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Abstract: Fermat’s last theorem appears not as a unique property of natural numbers but as 

the bottom line of extended possible issues involving larger dimensions and powers when 

observed from a natural vector space viewpoint. The fabric of this general Fermat’s theorem 

structure consists of a well-defined set of vectors associated with 𝑵 −dimensional vector 

spaces and the Minkowski norms one can define there. Here, a special vector set is studied and 

named a Fermat surface. Besides, a connection between Fermat surfaces and hypercubes is 

unveiled. 
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1. Introduction 

Fermat’s last theorem demonstration by Wiles [1] in 1995 was a step toward 
unlocking a centuries-unsolved demonstration. But it might be accepted, besides a 
great mathematical stride, as the starting path of many related subjects with the 
original Fermat’s idea. In references [2–6], one can consult several recent studies 
about Fermat’s last theorem. Also, in our laboratory, several papers, see references [7–
10], dealing with extending Fermat’s theorem in larger dimensions, have been 
published. Even a recent publication consists of a simple demonstration of the original 
theorem [11]. Another work in preprint mode discusses the nature of the empirical 
proofs available when extending the theorem in larger dimensional spaces [12]. In this 
last reference, the possibility to study the structure of imaginable Fermat surfaces has 
been suggested. The present paper tries to deal with this task. 

2. Whole vectors 

Given any 𝑁 −dimensional vector space 𝑉ே(𝐹) constructed over a field 𝐹, one 

could define a whole vector1 ⟨𝒘| ∈ 𝑉ே(𝐹) as one with non-null components. The 

whole vectors form a vector set 𝑊ே(𝐹), which one can structure in turn as: 

∀⟨𝒘| ∈ 𝑊ே(𝐹) ⊂ 𝑉ே(𝐹) → ⟨𝒘| = (𝑤ଵ, 𝑤ଶ, 𝑤ଷ, . . . 𝑤ே): {𝑤ூ ≠ 0|𝐼 = 1, 𝑁} (1)

The set 𝑊ே(𝐹) is the most relevant structure of a vector set within the vector 

space 𝑉ே(𝐹). Because the vectors possessing some null components correspond to 

elements of lesser dimension subspaces of 𝑉ே(𝐹), as will be commented on next. 
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Un-whole vectors 

The possible classes and structure of un-whole vectors in a vector space 𝑉ே(𝐹), 

that is, vectors possessing from 1 up to 𝑁 − 1 zeros as components, are given by the 
number and nature of the vertices of a Boolean hypercube of the same dimension as 

𝑉ே(𝐹), and bearing the same number of zeros, see for more information references 
[12–16].  

Adopting this kind of vector pattern, the unit components of the Boolean 
hypercube vertices become connected with the non-zero whole vector components.  

Admitting the null vector: ⟨𝟎| = (0, 0, 0, . . . , 0) ∈ 𝑉ே(𝐹), as a zero-pattern class 

by itself, the number of possible un-whole vector patterns in the vectors of a 𝑉ே(𝐹) 

space is 2ே − 1.  
It is also interesting to realize that this number of un-whole vector classes in a 

𝑁 −dimensional vector space coincides with the N-th Mersenne number.  
In a vector space with a class pattern made by whole and un-whole vectors, the 

whole vectors can lie in the class associated with the unity Boolean hypercube vertex: 
⟨𝟏| = (1, 1, 1, . . . , 1), the vertex of the corresponding Boolean hypercube, which is the 
bit representation of the Mersenne number, connected with the associated hypercube 
and vector space dimensions. 

3. Perfect vectors 

When considering the whole vectors of a vector space 𝑉ே(𝐹), in general, one 

might name as perfect vectors ⟨𝒑| the ones that have their component modules ordered 
in a canonical increasing sequence, that is: 

∀⟨𝒑| = (|𝑝ଵ|, |𝑝ଶ|, |𝑝ଷ|, . . . |𝑝ே|) ∈ 𝑉ே(𝐹) → {0 < |𝑝ଵ| < |𝑝ଶ| < |𝑝ଷ| <. . . |𝑝ே|} (2)

3.1. Perfect vectors in vector semispaces 

Then, perfect vectors defined according to the Equation (2) can be considered a 
subset of the whole vectors. Moreover, perfect vectors are defined even simply in a 
vector semispace2.  

In vector semispaces, only the non-negative definite part: 𝐹ା  of the involved 

field is relevant; then one can write: 𝑉ே(𝐹ା). In semispaces, the vector addition 
acquires the structure of a semigroup, which furnishes the name semispace. This 

property also applies when the natural number set substitutes the field: 𝑉ே(ℕ) as 
occurs in natural spaces3.  

In both of these more restricted cases, semispaces and natural spaces, one can 
define perfect vectors simply than in the previous Equation (2), that is: 

∀⟨𝒑| = (𝑝ଵ, 𝑝ଶ, 𝑝ଷ, . . . 𝑝ே) ∈ 𝑉ே(𝐹ା) → {0 < 𝑝ଵ < 𝑝ଶ < 𝑝ଷ <. . . 𝑝ே} (3)

3.2. Perfect vectors as generators of vector spaces 

Perfect vectors correspond to vectors that can generate a set of related whole 
vectors, which can be associated with the permutations of all the components of a 
given perfect vector.  

Thus, one can attach a collection of 𝑁!  vectors to every perfect vector by 
permuting its original components.  
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More than this, the N circular permutations of the components of a perfect vector 
allow the construction of a set of N linearly independent vectors, a basis set of the 
vector space or semispace. 

4. Fermat surfaces 

Knowing the preliminary definitions of whole and perfect vectors and semispaces, 
makes it possible to find the structure of the vector sets, which one might call Fermat 
surfaces. 

Suppose a (𝑁 + 1)-dimensional vector space 𝑉(ேାଵ)(𝐹) constructed over a field 

𝐹. One can define a Fermat surface: 𝐹ே
௣(𝐹|𝑟), of dimension N, order p, and radius r as 

a set of perfect (𝑁 + 1)-dimensional vectors, where the last and larger component 𝑟 
is a common positive definite real, rational, or natural number, called the radius of the 
Fermat surface, that is:  

∃𝑟 ∈ 𝐹ା: ⟨𝒇| = (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, . . . 𝑓ே, 𝑟) ∈ 𝐹ே
௣(𝐹|𝑟) ⊂ 𝑉(ேାଵ)(𝐹) (4)

The above Equation (4) determines the dimension and radius of the surface. 

Minkowski and Euclidean norms in Fermat surfaces 

To account for the order p of a Fermat surface, every vector element ⟨𝒇| of the 
surface, as constructed in the Equation (4), has to be associated with a zero p-th order 

Minkowski norm, that is: 𝑀௣(⟨𝒇|) = 0, defined by the algorithm: 

∀⟨𝒇| = (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, . . . 𝑓ே, 𝑟) ∈ 𝐹ே
௣(𝐹|𝑟) → 𝑀௣(⟨𝒇|) = ෍|𝑓ூ|௣

ே

ூୀଵ

− 𝑟௣ = 0 (5)

Alternatively, one can consider such a Fermat surface 𝐹ே
௣(𝐹|𝑟) definition as a set 

of 𝑁-dimensional vectors bearing a common p-th order Euclidean norm: 𝐸௣(⟨𝒇|) =

𝑟௣, defined now as: 

∀⟨𝒇| = (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, . . . 𝑓ே, 𝑟) ∈ 𝐹ே
௣(𝐹|𝑟) → 𝐸௣(⟨𝒇|) = ෍|𝑓ூ|௣

ே

ூୀଵ

= 𝑟௣ (6)

5. Fermat surfaces and Fermat natural vectors 

One might define a Fermat natural vector as an element of a Fermat surface with 
components made by natural numbers. Therefore, a Fermat vector possesses a 
dimension N, order p, and a natural number acting as radius: r, which possess a 
corresponding Minkowski zero norm. According to this, one can write for Fermat’s 
vectors the equivalent expression connected with the Equations (4) and (5): 

⟨𝑓| = (𝑓ଵ, 𝑓ଶ, 𝑓ଷ, . . . 𝑓ே, 𝑟) ∈ 𝐹ே
௣(ℕ|𝑟) ⊂ 𝑉(ேାଵ)(ℕ) → 𝑀௣(⟨𝑓|) = ෍|𝑓ூ|௣

ே

ூୀଵ

− 𝑟௣ = 0 (7)

Thus, Fermat vectors belonging to a natural vector space are also elements of a 
Fermat surface. Fermat vectors correspond to natural vectors with a null Minkowski 
norm. Then, one can consider them as sets of vectors submitted to Fermat’s last 
theorem in the case of a vector space of dimension (2 + 1) [11]. For higher dimensions, 
they are subject to the empirical properties already described in previous research, for 
example, in references [7–10,12]. 
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In a recent study [12], several computational exhaustive tests have been 
performed, showing the existence of different natural Fermat vectors but bearing the 
same radius, order, and dimension, indicating that Fermat surfaces might contain 
several natural Fermat vectors as points. 

Some remarks on natural Fermat vectors  

a) Within the set of Fermat surfaces with orders greater than 2, that is, the set that 

one can describe as:𝐹ଶ
௣வଶ(ℚ), natural Fermat vectors do not exist as elements of 

such a surface. Natural vectors associated with powers greater than 2 in these 2-
dimensional surfaces cannot exist because of the Fermat last theorem. One might 

describe this situation as: 𝐹ଶ
௣வଶ(ℕ) = ∅. 

b) Calling as 𝑆ே(𝑟) any 𝑁-dimensional sphere of radius r, one can easily realize that: 

𝐹ே
ଶ(ℚ|𝑟) = 𝑆ே(𝑟). Thus, 𝐹ଶ

ଶ(ℚ|𝑟) = 𝑆ଶ(𝑟) so it corresponds with a circle. Also, 

𝐹ଷ
ଶ(ℚ|𝑟) = 𝑆ଷ(𝑟) and it belongs to a 3-dimensional sphere. 

c) Even bearing simple structures, though, the Fermat surfaces 𝐹ଶ
ଷ(ℚ|𝑟)  and 

𝐹ଷ
ଷ(ℚ|𝑟) pose challenging problems, see for example reference [12]. 

6. Shells in vector spaces 

The concept of a shell in a vector space has been useful in rationalizing the vector 
structures and allowing the construction of sets and subsets of vectors with some add-
on property [17]. Essentially, shells were employed to study quantum mechanical 
density functions developed in references [18–21]. 

The previous definition of Fermat surfaces in the present paper corresponds to a 
similar construct obtained from another perspective. The main idea is to elaborate 
some mathematical tools to build all the vectors of a given vector space from a subset 
of them only. Such a procedure uses homothecies of the vector elements belonging to 
a shell, constituting a well-defined vector set, which one shall associate to some 
Euclidian norm in the same way as one constructs Fermat surfaces. 

A unit shell in a vector space corresponds to the set of vectors which are 
normalized to the unity, see references [17–21].  

Initially the used norm was the Euclidean one, but further deepening in the 
theoretical aspects of the problem and the present study as well can be seen extending 
this definition to higher order Euclidean norms or appropriate Minkowski norms. 

In this sense, Fermat surfaces constitute a general point of view of shell 
construction, as the involved norms in their definition hold the use of possible larger 
powers and the associated Minkowski norms. 

6.1. Fermat’s surface vectors and probability distributions 

The vectors of a Fermat surface possess the modules of their components such 

that their powers: {|𝑓ூ|௣|𝐼 = 1, 𝑁} ⊂ 𝐹ା belong to the non-negative part of the field 
elements.  

In this manner, one could consider the Fermat surface vectors as able to generate 

a 𝑁-dimensional discrete probability distribution by forming the homothecy: 
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∀⟨𝒑| = 𝑟ିଵ⟨𝒇| = (𝑟ିଵ𝑓ଵ, 𝑟ିଵ𝑓ଶ, 𝑟ିଵ𝑓ଷ, . . . , 𝑟ିଵ𝑓ே, 1) ∈ 𝐹ே
௣(𝐹|1) → 𝐸௣(⟨𝒑|) = ෍|𝑝ூ|௣

ே

ூୀଵ

= 𝑟ି௣ ෍|𝑓ூ|௣

ே

ூୀଵ

= 1 (8)

The Equation (8) above shows that one can transform any vector lying on a 
Fermat surface into a unit shell element, that is into a vector with a unit norm.  

This possibility permits to consider Fermat vectors closely related to discrete 
probability distributions. That is, from the vectors defining a Fermat surface, a set of 
discrete probability distributions can be defined. Fermat vectors and discrete 
probability distributions can be considered in a one-to-one correspondence. 

6.2. The shape of Fermat’s surfaces 

It is instructive to glimpse the shape of Fermat’s surfaces. In the first step, one 
can remember the discussion about the connection of Fermat’s surfaces of second-

order and N-dimensional spheres, shortly: 𝐹ே
ଶ(𝐹|𝑟) ≡ 𝑆ே(𝑟).  

Such an equivalence includes second-order natural Fermat vectors in these 
surfaces of any dimension, as it has been obtained empirically on several occasions 
[8,10]. The equivalence between second-order Fermat surfaces and spheres seems to 
preclude one might imagine the Fermat surfaces of superior order as spheroids, 
distorted spheres. However, simple tests seem to predict a completely different 

landscape. Fermat’s surfaces of higher orders and dimensions, that is: 𝐹ே
௣வଶ(ℚ|1), 

which can be straightforwardly defined via the attached Minkowski norm: 

∀𝑝 > 2: 𝑀ே
௣(⟨𝒇|) = ෍|𝑓ூ|௣

ே

ூୀଵ

− 1 = 0 (9)

Generate drawings, which become N-dimensional hypercubes in the limit of 
infinite order. In the third order, drawings look like edge smooth or blunt-like 
hypercubes, which tend to structure corners with right angles as the power order grows.  

 
Figure 1. Shapes of the Fermat 2-dimensional surfaces of different orders: (A) p = 3; 
(B) p = 4; (C) p = 7; (D) p = 9; (E) p = 11; (F) p = 31. 



Mathematics and Systems Science 2024, 2(1), 2490.  

6 

Figure 1 corresponds to the plots of two-dimensional Fermat’s surfaces starting 
at the third order (Figure 1A), followed by orders 4, 7, 9,11, and 31 (Figure 1B–F). 
Of course, second-order surfaces are a circumference, and the 3-dimensional ones are 
a sphere. Therefore, they are not shown in the following figures to save space. Figure 
1 shows a trend of the surfaces when the order grows: the smooth two-dimensional 
surface square tends to transform into a sharp square. 

However, a third-order 3-dimensional Fermat’s surface corresponds to a 
completely different object, resembling an edge and vertex smoothed or blunt-like 3-
dimensional cube, as Figure 2 shows. This time, to evidence the surface trend with 
increasing order, Figure 2 shows orders 3, 7, 9, 47, 127 (Figure 1A–E).  

In this sequence, the transformation from a sphere to a 3-dimensional smoothed 

cube is clear for order 3, and at the same time, the transformation of the smoothed 𝑝 =

3 cube towards a sharp structure appears evident as large order 𝑝 = 41 and 𝑝 = 127 
surfaces show. 

 
Figure 2. Shapes of three-dimensional Fermat’s surfaces for diverse orders: (A) p = 
3; (B) p = 7; (C) p = 11; (D) p = 47; (E) p = 127. 

As conveniently rotated N-dimensional hypercubes look like the drawings of 
Figures 1 and 2, there is no need to show the shapes of large-dimension Fermat 
surfaces, as they will look like both Figures already shown.  

Better than that, perhaps, in the light of the results shown in Figures 1 and 2, one 

is allowed to write, being 𝐻ே a N-dimensional hypercube, that: 

𝑙𝑖𝑚
௣→ஶ

𝐹ே
௣(𝐹|1) = 𝐻ே (10)

This final result is even easy to accept when realizing that the structure of 

hypercubes is such that the construction of the hypercube 𝐻ே can be done with the 
concatenation of two hypercubes of one lesser dimension, so formally, one can write 
in general:  

𝐻ேାଵ = 𝐻ே ⊕ 𝐻ே (11)
A feature indicating that the structure of a higher-dimension hypercube will be 
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like the one of a lesser dimension, as commented earlier.  
So, the edge and vertex smoothness one can observe, say, in Figure 2A, which 

one can consider as a 3-dimensional cube but generated as a 3-dimensional Fermat 
surface of order 3, can be imagined it will be the same in the 4-dimensional surface of 
order 3, which one can construct via concatenation of two 3-dimensional surfaces of 
order 3. Unit radius Fermat’s surfaces can follow a similar concatenation as 
hypercubes permit. 

7. Conclusions 

This paper discusses the nature of the surfaces generated when developing 
mathematical and computational tools to study the extension of Fermat’s last theorem 
in vector spaces of arbitrary dimension.  

The main trait that one can notice about Fermat’s surfaces is the association of 
these surfaces with Minkowski spaces and vectors with zero Minkowski norms. 

One of the deduced characteristics is the connection of Fermat’s surfaces of unit 
radius, first with discrete probability distributions and second with a generally defined 
unit shell structure. 

Finally, the shapes of Fermat’s surfaces have been observed as a transformation 
of N-dimensional hyperspheres into smoothed hypercubes, which tend to become N-
dimensional hypercubes as the surface orders increase. 

One must admit that extending Fermat’s theorem to arbitrary dimensions is 
highly connected with transforming hyperspheres into smoothed hypercubes and 
finally to hypercubes of (in)finite dimensions. 

However, the form of Fermat surfaces seems not to influence the existence on the 
surface of a point associated with a true Fermat vector. 
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Notes 
1. Along this paper, the bra symbol ⟨𝒘| will describe row vectors. It must be noted that all the equations where row vectors are 

present can be considered and also be changed in a column or ket vector frame. The practical use of bra vectors to avoid waste 

of print space has been chosen here. 
2. Semispaces are also known as orthants. 
3. The name natural space corresponds to some vector semispace defined over the natural numbers set. Under some conditions, 
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they are also called a lattice. 
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