decay electrons) is not a 

thermodynamically closed system, since it is subject to disturbances, like warm-up due to flux flow losses from fault currents. 

In a closed system, entropy increases under irreversible processes, like decay of electron pairs. Only processes, in which the 

entropy increases, run by themselves, which settles direction of all processes (Clausius principle). However, the present 

system is open to disturbances (like fault currents), is not left to its own, is not a closed thermodynamic system. A Gibbs 
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thermodynamic system (by its changes, dE), is stable the more its energy and entropy attain minimum and maximum values, 

respectively. This is reflected in Figure 12. 
9. The Fermi-Dirac distribution function has to be applied (excited electrons are spin ½ particles): If DE,p indicates population 

density, DE the (available) density of states and FE the Fermi distribution function (the occupancy number, FE = 1/(exp(E − 

EF) + 1), then DE, p = DE FE. A Boltzmann factor could be applied in the simulations to find density and occupation of energy 

levels above the energy gap (but E − EF in the given temperature range is not very large compared to kT). 
10. It is most probably not a spurious correlation, from solely physical reasons: Any transport current density increases with 

increasing charge carrier density. The more charge carriers (electron pairs in superconductors) contribute to current transport, 

the larger is the density JCrit below which no zero-loss current transport becomes possible. Compare definition of the stability 

function, Equations (1) and (2). 
11. In an analogue thermophysical model designed by the author, the diffusivity of highly excited nuclear matter was 

successfully determined. 
12. Besides Figures 10a and 12a and 13a [9] that show transit time of mid-IR photons through a thin film, YBaCuO 123 

superconductor for different values of the Albedo, Ω = 0 (absorption/remission) or Ω close to 1 (pure scattering that proceeds 

with the speed of light), the number of interactions has been calculated by Monte Carlo simulation (Figures 8 and 9 [8]). 

Since transit time for the different Ω differs by order of magnitudes, solution of the radiative, and of the total heat transfer 

problem must be found in clearly different time intervals, with correspondingly detailed ERT and EQ given by the elements 
of matrix M and column N. 

13. This is clearly an unconventional extension of standard FE procedures that rely on only a single integration loop, but the 

extension has turned out to be necessary to obtain convergence in view of the strong non-linearity of almost all involved 

materials and transport parameters. 
14. Originally, this observation was interpreted as resulting from heating-up the sample by transport current greater than critical 

current density generating flux flow resistance below standard critical temperature (a temperature increase would increase 

overall resistance and electrical field over the sample). But the result shown in Figure 40 instead might originate from 

incomplete relaxation, which means, critical current density was smaller than its equilibrium value. 
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Appendix 

Length of the diffusion intervals (τTh, τm, τC) is estimated in elementary steps. We have 

(i) τTh of thermal diffusion 

This approach applies the relation between position or characteristic dimension, x, and diffusivity, x = 3.6 (DTh t)1/2, for 
a flat sample (this special, “one percent” (Θ = 0.01) relation, is well known, for its derivation see e.g., Whitaker [27], Eq. 
4.3–26). It allows to extract diffusion time τTh that a thermal wave arising from a disturbance at a co-ordinate x' needs to 
arrive at a position, x, if its diffusivity, DTh, is known. 

The thermal diffusivity, DT, of YBaCuO is between 4 × 10–6 and 2 × 10–6 m2/s, at temperatures of 77 and 120 K, 
respectively. With x = 2 μm the characteristic dimension (sample thickness in thin films) and DTh of YBaCuO of about 4 × 
10–6 m2/s at T = 90 K (close enough to TCrit = 92 K), the diffusion time (item i) is τTh = 2.8 10-7 s. 

(ii) Characteristic (diffusion) time, τm, of electrical or magnetic fields and of currents, following Wilson [3] reads τm ≤ 
4 r 

2/(π2 Dm), using for the diffusivity the expression Dm = ρNC/μ0, with ρNC the specific resistivity of a sample in the normal 
conducting state and with its characteristic dimension, r. With μ0 the vacuum constant, we have Dm = 0.361 m2/s. This 
yields τm ≤ 10–7 s using r = 2 μm, as before the thickness of the superconductor layer. 

(iii) time τC needed to establish new equilibrium charge distributions this period covers total redistribution of electrons 
and electron pairs in the superconductor, here simulated by exchange of charge between neighboring finite elements in the 
numerical solution scheme. The estimate, as a diffusion process, following Sect. 7.4 in the study of Wilson [3], yields τC < 
10–6 s, except for temperatures very close to critical temperature. 

 


