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ABSTRACT 

We consider conditions of three types of stability: Lyapunov, formal and weak of a stationary solution, and of a 

periodic solution in a Hamiltonian system with a finite number of degrees of freedom. The conditions contain restrictions 

on the order of resonances and some inequalities for initial coefficients of the normal forms of the Hamiltonian functions. 

We show that the number-theoretical analysis of frequencies can help in proof of stability. We also estimate the orders of 

solutions’ divergence from the stationary or the periodic ones under lack of formal stability. 
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1. Introduction 
Nowadays, there are three types of definitions of stationary-point stability in a Hamiltonian system: 

Lyapunov stability, formal stability by Moser, and formal stability by Markeev. In Section 2, we present these 
definitions for a stationary point and give conditions on the Hamiltonian function that guarantee them. It is 
shown that a theoretical-numerical analysis of frequencies can help in proof of stability. In the absence of 
formal stability, one can consider weak stability in the situation when the order of scattering of solutions is 
small. Therefore, the order of scattering of the solution from a stationary point in the absence of formal stability 
is estimated. In Section 3, the conditions for formal orbital stability according to Moser of the periodic solution 
of the Hamilton system are given and the proof of such stability is presented. We also present estimates of the 
order of divergence of solutions from the periodic one in the absence of formal orbital stability. 

Note on notation 

Vector magnitudes are indicated in bold type. By default, these are vectors of dimension 𝑛  unless 

otherwise specified, i.e., 𝐱 = (𝑥ଵ, … , 𝑥௡), 𝐩 = (𝑝ଵ, … , 𝑝௡), and 𝐱𝐩 = 𝑥ଵ
௣భ ⋯ 𝑥௡

௣೙; the scalar product ⟨𝐩, 𝐪⟩ =

𝑝ଵ𝑞ଵ + ⋯ + 𝑝௡𝑞௡; ∥ 𝐩 ∥ = |𝑝ଵ| + ⋯ + |𝑝௡|. 
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2. Vicinity of a stationary point 

2.1. Resonant normal form 

Consider a Hamiltonian system 

�̇�௝ =
∂𝛾

∂𝜂௝
, �̇�௝ = −

∂𝛾

∂𝜉௝
, 𝑗 = 1, … , 𝑛 (1) 

with 𝑛 degrees of freedom in the neighborhood of a stationary point at the origin 

𝛇 =
ୢୣ୤

(𝛏, 𝛈) = 0 (2) 

If the Hamilton function 𝛾(𝜻) is analytic at this point, then it expands into a convergent power series 

𝛾(𝛇) = ෍ 𝛾𝐩𝐪𝛏𝐩𝛈𝐪, (3) 

where 𝐩, 𝐪 ∈ ℤ௡, 𝐩, 𝐪 ≥ 0, 𝛾𝐩𝐪 are constant coefficients. Since the point (2) is stationary, the expansion of 

(3) starts with quadratic terms. They correspond to the linear part of the system (1). 

The eigenvalues of its matrix are divided into pairs 𝜆௝ା௡ = −𝜆௝ , 𝑗 = 1, … , 𝑛. Denote by vector 𝝀 =

(𝜆ଵ, … , 𝜆௡), the set of basic eigenvalues. As known, canonical coordinate substitutions 

𝛏, 𝛈 → 𝐱, 𝐲 (4) 

preserve the Hamiltonian nature of the system. 

Theorem 2.1. There is a canonical formal transformation (4) that reduces the Hamiltonian (3) to the 
normal form[1] 

𝑔(𝐱, 𝐲) = ෍ 𝑔𝐩𝐪𝐱𝐩𝐲𝐪, (5) 

where the series g contains only resonant terms with  

⟨𝐩 − 𝐪, 𝛌⟩ = 0. 

If 𝝀 ≠ 0, then the normal form (5) is equivalent to a system with fewer degrees of freedom and additional 
parameters[2]. 

For the real initial system (1), the constant coefficients 𝑔𝐩𝐪 of the complex normal form (5) satisfy 

special relations, and the standard canonical linear coordinate substitution 𝐱, 𝐲 → 𝐗, 𝐘 reduces the system (5) 
into a real system. 

Definition 2.1. For each resonance are defined: 

 multiplicity 𝔨: the number of linearly independent solutions 𝐩 ∈ ℤ௡ to the resonant equation 

⟨𝐩, 𝛌⟩ = 0 (6)

 order 𝔮: 𝔮 = 𝑚𝑖𝑛 ∥ 𝐩 ∥ over 𝐩 ∈ ℤ௡\{0}, satisfying (6); 

 𝑛-frequency resonance: if exactly 𝑛 nonzero eigenvalues 𝜆௝ are included in the nontrivial solution 

of the resonance equation; 
 Strong resonances are called the resonances of orders 2, 3, or 4. 

Condition 𝐴௞
௡ for system with 𝑛 degrees of freedom takes place if the resonant Equation (6) has no 

integer solutions 𝐩 ∈ ℤ௡ with ∥ 𝐩 ∥ ≤ 𝑘. 
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This condition means that there are no resonances up to and including the order 𝑘. If it is satisfied, then 
in the normal form (5) 

𝑔 = ෍

[௞/ଶ]

௟ୀଵ

𝑔௟(𝐫) + 𝑔෤(௞)(𝐱, 𝐲) (7) 

where 𝑔௟(𝐫) are homogeneous polynomials from 𝑟௝ = 𝑥௝𝑦௝, 𝑗 = 1, … , 𝑛, of degree 𝑙, and 𝑔෤(௞) is a series 

from 𝐱, 𝐲 starting with powers above 𝑘 and [𝑘/2] means an integer part of number 𝑘/2. 

Thus, it is possible to obtain a Hamiltonian of the form (7) with partial normalization only up to order 𝑘 

when 𝑔෤(௞) contains not only resonance terms. 

In particular, under the condition 𝐴ଶ
௡ we have 

𝑔 = ⟨𝐫, 𝛌⟩ + 𝑔෤(ଷ)(𝐱, 𝐲) (8) 

and under the condition 𝐴ସ
௡ we have 

𝑔 = ⟨𝐫, 𝛌⟩ + ⟨𝐶𝐫, 𝐫⟩ + 𝑔෤(ହ)(𝐱, 𝐲) (9) 

where 𝐶 is 𝑛 × 𝑛 matrix. 

2.2. Stability 

Definition 2.2. A stationary point 𝜻 = 0 of a real Hamiltonian system (1) is stable by Lyapunov if for 

every 𝜀 > 0 in “cube” ∥ 𝜻 ∥< 𝜀 there exists a closed integral (2𝑛 − 1)-dimensional variety ℒ surrounding 

the point 𝜻 = 0 from all sides. 

Lemma 2.1. A stationary point 𝜻 = 0 is Lyapunov stable if there exists a sign-definite real integral 

𝑓(𝜻) = 𝑓௟(𝜻) + 𝑓ሚ(௟)(𝜻) (10)

of the system (1), where 𝑓௟(𝜻) is a homogeneous form of degree 𝑙. In other words, 

෍

௝ୀଵ

ቆ
𝜕𝑓

𝜕𝑥௝

𝜕𝛾

𝜕𝑦௝
−

𝜕𝑓

𝜕𝑦௝

𝜕𝛾

𝜕𝑥௝
ቇ = 0 (11)

and 𝑓௟(𝜻) does not equal to zero at any 𝜻 except the point 𝜻 = 0. 

Stability is possible only if 𝑅𝑒𝝀 = 0. If the condition 𝐴ଶ
௡ is satisfied, then all 𝜆௝ are different and non-

zero. In this case, the complex coordinates 𝐱, 𝐲 are related to the real coordinates. 𝐗, 𝐘 by the canonical 
substitution 

𝑥௝ =
𝑖𝑋௝ − 𝑌௝

√2𝑖
, 𝑦௝ =

𝑖𝑋௝ + 𝑌௝

√2𝑖
, 𝑗 = 1, … , 𝑛 (12)

With complex conjugation 

�̅�௝ = −𝑖𝑦௝ , 𝑦ത௝ = −𝑖𝑥௝, 𝑗 = 1, … , 𝑛 (13)

the Hamiltonian function 𝑔(𝐱, 𝐲) goes into itself, that is, into (5): 

𝑔𝐩𝐪 = �̅�𝐪𝐩(−𝑖)∥𝐩ା𝐪∥ (14)

as far as 𝑝௝ , 𝑞௝ ≥ 0. Suppose 

𝑋௝
ଶ + 𝑌௝

ଶ = 𝑅௝, 𝜆௝ = 𝑖𝛼௝, 𝑗 = 1, … , 𝑛 (15)



Mathematics and Systems Science | doi: 10.54517/mss.v1i1.2269 

4 

Then in real coordinates, 𝑅௝ ≥ 0 and 𝛼௝ is real, 

𝑟௝ = 𝑥௝𝑦௝ =
𝑖

2
൫𝑋௝

ଶ + 𝑌௝
ଶ൯ =

𝑖

2
𝑅௝, 𝑗 = 1, … , 𝑛 (16)

෍

௡

௝ୀଵ

𝜆௝𝑟௝ = −
1

2
෍

௡

௝ୀଵ

𝛼௝൫𝑋௝
ଶ + 𝑌௝

ଶ൯ = −
1

2
⟨𝛂, 𝐑⟩ (17)

Theorem 2.2.[3] (Dirichlet) If the condition Aଶ
୬ is satisfied and the numbers αଵ, … , α୬ are of the same 

sign, then the stationary point 𝛇 = 0 is stable according to Lyapunov. 

Here the role of the integral 𝑓 is played by the Hamiltonian 𝛾 itself, for it is an integral, the notation (8) 

has the form (7) with 𝑘 = 2 and the form 𝛾ଶ = 𝑔ଶ = −
ଵ

ଶ
∑௡

௝ୀଵ 𝛼௝𝑅௝ = −
ଵ

ଶ
⟨𝛂, 𝐑⟩ is sign-defined, for 𝐑 ≥

0. 

2.3. Formal stability 

By formal, we will mean power series, about the convergence of which nothing is known. 

Definition 2.3.[4] A stationary point (2) of a real Hamiltonian system (1) is formally stable if there exists 
a formal real sign-defined integral (10) of the system (1), i.e., the formal identity (11) is satisfied and the 

homogeneous form 𝑓௟ is null only at 𝜻 = 0. 

Formal stability means that the departure of solutions from the stationary point, if anything, is very slow: 

slower than any finite degree of 𝑡. 

Definition 2.4.[5] A stationary point (2) of a real Hamiltonian system (1) is formally stable if there exists 
a formal real integral 

𝑓(𝜻) = 𝑓௟(𝜻) + 𝑓௟ାଵ(𝜻) + ⋯ + 𝑓௠(𝜻) + 𝑓ሚ(௠)(𝜻) 

of system (1), where 𝑓௞(𝜻) are homogeneous forms of degree 𝑘 and the sum 

𝑓∗(𝜻) = 𝑓௟ + 𝑓௟ାଵ + ⋯ + 𝑓௠ (18)

does not equal to zero in some neighborhood of the point 𝜻 = 0 besides it. 

Definition 2.5.[6] A point 𝜻଴ is called a root of order 𝒌 of a polynomial 𝑓መ(𝜻), if at this point, the 𝑓መ 

itself and all its partial derivatives up to and including order 𝑘 are zero, but at least one derivative of order 

𝑘 + 1 is nonzero. 

Conjecture 2.1. If a real polynomial (18) with 𝑚 > 𝑙 does not converge to zero in some neighborhood 

of point 𝜻 = 0 except it, then every real root 𝜻଴ of the polynomial 𝑓௟ other than 𝜻 = 0 has an even order. 

Example 2.1. Let 𝑓መ = 𝜉ଶ + 𝜂ସ . Then 𝑓ଶ = 𝜉ଶ , 𝑓ସ = 𝜂ସ. The equation 𝑓መ = 0 has no real solutions 

except 𝜉 = 𝜂 = 0. The equation 𝑓ଶ = 0 has solutions 𝜉 = 0, 𝜂  is arbitrary and all these roots 𝜉 =

0, 𝜂 ≠ 0 have order 2. 

Since 𝑟௝𝑟௞ = −
ଵ

ସ
𝑅௝𝑅௞, then under the condition 𝐴ସ

௡, the sum (9) takes the form 

𝑔 = −
1

2
⟨𝛂, 𝐑⟩ −

1

4
⟨𝐶𝐑, 𝐑⟩ + 𝑔෤(ହ) (19)

Hence, all elements of matrix 𝐶 are real. 

Let 𝐾 ⊂ ℝ௡ be a linear shell of integers 𝐪 satisfying the equation ⟨𝛂, 𝐪⟩ = 0, and 𝑄 = {𝐪 ≥ 0, 𝐪 ≠
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0} ⊂ ℝ௡ is a non-negative orthant without origin. 

Theorem 2.3.[7] If Condition 𝐴ସ
௡ is satisfied and in (19) 

⟨𝐶𝐪, 𝐪⟩ ≠ 0 for 𝐪 ∈ 𝐾 ∩ 𝑄 (20)

then the point 𝛇 = 0 is formally stable in the sense of Definition 2.3. 

Here, the normal form of the Hamiltonian (5) from Theorem 2.1 is used to construct the formal integral. 

According to (16) in real coordinates, the normal form (7) is  

𝑔 = −
1

2
⟨𝜶, 𝐑⟩ + ෍

[௞/ଶ]

௟ୀଶ

ℎ௟(𝐑) + 𝑔෤(௞) (21)

where the homogeneous polynomials ℎ௟ = (𝑖/2)௟𝑔௟(𝐑) are real. The following generalization of Theorem 
2.3 is proved verbatim like it. 

Theorem 2.4. If the condition 𝐴௞
௡ is satisfied and in the normal form (21) 

෍

[௞/ଶ]

௟ୀଶ

ℎ௟(𝐑) ≠ 0 for 𝐑 ∈ 𝐾 ∩ 𝑄, 

then the point 𝜻 = 0 is formally stable in the sense of Definition 2.4. 

This theorem is used implicitly by Markeev[5]. 

Markeev’s condition 2[5]: System of equations  

⟨𝜶, 𝐪⟩ = 0,    ⟨𝐶𝐪, 𝐪⟩ = 0 

has no solution 𝐪 ∈ 𝑄, i.e., 𝐪 ≥ 0, 𝐪 ≠ 0. 

Under conditions 𝐴ସ
௡ and Markeev 2, the conditions of Theorem 2.3 are fulfilled and there is formal 

stability. But Markeev’s condition 2 is easier to check than the (20) condition. 

If 𝑛 = 2, the Markeev’s condition 2 takes the form: system of two equations  

𝛼ଵ𝑞ଵ + 𝛼ଶ𝑞ଶ = 0, 𝑐ଶ଴𝑞ଵ
ଶ + 2𝑐ଵଵ𝑞ଵ𝑞ଶ + 𝑐଴ଶ𝑞ଶ

ଶ = 0 

has no solution 𝑞ଵ, 𝑞ଶ ≥ 0 with 𝑞ଵ + 𝑞ଶ ≠ 0. 

But the solutions of the first equation have the form 𝑞ଵ = −
ఈమ

ఈభ
𝑞ଶ. For them, 𝑞ଵ, 𝑞ଶ > 0 only when 

𝛼ଵ𝛼ଶ < 0, i.e., the first equation has no solutions with 𝑞ଵ, 𝑞ଶ > 0 and under Dirichlet Theorem 2.2 𝛼ଵ𝛼ଶ >

0. Substituting them into the second equation and reducing by 𝑞ଶ
ଶ/𝛼ଵ

ଶ, we obtain the condition 

𝑀ଶ =
ୢୣ୤

𝑐ଶ଴𝛼ଶ
ଶ − 2𝑐ଵଵ𝛼ଵ𝛼ଶ + 𝑐଴ଶ𝛼ଵ

ଶ ≠ 0, 𝛼ଵ𝛼ଶ < 0 (22)

which is called the Arnold-Moser condition. 

Under this condition, there is not only formal stability, but also Lyapunov stability, because there are one-
parameter families of two-dimensional invariant tori with similar sets of frequencies that lock the origin of 
coordinates. However, Moser[8] and Arnold[9] made mistakes in proving this fact. At the end of the article[8] is 
a criticism of the first proof by Moser[8]. This criticism consisted of the following. Moser proves that on every 

invariant surface 𝛾 = 𝑐 = const, there is some stability zone ∥ 𝜻 ∥< 𝜀଴. Thus, generally speaking, 𝜀଴ can 

depend on 𝑐, i.e., 𝜀଴ = 𝜀଴(𝑐). It follows from his Theorem 9 that 
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𝜀଴(𝑐) > 0 (23)

for all sufficiently small 𝑐. Then he assumes that 𝜀଴(𝑐) has a positive lower bound: 

𝜀଴(𝑐) > 𝜀 > 0 (24)

But nowhere he proves it. From the property (24), it is indeed easy to deduce the stability of zero, which 
Moser does. At the same time, the proved property (23) is not sufficient for stability of zero if 

lim
௖→଴

𝜀଴(𝑐) = 0 (25)

Siegel and Moser accounted for this criticism and gave the second correct proof in Lectures on Celestial 
Mechanics[10]. The criticism of the single proof by Arnold[9] is given in “Stability in a Hamiltonian system”[11]. 
But Arnold didn’t take it into account and didn’t correct his proof. He did, however, correct its formulation in 
“A letter to the editors”[12]. 

On page 86 of Markeev’s book[5] is formulated: 

Theorem 2.5. Let 𝑛 = 2, the condition 𝐴௞
ଶ  be satisfied, and in normal form (21) ∑[௞/ଶ]

௟ୀଶ ℎ௟(𝛼ଶ, −𝛼ଵ) ≠

0, then the equilibrium position is stable according to Lyapunov. 

The proof is given in appendix 2 of the report[13]. It repeats the reasoning by Moser in his Lectures on 
Hamiltonian Systems[8], which contains the error indicated above (see Analytic form of differential equations 
(II)[1]). Therefore, this theorem cannot be considered proven. 

2.4. Theoretical-numerical analysis of frequencies 

Many works on stability use conditions like Markeev’s condition 2, where the number-theoretic character 

of frequencies 𝛼௝ is not taken into account. And yet the structure of the normal form depends on them. For 

example, if the equation ⟨𝜶, 𝐪⟩ = 0 has no solutions in integer 𝐪 ≠ 0, then Condition 𝐴ஶ
௡  is satisfied and 

the normal form of the Hamiltonian (5), (7) is 𝑔(𝐫). Then any 𝑟௝ is a formal integral and the stationary point 

is formally stable. In particular, at 𝑛 = 2, this is satisfied if the ratio 𝛼ଵ/𝛼ଶ is an irrational number. 

Example 2.2. According to Markeev[5], the stability of the libration points of the planar circular restricted 

three-body problem is studied. There n = 2, the frequencies ωଵ = αଵ, ωଶ = −αଶ with 1 ≥ ωଵ > ωଶ > 0 
satisfy the equation 

𝜔ସ − 𝜔ଶ +
27

4
𝜇(1 − 𝜇) = 0 (26)

where 𝜇 is the ratio of the masses of the two bodies and the only parameter of the problem (0 ≤ 𝜇 ≤ 1). In 
this case, the stability is studied for 

0 < 𝜇 < 0.4 (27)

It is shown in § 4, Ch. 7 of the book[5] that according to (4.7) in the normal form (2.17) ℎଶ(𝛼ଶ, −𝛼ଵ) =

0 at 

644𝜔ଵ
ସ𝜔ଶ

ସ − 541𝜔ଵ
ଶ𝜔ଶ

ଶ + 36 = 0 (28)

Let us show that at these values the frequencies of 𝜔ଵ  and 𝜔ଶ  are incommensurable, i.e., formal 
stability takes place 

Let’s assume 𝜔ଵ
ଶ = 𝑥, 𝜔ଶ

ଶ = 𝑦, and note that by Vieta’s formulae from (26) and (28) the equations 
follow  
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644𝑥ଶ𝑦ଶ − 541𝑥𝑦 + 36 = 0 (29)

𝑥 + 𝑦 = 1 (30)

𝑥𝑦 =
27

4
𝜇(1 − 𝜇) (31)

From Equation (29) we get 

𝑥𝑦 =
541 ± √199945

1288
 (32)

The product 𝑥𝑦 can have two values 

(𝑥𝑦)ଵ = 0.7671988 … , (𝑥𝑦)ଶ = 0.0728632 … 

But on the interval (27), the function 𝜇(1 − 𝜇) takes the largest value at the right end at 𝜇 = 0.4. There 

27𝜇(1 − 𝜇)/4 = 0.2592 …. Therefore, it follows from equality (31) that 

𝑥𝑦 = (𝑥𝑦)ଶ =
541 − √199945

1288
=

ୢୣ୤
Ω (33)

Assume 𝑧 = 𝑥/𝑦, i.e., 𝑥 = 𝑧𝑦. Here 𝑧 is the ratio of the squares of the frequencies. According to (30), 

we get 𝑦 = 1/(𝑧 + 1). Substituting this and 𝑥 = 𝑧𝑦  in (33), we get 𝑧/(1 + 𝑧ଶ) = Ω. Consequently, 𝑧 

satisfies the quadratic equation (𝑧 + 1)ଶ = 𝑧/Ω. Its roots are 𝑧 = ൫1 − 2Ω ± √1 − 4Ω൯/(2Ω). Given (33), 

we see that both values of 𝑧 are irrational. Consequently, the ratio of frequencies √𝑧 is also irrational. 

In Markeev[5], the following are used to prove stability in this case: the unproved Theorem 2.5 and the 
cumbersome calculation of the coefficients of the sixth-order terms of the normal form of the Hamiltonian. 

Example 2.3. In Markeev[5], the stability of libration points of a spatial circular restricted three-body 

problem is studied. There n = 3, the frequencies ωଵ and ωଶ are the same as in Example 2.2, and ωଷ = 1. 
In Chapter 8, § 3 on page 136 of the book[5], there the formal stability theorem is formulated for all values of 

μ such that 0 < 27μ(1 − μ) < 1, except where there is double resonance. Let us show that in this problem 
the double resonance is impossible. 

Indeed, in the case of double resonance, the frequencies 𝜔ଵ and 𝜔ଶ are commensurate with each other 

and commensurate with unity. Let 𝜔ଵ = 𝑟/𝑠, 𝜔ଶ = 𝑝𝜔ଵ/𝑞, where 𝑝, 𝑞, 𝑟, 𝑠 are integers, 

0 < 𝑝 < 𝑞, 0 < 𝑟 < 𝑠 (34)

According to (30), 𝜔ଵ
ଶ + 𝜔ଶ

ଶ = 1, that is, 
௥మ

௦మ ቀ1 +
௣మ

௤మቁ = 1, or 1 +
௣మ

௤మ =
௦మ

௥మ, or 

𝑞ଶ𝑟ଶ + 𝑝ଶ𝑟ଶ = 𝑠ଶ𝑞ଶ (35)

Let’s put 

𝑘 = 𝑞𝑟, 𝑙 = 𝑝𝑟, 𝑚 = 𝑞𝑠 (36)

Then the Equation (35) takes the form 

𝑘ଶ + 𝑙ଶ = 𝑚ଶ (37)

As we know, all solutions to the Equation (37) in integer non-negative numbers have the form 

𝑘 = ଶ − 1, 𝑙 = 2, 𝑚 = ଶ + 1 (38)

where  is a non-negative integer. According to (34) and (36), 𝑙 < 𝑘. Therefore, the Equation (38) will apply 

when  > 2, and when  = 0,  = 1 and  = 2, we put 
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𝑘 = 2, 𝑙 = ଶ − 1, 𝑚 = ଶ + 1. (39)

By direct verification, we make sure that when 0 ≤  < 3, the Equations (36) and (39) are impossible 

for integers. When  > 3, the equations 

𝑞 =
ଶ + 1

𝑠
, 𝑟 =

2
𝑝

, 𝑞𝑟 = ଶ − 1 =
(ଶ + 1)2

𝑝𝑠
 

are following from the Equations (36) and (38). Therefore, 

𝑝𝑠 =
2(ଶ + 1)

( + 1)( − 1)
. (40)

The numbers  − 1, ,  + 1 have no common factor, and the numbers ଶ + 1 and  + 1 have no 
common factor other than 2. Therefore, the ratio (40) cannot be an integer. 

2.5. Formal stability investigation in a generic case of three degrees of freedom 

Earlier the second author[14] proposed a schematic description of a method for studying formal stability 
of the stationary point of a Hamiltonian system. This method is based on the following key results: 

 normal form of the Hamiltonian system in the neighborhood of the stationary point; 
 formal stability Theorem 2.3; 

 𝑞-analogs of classical objects of elimination theory[15]. 

The drawback of this approach is that it does not take into account multi-frequency resonances of order 
three or more, which appear in systems with more than two degrees of freedom. 

Below we describe a method for investigating formal stability of the equilibrium position for a 
multiparameter Hamiltonian system with three degrees of freedom. Consider a Hamiltonian system in the 
vicinity of the equilibrium position for which the following conditions are satisfied: 

 the number of degrees of freedom of the system is greater than two, 

 the quadratic form 𝛾ଶ in expansion (3) is nondegenerate and is not sign definite, 

 the Hamiltonian function 𝛾 smoothly depends of the vector of parameters 𝐏 from a domain Π ⊂

ℝ௠. 

Corollary 2.1 (of Theorem 2.3). If in ℝଷ , the intersection of the plane ⟨𝛌, 𝐪⟩ = 0  and the cone 

⟨𝐶𝐪, 𝐪⟩ = 0 either does not lie in 𝐐 = ℝା
ଷ , or lies in 𝐐 = ℝା

ଷ , but does not contain the integer vector 𝐪, then 
the stationary point is formally stable. 

The behavior of the phase flow in the first approximations is described by the linear Hamiltonian system 

�̇� = 𝐵(𝐏)𝛇, 𝐵(𝐏) =
1

2
𝐽

∂ଶ𝛾ଶ(𝐏)

∂𝛇ଶ
 (41)

where 𝐽 is the symplectic unit matrix. The characteristic polynomial 𝑓ም(𝝀) of the matrix 𝐵(𝐏) contains only 

even degrees of 𝜆; therefore, it is a polynomial of 𝜇 = 𝜆ଶ. According to Batkhin et al.[16], such a polynomial 
is called semi-characteristic: 

𝑓௡(𝜇) = ෍

௡

௞ୀ଴

𝑓௡ି௞(𝐏)𝜇௞ , 𝑓଴ ≡ 1 (42)

Definition 2.6. The stability set Σ of the linear system (41) is the set of all values of parameters 𝐏 ∈ 𝛱 

for which the stationary point 𝜻 = 0 is Lyapunov stable. 
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In order to apply Theorem 2.3 on formal stability, we should find the boundaries of the domains in the 

space of parameters Π determined by the resonant varieties corresponding to strong resonances. 

Definition 2.7. A resonant variety ℛ௡
𝐩  in the space 𝐾  of coefficients 𝑎ଵ, … , 𝑎௡  of the semi-

characteristic polynomial 𝑓௡(𝜇) of degree 𝑛 is an algebraic variety on which the vector of basis eigenvalues 

𝝀 of the corresponding characteristic polynomial 𝑓ም(𝜆) is a nontrivial solution of the resonant Equation (6) 

for a fixed integer vector 𝐩 = 𝐩∗. An analytical representation of the variety ℛ௡
𝐩∗ in an implicit or parametric 

form is denoted by 𝑅௡
𝐩∗. 

To examine the formal stability of a stationary point of a Hamiltonian system (1), we should find in the 

space of parameters Π the stability set Σ of the linear system (41), find such domains, in which the quadratic 

form 𝛾ଶ(𝐳) is not sign definite, find parts 𝑆௞  in these domains that do not contain strong resonances, 

normalize the Hamiltonian in each of these parts 𝑆௞ up to order four, and then apply Theorem 2.3. To do this, 

it is sufficient to select a point in each 𝑆௞  in the space of parameters and use one of the normalization 

algorithms for the Hamiltonian function. Since all eigenvalues 𝜆௞ (𝑘 = 1, … , 𝑛) are simple at each interior 

point of 𝑆௞, the invariant normalization algorithm can be easily applied. For 𝑛 = 3, the borders between the 

parts 𝑆௞  are defined by the following resonant varieties: ℛଷ
(ଶ,ଵ,଴) , ℛଷ

(ଷ,ଵ,଴)  corresponding two-frequency 

resonances and ℛଷ
(ଵ,ଵ,ଵ), ℛଷ

(ଶ,ଵ,ଵ) corresponding three-frequency resonances. 

A general description of the procedure for obtaining condition on the existence of two and multi-
frequency resonances is as follows (for details see “Calculation of a strong resonance condition in a 
Hamiltonian system”[17]): 

(1) For a certain vector 𝐩∗ = (𝑟, 𝑞, 1), where 𝑟, 𝑞 ∈ ℚ, 𝑟, 𝑞 ≠ 0, satisfying the resonance Equation (6), 

a polynomial ideal is composed 𝒥 = ൛〈𝐩∗, 𝝀〉, 𝜆௝
ଶ − 𝜇௝ൟ; 

(2) Gröbner basis 𝒢 of this ideal with the elimination monomial order of variables 𝜆௝, 𝜇௝ , 𝑗 = 1, … , 𝑛 is 

computed. The first polynomial 𝑅ଷ
(௥,௤,ଵ)

(𝜇௝)  of 𝒢  is a quasi-homogeneous polynomial in the variables 

𝜇௝ , 𝑗 = 1, … , 𝑛. Its zeroes determine the condition of existence of resonance for a given vector 𝐩∗. 

This condition takes the form 

𝑅ଷ
(௥,௤,ଵ)

(𝜇௝) ≡ 𝑞ସ𝜇ଶ
ଶ − 2𝑞ଶ𝑟ଶ𝜇ଵ𝜇ଶ + 𝑟ସ𝜇ଵ

ଶ −

−2𝑞ଶ𝜇ଶ𝜇ଷ − 2𝑟ଶ𝜇ଵ𝜇ଷ + 𝜇ଷ
ଶ = 0.

 (43)

For condition (43) a power transformation[18], defined by a matrix 𝑀 = ൭
0 0 1
1 0 1
0 1 1

൱  with the 

corresponding variable change 

𝜇ଵ = 𝑠ଶ𝑠ଷ, 𝜇ଶ = 𝑠ଵ𝑠ଷ, 𝜇ଷ = 𝑠ଷ 

is done. It reduces the polynomial 𝑅ଷ
(௥,௤,ଵ)

(𝜇௝) into a polynomial of two variables 

𝑅෨ଷ
(௥,௤,ଵ)

≡ 𝑞ସ𝑠ଵ
ଶ − 2𝑞ଶ𝑟ଶ𝑠ଵ𝑠ଶ + 𝑟ସ𝑠ଶ

ଶ −

−2𝑞ଶ𝑠ଵ − 2𝑟ଶ𝑠ଶ + 1 = 0,
 (44)

which has the parametric representation of the roots 
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𝜇ଵ = (𝑟ଶ𝑢(𝑞 + 1) + 𝑞 − 1)ଶ𝑣,

𝜇ଶ = (𝑟ଶ𝑢 − 1)ଶ𝑣𝑟ଶ,

𝜇ଷ = (𝑟ଶ𝑢 + 2𝑞 − 1)ଶ𝑣𝑟ଶ.

 (45)

For each strong resonance of orders 2, 3 and 4 parametric representation of the corresponding variety was 
obtained. Their mutual location is shown in Figure 1. 

 
Figure 1. Resonant varieties in parametric variables. 

Curve 𝐿ଵ (black) is variety ℛଷ
(ଵ,ଵ,଴), curve 𝐿ଶ (blue) is variety ℛଷ

(ଶ,ଵ,଴), curve 𝐿ଷ (green) is variety 

ℛଷ
(ଷ,ଵ,଴), line 𝐿ସ (magenta) is variety ℛଷ

(ଵ,ଵ,ଵ) and curve 𝐿ହ (red) is variety ℛଷ
(ଶ,ଵ,ଵ). Each point at Figure 1 

denotes the set of parameters for which the multiplicity of resonance changes from 1 to 2. 

The curve 𝐿ଵ  plays a special role, it determines the boundary of the domain of stability Σ of the 

stationary point in linear approximation. This curve is the image of the discriminant set 𝒟(𝑓ଷ), which divides 
the space of coefficients of the cubic polynomial into two parts. In one part, all roots of the polynomial are 
real, and in the other part there is a pair of complex conjugate roots and one real root. The curvilinear triangle 

is the boundary of the domain Σ. The other resonant curves are completely or partially lay within this domain. 
Note that Figure 1 is slightly similar to the figure 14 in Libration Points in Celestial Mechanics and Cosmo 
Dynamics[5]. 

Example 2.4. Consider a modified Hamiltonian oscillation system with three degrees of freedom and two 
parameters. Such a system arises in the study of motion near a stable equilibrium position of three mathematical 

pendulums of equal length 𝑙 and close masses, connected by weightless elastic springs of stiffness 𝑘. If the 

normal coordinates 𝑄 = (𝑄ଵ, 𝑄ଶ, 𝑄ଷ) are chosen as the generalized coordinates, then the quadratic part of the 
Hamilton function is written as 

𝐻ଶ = −
(2𝛼 + 1)𝑄ଵ

ଶ

2𝛼
−

𝛼𝑃ଵ
ଶ

4𝛼 + 2
+ (𝛽 + 1)𝑄ଶ

ଶ +
𝑃ଶ

ଶ

4

−(2𝛼 + 1)(2𝛽𝛼 + 𝛽 + 1)𝑄ଷ
ଶ −

𝑃ଷ
ଶ

8𝛼 + 4
,

 (46)

where 𝛼 and 𝛽 are the parameters which, according to the physical meaning of the problem, must be positive. 

Since the form 𝐻ଶ is not sign-defined, the Dirichlet theorem is inapplicable. Let us perform a study of the 
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formal stability of the equilibrium position. 

For the initial parameters, the vector of basic eigenvalues is the following 𝛌 =

൫−1, ඥ𝛽 + 1, −ඥ2𝛽𝛼 + 𝛽 + 1൯
ఁ

. Let us introduce new parameters 𝑎, 𝑏 so that the value of 𝑎 is the square 

of the deviation of the second frequency from 1, and the value of 𝑏 is the square of the deviation of the third 
frequency from the second frequency, i.e., 

𝛼 =
𝑏

2𝑎
, 𝛽 = 𝑎. (47)

In the new parameters 𝑎, 𝑏, the domain 𝒦 ⊂ Π, for values of which all eigenvalues are purely imaginary, 

is a positive quadrant of the parameter plane Π, and the vector 

𝛌 = (−1, 𝜆ଶ, −𝜆ଷ)ఁ, (48)

where 𝜆ଶ = √𝑎 + 1, 𝜆ଷ = √𝑎 + 𝑏 + 1. 

The expansion of the Hamiltonian up to the 4th order in the neighborhood of the equilibrium position 
gives the following forms: 

𝐻ଶ = −
(𝑎 + 𝑏)𝑄ଵ

ଶ

𝑏
−

𝑏𝑃ଵ
ଶ

4(𝑎 + 𝑏)
+ 𝜆ଶ𝑄ଶ

ଶ +
𝑃ଶ

ଶ

4

−
(𝑎 + 𝑏)𝜆ଷ𝑄ଷ

ଶ

𝑎
−

𝑎𝑃ଷ
ଶ

4(𝑎 + 𝑏)
,

 (49)

𝐻ସ = −
(𝑎 + 𝑏)𝑄ଵ

ସ

12𝑏
+

(1 + 2𝑎)𝑄ଵ
ଶ𝑄ଶ

ଶ

2

−
(𝑎 + 𝑏)(2𝑏 + 2𝑎 + 1)𝑄ଵ

ଶ𝑄ଷ
ଶ

2𝑎

+(𝑏 + 3𝑎 + 1)𝑄ଵ𝑄ଶ
ଶ𝑄ଷ −

(4𝑎 + 1)𝑄ଶ
ସ

12

−
(𝑎ଶ − 𝑏ଶ)(3𝑏 + 3𝑎 + 1)𝑄ଵ𝑄ଷ

ଷ

3𝑎ଶ

+
(2𝑏 + 1 + 4𝑎)𝑄ଶ

ଶ𝑄ଷ
ଶ

2

−
(𝑎 + 𝑏)(𝑎ଶ − 𝑎𝑏 + 𝑏ଶ)(4𝑏 + 4𝑎 + 1)𝑄ଷ

ସ

12𝑎ଷ
.

 (50)

For application of Theorem 2.3 on the formal stability, it is necessary to normalize the Hamiltonian to the 
4th order in the domain without strong resonances. 

Let us determine the location of resonance manifolds in the domain of 𝒦. Since there is no third degree 

form in the original Hamiltonian, it is sufficient to study the 4th order resonances, i.e., the manifolds ℛଷ
𝐩భ

∗

, 

𝐩ଵ
∗ = (3,1,0) and ℛଷ

𝐩మ
∗

, 𝐩ଶ
∗ = (2,1,1). In variables 𝑎, 𝑏, these manifolds are written in the following form: 

𝑅ଷ
𝐩భ

∗

= (9𝑎 + 8)(8 − 𝑎)(9𝑎 + 8 + 9𝑏)

× (8𝑎 + 8 − 𝑏)(8𝑎 + 8 + 9𝑏)(𝑎 − 8 + 𝑏) = 0,

𝑅ଷ
𝐩మ

∗

= (9𝑎ଶ − 6𝑎𝑏 + 𝑏ଶ + 8𝑎 − 8𝑏)(𝑏ଶ − 16𝑎 − 8𝑏)

× (9𝑎ଶ + 24𝑎𝑏 + 16𝑏ଶ + 8𝑎 + 16𝑏) = 0.

 

Obviously, the manifold corresponding to the two-frequency resonances on the first quadrant 𝑎, 𝑏 > 0 
is the union of three lines: 
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𝑎 = 8, 𝑏 = 8(𝑎 + 1), 𝑎 + 𝑏 = 8. 

The manifold corresponding to the three-frequency resonances on the first quadrant 𝑎, 𝑏 > 0 is the union 
of two parabolas 

(3𝑎 − 𝑏)ଶ + 8(𝑎 − 𝑏) = 0, 

(𝑏 − 4)ଶ − 16(𝑎 + 1) = 0. 

On the described manifolds the structure of the normal form changes, and the stability study can be carried 
out according to the methods in Libration Points in Celestial Mechanics and Cosmo Dynamics[5]. Here we 
provide formal stability investigation of the initial system in accordance with the conditions of Theorem 2.3 
and Corollary 2.1, i.e., in the domain of parameter values where there are no strong resonances. 

At the first step we normalize the quadratic part of 𝐻ଶ, and in the new variables 𝛏, 𝛈 we obtain the 

Hamiltonian ℎ = ℎଶ + ℎସ in the form of 

ℎଶ = −
1

2
(𝜉ଵ

ଶ + 𝜂ଵ
ଶ) +

𝜆ଶ

2
(𝜉ଶ

ଶ + 𝜂ଶ
ଶ) −

𝜆ଷ

2
(𝜉ଷ

ଶ + 𝜂ଷ
ଶ), (51)

ℎସ = −
𝑏𝜉ଵ

ସ

48𝑎 + 48𝑏
−

(4𝑎 + 1)𝜉ଶ
ସ

48𝑎 + 48

−
(𝑎ଶ − 𝑎𝑏 + 𝑏ଶ)(𝑏 + 𝑎 + 1/4)𝜉ଷ

ସ

12(𝑎 + 𝑏)𝑎(𝑏 + 𝑎 + 1)

+
(2𝑏 + 1 + 4𝑎)𝑎𝜉ଶ

ଶ𝜉ଷ
ଶ

8𝜆ଶ𝜆ଷ(𝑎 + 𝑏)

−
(𝑎 − 𝑏)(3𝑏 + 3𝑎 + 1)√𝑏𝜉ଵ𝜉ଷ

ଷ

12(𝑎 + 𝑏)𝜆ଷ
ଷ/ସ

√𝑎

+
(𝑏 + 3𝑎 + 1)√𝑏𝑎𝜉ଵ𝜉ଶ

ଶ𝜉ଷ

4𝜆ଶ𝜆ଷ
ଵ/ସ(𝑎 + 𝑏)

−
(2𝑏 + 2𝑎 + 1)𝑏𝜉ଵ

ଶ𝜉ଷ
ଶ

8𝜆ଷ(𝑎 + 𝑏)
+

(1 + 2𝑎)𝑏𝜉ଵ
ଶ𝜉ଶ

ଶ

8𝜆ଶ(𝑎 + 𝑏)
.

 (52)

At the second step, we perform the normalization using the Zhuravlev invariant normalization method 
(for details see Zhuravlev et al.[19]). For this purpose, we carry out the complexification of the real Hamiltonian 

of valence 2𝑖 with the help of substitution 

𝜉௝ =
1

2𝑖
(𝑍௝ − �̅�௝), 𝜂௝ =

1

2
(𝑍௝ + �̅�௝), 𝑗 = 1,2,3. 

The quadratic form of ℎଶ will take the form 

ℎ෨ଶ = −𝑖𝑍ଵ�̅�ଵ + 𝑖𝜆ଶ𝑍ଶ�̅�ଶ − 𝑖𝜆ଷ𝑍ଷ�̅�ଷ, 

and defines the unperturbed solutions in the form 

𝑍௝ = 𝑋௝exp(𝑖𝜆௝𝑡), �̅�௝ = 𝑋ത௝exp(−𝑖𝜆௝𝑡), 𝑗 = 1,2,3. 

Averaging ℎ෨ଶ along the unperturbed solution, we obtain the following term of the normalized form. Due 
to the fact that the normalization is performed under the condition that there are no strong resonances, the 

obtained NF depends only on the products 𝑋௝𝑋ത௝, 𝑗 = 1,2,3, which are the action variables 𝜌௝ = 𝑖𝑋௝𝑋ത௝, and it 

will be written as ℋ = ℋଶ + ℋସ, where 
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ℋଶ = −𝜌ଵ + 𝜆ଶ𝜌ଶ − 𝜆ଷ𝜌ଷ,

ℋସ = −
𝑏𝜌ଵ

ଶ

128(𝑎 + 𝑏)
+

𝑏(1 + 2𝑎)𝜌ଵ𝜌ଶ

32𝜆ଶ(𝑎 + 𝑏)

−
𝑏(2𝑏 + 2𝑎 + 1)𝜌ଵ𝜌ଷ

32𝜆ଷ(𝑎 + 𝑏)
−

(4𝑎 + 1)𝜌ଶ
ଶ

128𝜆ଶ

+
𝑎(2𝑏 + 1 + 4𝑎)𝜌ଶ𝜌ଷ

32𝜆ଶ𝜆ଷ(𝑎 + 𝑏)

−
(𝑎ଶ − 𝑎𝑏 + 𝑏ଶ)(4𝑏 + 4𝑎 + 1)𝜌ଷ

ଶ

128(𝑎 + 𝑏)𝑎𝜆ଷ
ଶ .

 (53)

According to Corollary 2.1 of Theorem 2.3, we find in the first quadrant of space Π  of the new 

parameters 𝑎, 𝑏 of the domains in which the conditions of Corollary are satisfied. From the equation of the 

plane ℋଶ = 0, we express the variable 𝜌ଵ, substitute it into the equation of the cone ℋସ = 0 and obtain the 
quadratic equation 

𝑔 ≡ 𝑎଴𝜁ଶ + 𝑎ଵ𝜁 + 𝑎ଶ = 0,    𝜁 = 𝜌ଶ/𝜌ଷ, (54)

whose coefficients are the following 

𝑎଴ =
𝐺଴

128(𝑎 + 𝑏)𝜆ଶ
,

𝑎ଵ = −
𝐺ଵ

64𝜆ଶ𝜆ଷ(𝑎 + 𝑏)
,

𝑎ଶ =
𝐺ଶ

128(𝑎 + 𝑏)𝑎𝜆ଷ
ଶ ,

𝐺଴ = 7𝑎ଶ𝑏 − 4𝑎ଶ + 6𝑎𝑏 − 𝑎 + 2𝑏,

𝐺ଵ = 7𝑎ଶ𝑏 + 7𝑎𝑏ଶ − 8𝑎ଶ + 6𝑎𝑏 + 5𝑏ଶ − 2𝑎 + 3𝑏,

𝐺ଶ = 7𝑎ଷ𝑏 + 14𝑎ଶ𝑏ଶ + 7𝑎𝑏ଷ − 4𝑎ଷ + 10𝑎ଶ𝑏 + 10𝑎𝑏ଶ

−4𝑏ଷ − 𝑎ଶ + 4𝑎𝑏 − 𝑏ଶ

 (55)

Conditions of Corollary 2.1 are satisfied in one of the following cases: 

1) discriminant of Equation (54) is negative: 𝐷(𝑔) < 0; 

2) discriminant of Equation (54) is positive, but both roots are negative, so 𝐷(𝑔) > 0, 𝑎ଵ/𝑎଴ > 0, 

𝑎ଶ/𝑎଴ ≥ 0; 

3) there is at least one positive root of 𝜁ା, but the value of 𝜌ଵ corresponding to it is non-positive, so 

𝑎ଵ/𝑎଴ < 0, 𝜁ା < 𝜆ଷ/𝜆ଶ; 

4) Equation (54) degenerates into a linear equation with a positive root 𝜁ା and with 𝜌ଵ < 0, so 𝑎଴ =

0, 𝜁ା < 𝜆ଷ/𝜆ଶ; 

5) given 𝐷(𝑔) = 0, the multiple root of Equation (54) is 𝜁 < 0, or 𝜁 > 0 but 𝜌ଵ < 0. 

Note that cases 4 and 5 are realized only on curves, not in domains. 

Discriminant of Equation (54) is the following: 

𝐷(𝑔) = −
4𝜆ଶ

ଶ𝐺ଷ

𝑎𝜆ଷ
ଶ𝐺଴

ଶ ,

𝐺ଷ = 56𝑎ହ𝑏 + 84𝑎ସ𝑏ଶ − 28𝑎ଷ𝑏ଷ − 56𝑎ଶ𝑏ସ − 48𝑎ହ

+46𝑎ସ𝑏 + 78𝑎ଷ𝑏ଶ − 12𝑎ଶ𝑏ଷ − 35𝑎𝑏ସ − 24𝑎ସ

+32𝑎ଷ𝑏 + 22𝑎ଶ𝑏ଶ − 12𝑎𝑏ଷ − 8𝑏ସ − 3𝑎ଷ

+6𝑎ଶ𝑏 − 2𝑏ଷ.

 (56)
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Case 1. It is obvious that in the first quadrant the sign of the discriminant can change only on the curve 

𝐺ଷ = 0. This curve divides the first quadrant of the plane (𝑎, 𝑏) into three curvilinear segments marked I, II, 
III in Figure 2. 

Substituting the coordinates of points from these domains shows that the discriminant is negative in 
domain II. 

 
Figure 2. Domain of formal stability for case 1. 

Case 2. Let us write out expressions for the ratios of the coefficients of the polynomial 𝑔 

𝑎ଵ

𝑎଴
= −

2𝜆ଶ𝐺ଵ

𝜆ଷ𝐺଴
,

𝑎ଶ

𝑎଴
=

𝜆ଶ
ଶ𝐺ଶ

𝑎𝜆ଷ
ଶ𝐺଴

. 

The signs of the ratios can change on the curves 𝐺௝ = 0, 𝑗 = 0, 1, 2. Their mutual arrangement is shown 

in Figure 3 together with the curve 𝐺ଷ = 0. In the mentioned domains where 𝐷(𝑔) > 0, the values of 

𝑎ଵ/𝑎଴, 𝑎ଶ/𝑎଴ are calculated. Both coefficients are positive in the domain VI. 

 
Figure 3. Domain of formal stability for case 2. 

Case 3. The condition requires that there be at least one positive root (𝑎ଵ/𝑎଴ < 0) and that the largest 

positive root 𝜁ା = (−𝑎ଵ/𝑎଴ + ඥ𝐷(𝑔))/2 be less than the ratio 𝜆ଶ/𝜆ଷ. This condition can be rewritten as 

ቀ2
ఒమ

ఒయ
+

௔భ

௔బ
ቁ

ଶ
− 𝐷(𝑔) > 0. In variables 𝑎, 𝑏 this condition is rewritten as 

ସఒమ
మீర

௔ఒయ
మீమ

> 0, 𝐺ସ = 7𝑎𝑏ଷ + 8𝑎ଷ +

4𝑎ଶ𝑏 − 4𝑏ଷ + 2𝑎ଶ − 𝑏ଶ. Two domains satisfy Condition 3 but one of them coincides with the domain VI 
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from Figure 3. Figure 4 shows the domain bounded by the curves 𝐺ସ = 0 and the discriminant curve 𝐺ଷ =

0. 

 
Figure 4. Domain of formal stability for case 3. 

Cases 4 and 5 are always satisfied, since in these cases the only root of 𝜌ଵ is always negative. 

So, the final result is the domain shown in Figure 5. It is contained between the curves 𝐺଴ and 𝐺ସ. The 

resonance varieties ℛଷ
௣భ (shown by dotted lines) and ℛଷ

௣భ (shown by solid lines) should be removed from 

this region. 

 
Figure 5. Final domain of formal stability. 

2.6. Scattering order of solution 

Let the function 𝑓(𝑡) be defined at real 𝑡 → −∞. It is said to have order 𝛿 = 𝛿(𝑡) if 𝛿 = inf𝜀 such 

that 𝑓(𝑡)/(−𝑡)ఌ → 0 at 𝑡 → −∞. If 𝛿 > 0, then 𝑓(𝑡) is unbounded, if 𝛿 < 0, then 𝑓(𝑡) → 0 at 𝑡 → −∞. 

In the latter case 𝛿(𝑓) < 0, the larger 𝛿 is, the slower 𝑓(𝑡) approaches zero. 
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Definition 2.8. Let the solution 𝜻(𝑡) of the Hamiltonian system (1) tend to a stationary point (2) at 𝑡 →

−∞. On this solution order of scattering Δ = min{𝛿 ∥ 𝜻 ∥}. 

Definition 2.9. The scattering order of solutions of the system (1) from the stationary point (2) 𝛥ሚ is the 

lower bound of the scatter order 𝛥 over all solutions 𝜻(𝑡) that tend to the point (2) at 𝑡 → −∞. 

The smaller Δ෩ < 0, the faster the solutions are scattered from the stationary point. At formal stability the 

order of scattering of solutions from the stationary point is zero. Let us estimate the order of scattering Δ෩ in 

the absence of formal stability. The cases −10ିଵ଴ < Δ෩ < 0 can be considered as weak stable. 

Conjecture 2.2. Let the condition 𝐴ଶ
௡ and  = 𝑚𝑖𝑛 ∥ 𝐩 + 𝐪 ∥> 2 by integer solutions 𝐩 ≥ 0, 𝐪 ≥ 0 

of equation ⟨𝛂, 𝐩 − 𝐪⟩ = 0  be satisfied, then the order of scatter of the system solutions (1) from the 

stationary point 𝛥ሚ ≥ (2 − )ିଵ. 

Example 2.5. Consider a real Hamiltonian with n degrees of freedom in complex coordinates 

𝐺 = 𝑔𝐩𝐪𝐱𝐩𝐲𝐪 + 𝑔𝐪𝐩𝐱𝐪𝐲𝐩 (57)

where integer 𝐩, 𝐪 > 0, ∥ 𝐩 + 𝐪 ∥ =
ୢୣ୤

 > 2, all differences 

𝑝௝ − 𝑞௝ ≠ 0 have one sign 𝜎 = 𝑠𝑖𝑔𝑛(𝑝௝ − 𝑞௝), 𝑗 = 1, … , 𝑛, (58)

all 𝑝௝ , 𝑞௝ ≠ 0, 

⟨𝛂, 𝐩 − 𝐪⟩ = 0, (59)

and the complex coefficients 𝑔𝐩𝐪 and 𝑔𝐪𝐩 are related by the relations (20), i.e., 

𝑔𝐩𝐪 = (−𝑖)�̅�𝐪𝐩 (60)

and will be defined later. 

The Hamiltonian system corresponding to the Hamiltonian (57) is 

�̇�௝ = 𝑞௝𝑔𝐩𝐪𝐱𝐩𝐲𝐪ି𝐞ೕ + 𝑝௝𝑔𝐪𝐩𝐱𝐪𝐲𝐩ି𝐞ೕ ,

�̇�௝ = −𝑝௝𝑔𝐩𝐪𝐱𝐩ି𝐞ೕ𝐲𝐪 − 𝑞௝𝑔𝐪𝐩𝐱𝐪ି𝐞ೕ𝐲𝐩,

𝑗 = 1, … , 𝑛,

 (61)

where 𝐞௝ is the 𝑗th orth. Multiplying the upper equation by 𝑦௝ and the lower equation by 𝑥௝, we obtain the 

system 

𝑦௝�̇�௝ = 𝑞௝𝑔𝐩𝐪𝐱𝐩𝐲𝐪 + 𝑝௝𝑔𝐪𝐩𝐱𝐪𝐲𝐩,

𝑥௝�̇�௝ = −𝑝௝𝑔𝐩𝐪𝐱𝐩𝐲𝐪 − 𝑞௝𝑔𝐪𝐩𝐱𝐪𝐲𝐩,
 

𝑗 = 1, … , 𝑛. (62)

Let’s find a solution to this system of the form 

𝑥௝ = 𝐴௝(−𝑡)ஐ, 𝑦௝ = 𝑖𝐴௝(−𝑡)ஐ, 𝑗 = 1, … , 𝑛, (63)

where 𝐴௝ are real positive constants, and Ω is a real exponent of degree and real 𝑡 < 0. The solution of (63) 

has properties (13) characteristic of real solutions in complex coordinates. For the solution of (63) the Equation 
(62) take the form 
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−Ω𝐴௝
ଶ 𝑖(−𝑡)ଶஐିଵ = ൣ𝑞௝𝑔𝐩𝐪(𝑖)∥𝐪∥ + 𝑝௝𝑔𝐪𝐩(𝑖)∥𝐩∥൧𝒜,

−Ω𝐴௝
ଶ 𝑖(−𝑡)ଶஐିଵ = ൣ𝑝௝𝑔𝐩𝐪(𝑖)∥𝐪∥ + 𝑞௝𝑔𝐪𝐩(𝑖)∥𝐩∥൧𝒜,

𝒜 =
ୢୣ୤

𝐀𝐩ା𝐪(−𝑡)ஐ, 𝑗 = 1, … , 𝑛.

 (64)

Comparing the degrees of −𝑡 in the Equation (64), we get the equality 2Ω − 1 = Ω. It follows that 

Ω = (2 − )ିଵ, according to Conjecture 2.2. Now notice that in the pair of Equation (64) for one 𝑗 the left-
hand sides are equal. Therefore, by subtracting the lower equation from the upper equation and reducing by 

𝐀𝐩ା𝐪(−𝑡)ஐ, we obtain a system of equations 

(𝑝௝ + 𝑞௝)ൣ(𝑖)∥𝐪∥𝑔𝐩𝐪 + (𝑖)∥𝐩∥𝑔𝐪𝐩൧ = 0, 𝑗 = 1, … , 𝑛 

which reduces to a single equation 

ൣ(𝑖)∥𝐪∥𝑔𝐩𝐪 + (𝑖)∥𝐩∥𝑔𝐪𝐩൧ = 0. (65)

According to (60) 𝑔𝐪𝐩 = (−𝑖)�̅�𝐩𝐪. Therefore, this equation takes the form 

(𝑖)∥𝐪∥ൣ𝑔𝐩𝐪 + (−1)∥𝐪∥�̅�𝐩𝐪൧ = 0. (66)

Let’s put 

𝑔𝐩𝐪 = ൬
𝜏 = ±1, if ∥ 𝐪 ∥ odd,
𝜏 = 𝑖, if ∥ 𝐪 ∥ even.

 (67)

In both cases, the square bracket in (66) is cancelled. We will specify the value of 𝜏 = ±1 later. Now 
the system (64) reduces to the system 

𝑖𝐴௝
ଶ

 − 2
= (𝑖)∥𝐪∥(𝑞௝ − 𝑝௝)𝑔𝐩𝐪𝐀𝐩ା𝐪, 𝑗 = 1, … , 𝑛. (68)

According to (58), all differences 𝑞௝ − 𝑝௝ have the sign −𝜎. Choose in (67) 𝜏 = ±1 such that 

(𝑖)∥𝐪∥ିଵ(−𝜎)𝑔𝐩𝐪 = 1. (69)

Indeed, if ∥ 𝐪 ∥ is odd, then (𝑖)∥𝐪∥ିଵ = ±1 and we can pick the sign 𝜏 so that there is equality (69). 

If ∥ 𝐪 ∥ is even, then (𝑖)∥𝐪∥ିଵ𝑔𝐩𝐪 = ±1 and we can pick the sign 𝜏 so that there is equality (69). Now the 

system (68) takes the form 

𝐴௝
ଶ

|𝑝௝ − 𝑞௝|
= ( − 2)𝐀𝐩ା𝐪, 𝑗 = 1, … , 𝑛. (70)

Let us show that this system has a unique solution 𝐀 > 0. Let’s go to logarithms. Then the system (70) 
will take the form 

ln
𝐴௝

ଶ

|𝑝௝ − 𝑞௝|
= ln( − 2) + ෍

௡

௞ୀଵ

(𝑝௞ + 𝑞௞)ln𝐴௞, 𝑗 = 1, … , 𝑛. (71)

This is a linear inhomogeneous system with respect to ln𝐴௝. Its determinant is 𝐷 = (−2)௡ିଵ( − 2). 

This is easily proved by induction on 𝑛. Therefore, the system (71) has the unique solution ln𝐀, i.e., the 

system (70) has the only solution 𝐀 > 0. According to (68) 𝐴௝
ଶ = (𝑝௝ − 𝑞௝)const, 𝑗 = 1, … , 𝑛. On these 

solutions ∑௡
௝ୀଵ 𝛼௝𝑥௝(𝑡)𝑦௝(𝑡) = 𝑖 ∑௡

௝ୀଵ 𝛼௝𝐴௝
ଶ(−𝑡)ଶஐ = 𝑖(−𝑡)ଶஐ⟨𝛂, 𝐩 − 𝐪⟩const. According to (59), this sum 

is identically equal to zero. Therefore, the obtained solution (63) is also the solution of the system with the 

Hamiltonian 𝑔 = 𝑖 ∑௡
௝ୀଵ 𝛼௝𝑥௝(𝑡)𝑦௝(𝑡) + 𝐺, which is a special case of the complex normal form. 
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Remark 2.1. The example 2.5 shows the existence of one solution with order 1/(2 − ). It can be shown 

that such solutions form an 𝑛-parametric family 

𝑥௝ = 𝐴௝𝑒௜ఝೕ(−𝑡)ஐ, 𝑦௝ = 𝑖𝐴௝𝑒ି௜ఝೕ(−𝑡)ஐ, 𝑗 = 1, … , 𝑛. (72)

Here, the parameters 𝜑ଵ, … , 𝜑௡ are real. 

Remark 2.2. Similarly, and much simpler than Example 2.5, we can consider the case 𝐩 > 0, 𝐪 = 0. 
But the formulas (61) don’t work there. 

3. Vicinity of a periodic solution 

3.1. Local coordinates 

Let a real Hamiltonian system with 𝑛 + 1 degrees of freedom have a real 2𝜋-periodic solution ℳ and 

the Hamiltonian function is analytic in the neighborhood of the solution ℳ. According to Bruno[2], one can 

introduce such real local canonically conjugate coordinates 𝛏, 𝜓 and 𝛈, 𝜌 near the solution ℳ that the 

solution ℳ is given by equations 

𝛏 = 𝛈 = 0, 𝜌 = 0, 𝜓 = 𝜓଴ + 𝑡 (73)

and the Hamiltonian function has the form 

𝛾 = Σ𝛾𝐩𝐪௟(𝜓)𝛏𝐩𝛈𝐪𝜌௟ = 𝜌 + ⋯, (74)

where integer 𝐩, 𝐪 ≥ 0 , integer 𝑙 ≥ 0 , real analytic functions 𝛾𝐩𝐪௟(𝜓)  have on 𝜓  the period 2𝜋  and 

decompose into Fourier series. 

Here, as in Section 2, there is a notion of Lyapunov stability, but at 𝑛 = 1 the conditions for its existence 
coincide with those for formal stability. 

Definition 3.1. Periodic solution (73) of a Hamiltonian system 

�̇�௝ =
∂𝛾

∂𝜂௝
, �̇�௝ = −

∂𝛾

∂𝜉௝
, 𝑗 = 1, … , 𝑛,

�̇� =
∂𝛾

∂𝜌
, �̇� = −

∂𝛾

∂𝜓

 (75)

orbitally formally stable if there exists such a real power series on 𝛏, 𝛈, 𝜌 almost periodic on 𝜓 

𝐹 = ෍ 𝐹𝐩𝐪௟(𝜓)𝛏𝐩𝛈𝐪𝜌௟ =
ୢୣ୤

𝐹௦(𝛏, 𝜓, 𝛈, 𝜌) + 𝐹෨(௦ାଵ)(𝛏, 𝜓, 𝛈, 𝜌) (76)

which may diverge, but is a formal sign-defined integral of the system (75). 

In other words, all the coefficients of a power series 

෍

௡

௝ୀଵ

ቆ
∂𝐹

∂𝜉௝

∂𝛾

∂𝜂௝
−

∂𝐹

∂𝜂௝

∂𝛾

∂𝜉௝
ቇ +

∂𝐹

∂𝜓

∂𝛾

∂𝜌
−

∂𝐹

∂𝜌

∂𝛾

∂𝜓
 (77)

must converge to zero, and they are homogeneous in 𝛇, ඥ𝜌 form 𝐹௦(𝛏, 𝜓, 𝛈, 𝜌) ≥ 0, with 𝐹௦(𝛏, 𝜓, 𝛈, 𝜌) = 0 

only when 𝛏 = 𝛈 = 0, 𝜌 = 0. 

Recall that a function 𝑓(𝜓) is 
 periodic if it has a single frequency, 
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 conditionally (or quasi) periodic if it has a finite number of frequencies, and 
 almost periodic if it has a countable number of frequencies. 

In our case, there will be quasi-periodic functions 𝐹𝐩𝐪௟(𝜓). 

Definition 3.1 is similar to Definition 2.3, but one can also define formal orbital stability similar to 
Definition 2.4. 

3.2. Normal form 

When 𝜌 = 0 and 𝜓 = 𝑡, the quadratic on 𝛇 part 𝛾ଶ  of the Hamiltonian (74) defines 2𝜋-periodic, 

linear on 𝛇 system 

�̇�௝ =
∂𝛾ଶ

∂𝜂௝
, �̇�௝ = −

∂𝛾ଶ

∂𝜉௝
, 𝑗 = 1, … , 𝑛 (78)

Let 𝜈ଵ, … , 𝜈ଶ௡  be the eigenvalues of its monodromy matrix, i.e., the substitution matrix of the 

fundamental matrix of solutions of the system (78) for period 2𝜋. Let all ห𝜈௝ห = 1 and 𝜈௝ ≠ −1. Assume 

𝛼௝ =
ln𝜈௝

2𝜋
, 𝛼௝ ∈ ℝ, 𝛼௝ ∈ ൬−

1

2
,
1

2
൰ , 𝑗 = 1, … ,2𝑛. (79)

If the numeration is correct than 𝛼௝ା௡ = −𝛼௝, 𝑗 = 1, … , 𝑛. Put 𝛂 = (𝛼ଵ, … , 𝛼௡). 

Condition 𝑩𝒌
𝒏. For all integer 𝐩 with ∥ 𝐩 ∥ =

ୢୣ୤
|𝑝ଵ| + ⋯ + |𝑝௡| ≤ 𝑘, the scalar products ⟨𝐩, 𝛂⟩ are not 

integers, i.e., the comparison ⟨𝐩, 𝛂⟩ ≡ 0(mod1) has no solutions with such 𝐩. 

Theorem 3.1.[2,20] Given the condition 𝐵ଶ
௡, there exists a complex formal reversible 2π-periodic on 𝜓 

and φ canonical coordinate transformation 

𝛏, 𝜓, 𝛈, 𝜌 ↔ 𝐱, 𝜑, 𝐲, 𝑟, (80)

which brings the Hamiltonian 𝛾 to the normal form 

𝑔(𝐱, 𝜑, 𝐲, 𝑟) = 𝑟 + 𝑖 ෍

௡

௝ୀଵ

𝛼௝𝑥௝𝑦௝ + ෍ 𝑔𝐩𝐪௟௠𝐱𝐩𝐲𝐪𝑟௟𝑒௜௠ఝ (81)

where 𝒙, 𝒚 ∈ ℂ௡ , 0 ≤ 𝐩, 𝐪 ∈ ℤ௡ , 𝑙 ≥ 0 and m are integers, all second sum terms of order 𝐱, 𝐲, √𝑟 are 
above two and resonant, that is, 

⟨𝐩 − 𝐪, 𝛂⟩ + 𝑚 = 0. (82)

Let’s put 𝑟௝ = 𝑥௝𝑦௝, 𝑗 = 1, … , 𝑛; 𝐫 = (𝑟ଵ, … , 𝑟௡). 

Corollary 3.1. If the condition 𝐵ସ
௡ is satisfied, then the normal form (81), (82) has the form 

𝑔 = 𝑟 + 𝑖⟨𝜶, 𝐫⟩ + ⟨𝐶𝐫, 𝐫⟩ + 𝑟⟨𝛅, 𝐫⟩ + 𝜀𝑟ଶ + 𝑔෤(ହ) (83)

where 𝜹 = const ∈ ℂ௡, 𝜀 = const ∈ ℂ and 𝐶 ∈ ℂ௡×௡. 

Theorem 3.2.[20] The canonical transformation 

𝑥௝ = 𝑢௝𝐞ି୧ఈೕఝ, 𝑦௝ = 𝑣௝𝐞௜ఈೕఝ, 𝑗 = 1, … , 𝑛, (84)

𝑟 = 𝑠 − 𝑖 ෍

௡

௝ୀଵ

Im𝜆௝𝑢௝𝑣௝ (85)
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leads the normal form of the Hamiltonian (81) to an autonomous power series 

ℎ(𝐮, 𝐯, 𝑠) = 𝑠 + ෍ ℎ𝐩𝐪௟௠𝐮𝐩𝐯𝐪𝑠௟ (86)

corresponding to the second sum in (81). 

Note that the returns from the variables 𝐮, 𝐯, 𝑠 to the original variables are given by formal power series 

on 𝛏, 𝛈, 𝜌 with quasi-periodic coefficients on 𝜓. Let us call the Hamiltonian (86) the reduced normal form. 

The variable 𝑠 is now the formal integral of the system 

�̇�௝ =
∂ℎ

∂𝑣௝
, �̇�௝ = −

∂ℎ

∂𝑢௝
, 𝑗 = 1, … , 𝑛 (87)

The orbital stability problem of the periodic solution ℳ has now been reduced to the stability problem 

of the fixed point 𝐮 = 𝐯 = 0, 𝑠 = 0 in the system (87). 

Corollary 3.2. If the condition 𝐵ସ
௡ is satisfied, then according to (83) and (85) the given normal form 

(86) is 

ℎ = 𝑠 + ⟨𝐶𝐫, 𝐫⟩ + (𝑠 − 𝑖⟨𝛂, 𝐫⟩)⟨𝛅, 𝐫⟩ + 𝜀(𝑠 − 𝑖⟨𝛂, 𝐫⟩)ଶ + ℎ෨(ହ) =

𝑠 + 𝜀𝑠ଶ + 𝑠⟨𝛅, 𝐫⟩ − 𝜀𝑠2𝑖⟨𝛂, 𝐫⟩ + ⟨𝐶𝐫, 𝐫⟩ − 𝑖⟨𝛂, 𝐫⟩⟨𝛅, 𝐫⟩ − 𝜀⟨𝛂, 𝐫⟩ଶ + ℎ෨(ହ).
 (88)

3.3. Real case 

If the original Hamiltonian function 𝛾 is real under the real variables 𝛏, 𝜓, 𝛈, 𝜌, then in Theorem 3.1 the 

variables 𝐱, 𝐲 are complex and the variables 𝜓, 𝜌 and 𝜑, 𝑟 are real. 

If the condition 𝐵ଶ
௡ is satisfied, then according to Bruno[2] the complex variables 𝐱, 𝐲 are related to the 

real variables 𝐗, 𝐘 by the formulae 

𝑥௝ =
𝑋௝ − 𝑌௝

√2
, 𝑦௝ =

𝑋௝ + 𝑌௝

√2
, 𝑗 = 1, … , 𝑛 (89)

The complex variables 𝑥௝, 𝑦௝ and their conjugate variables �̅�௝, 𝑦ത௝ are related by the relations 

�̅�௝ = −𝑖𝑦௝, 𝑦ത௝ = −𝑖𝑥௝, 𝑗 = 1, … , 𝑛, 𝜑ത = 𝜑, �̅� = 𝑟. (90)

With complex conjugation, the Hamiltonian (81) is preserved: �̅�(𝐱, 𝜑, 𝐲, 𝑟) = 𝑔(𝐱, 𝜑, 𝐲, 𝑟) . Indeed, 

𝚤�̅�௝𝑥௝𝑦௝ = 𝚤�̅�௝�̅�௝𝑦ത௝ = 𝑖𝛼௝𝑥௝𝑦௝, and we can show that 

�̅�𝐩𝐪௟௠(−)||𝐩ା𝐪|| = 𝑔𝐪𝐩௟(ି௠) (91)

Note that according to (74) 𝑖𝑟௝ = −𝑖�̅�௝𝑦ത௝ = (−𝑖)ଷ𝑥௝𝑦௝ = 𝑖𝑥௝𝑦௝ = 𝑖𝑟௝, 𝑗 = 1, … , 𝑛. Therefore, in (83), all 

𝜇௝௞ and 𝜀 are real, and all 𝛿௝ are purely imaginary. Assume 𝜹 = 2𝑖𝚫. According to (89) 

𝑟௝ = 𝑥௝𝑦௝ = −
1

2𝑖
൫𝑋௝

ଶ + 𝑌௝
ଶ൯ =

ୢୣ୤ 𝑖

2
𝑅௝, 𝑗 = 1, … , 𝑛 (92)

Now (88) takes the form 

ℎ = 𝑠 + 𝜀𝑠ଶ − 𝑠⟨𝚫, 𝐑⟩ + 𝜀𝑠⟨𝜶, 𝐑⟩ −
1

4
⟨𝐶𝐑, 𝐑⟩ −

1

2
⟨𝛂, 𝐑⟩⟨𝚫, 𝐑⟩ +

1

4
𝜀⟨𝛂, 𝐑⟩ଶ + ℎ෨(ହ) (93)

All quantities here are real. 
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All integer vectors 𝐪 that satisfy the comparison ⟨𝛂, 𝐪⟩ ≡ 0(mod1), form in ℝ௡ the lattice 𝐿. Let 𝑀 

be its linear shell and 𝑄 = {𝐪 ≥ 0, 𝐪 ≠ 0} is a non-negative orthant in ℝ௡ without the origin. 

Theorem 3.3. If at 𝜌 = 0 the initial real system with Hamiltonian 𝛾(𝛏, 𝜓, 𝛈, 𝜌) satisfies the condition 

𝐵ସ
௡ and in the entry (93) 

⟨𝐶𝐪, 𝐪⟩ + 2⟨𝛂, 𝐪⟩⟨𝚫, 𝐪⟩ − 𝜀⟨𝛂, 𝐪⟩ଶ ≠ 0 (94)

for all 𝐪 ∈ 𝑀 ∩ 𝑄, then the periodic solution (73) is formally orbitally stable. 

Proof is similar to the proof of the theorem in “Formal stability of Hamiltonian systems”[7]. 

The given normal form (86) contains only the resonance terms satisfying Equation (82). And under the 

condition 𝐵ସ
௡ it has the form (93). Therefore it has three types of real formal integrals: 

1) ⟨𝐪, 𝐑⟩, where the vector 𝐪 is orthogonal to the linear subspace 𝑀; 

2) 𝐻 = ℎ − 𝑠 − 𝜀𝑠ଶ = 𝜀𝑠⟨𝛂, 𝐑⟩ +
ଵ

ସ
𝜀⟨𝛂, 𝐑⟩ଶ − 𝑠⟨𝚫𝐑⟩ −

ଵ

ସ
⟨𝐶𝐑, 𝐑⟩ −

ଵ

ଶ
⟨𝛂, 𝐑⟩⟨𝚫, 𝐑⟩ + ℎ෨(ହ); 

3) 𝑠. 

By condition (94) at 𝐑 ∈ 𝑀 the sum 

⟨𝐶𝐑, 𝐑⟩ + 2⟨𝛂, 𝐑⟩⟨𝚫, 𝐑⟩ − 𝜀⟨𝛂, 𝐑⟩ଶ 

retains the sign and does not equal to zero. Let 𝐑 ∈ 𝑀 and 

𝜇∗ = min ቤ
⟨𝐶𝐑, 𝐑⟩ + 2⟨𝛂, 𝐑⟩⟨𝚫, 𝐑⟩ − 𝜀⟨𝛂, 𝐑⟩ଶ

⟨𝐑, 𝐑⟩
ቤ ,

𝜇∗ = max ቤ
⟨𝚫, 𝐑⟩ − 𝜀⟨𝛂, 𝐑⟩

ඥ⟨𝐑, 𝐑⟩
ቤ .

 

According to the condition (94) we have 𝜇∗ > 0. Since 𝑠 and ⟨𝛂, 𝐑⟩ are integrals, the sum 𝐻 + 𝐴𝑠ଶ 

with any constant 𝐴 is also an integral. 

Consider the trinomial 

−
1

4
𝜇∗𝜆ଶ − 𝜇∗𝜆𝑠 + 𝐴𝑠ଶ (95)

Its discriminant 𝐷 = (𝜇∗)ଶ + 𝜇∗𝐴. If 

𝜇∗𝐴 < 0 and |𝜇∗𝐴| > (𝜇∗)ଶ (96)

then the trinomial (95) has no real roots except 𝜆 = 𝑠 = 0. 

Let 𝐿ଵ, … , 𝐿௠ be the basis of the orthogonal complement to the linear subspace 𝑀 in ℝ௡. The sum 

𝐹 = ∑௠
௝ୀଵ ൻ𝐿௝, 𝐑ൿ

ସ
+ (𝐻 + 𝐴𝑠ଶ)ଶ = 𝐹 + ⋯ is a formal integral as a polynomial of formal integrals. Let us 

show that with the number 𝐴 with the property (96) the form 

𝐹 = ෍

௠

௝ୀଵ

ൻ𝐿௝, 𝐑ൿ
ସ

+ ൬
1

4
𝜀⟨𝛂, 𝐑⟩ଶ −

1

4
⟨𝐶𝐑, 𝐑⟩

−
1

2
⟨𝛂, 𝐑⟩⟨𝚫, 𝐑⟩ + 𝑠𝜀⟨𝛂, 𝐑⟩ − 𝑠⟨𝚫, 𝐑⟩ + 𝐴𝑠ଶ൰

ଶ
 

is positive definite. Here in the right-hand side of the equality all the terms are greater than or equal to zero, 

for 𝑅௝ ≥ 0 for real 𝑋௝ and 𝑌௝ and ∑௠
௝ୀଵ ൻ𝐿௝, 𝐑ൿ

ସ
= 0 only at 𝐑 ∈ 𝑀. But for such 𝐑 at 𝐑 ≠ 0 or 𝑠 ≠ 0 
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by the proved 

ቆ−
1

4
⟨𝐶𝐑, 𝐑⟩ − 𝑠⟨𝚫, 𝐑⟩ −

1

2
⟨𝛂, 𝐑⟩⟨𝚫, 𝐑⟩ + 𝐴𝑠ଶ൰

ଶ

> 0. 

So, 𝐹  is the formal integral of the original system if in it 𝐗, 𝜑, 𝐘, 𝑠  is expressed through the old 

coordinates 𝛏, 𝜓, 𝛈, 𝜌. According to Definition 3.1 the initial system is formally orbitally stable. The proof is 
finished. 

3.4. Cases 𝒏 = 𝟏 and 𝒏 = 𝟐 

Under the condition 𝐵ସ
௡, the normal form of the Hamiltonian (83) in real coordinates is 

𝑔 = 𝑟 −
1

2
⟨𝛂, 𝐑⟩ −

1

4
⟨𝐶𝐑, 𝐑⟩ − 𝑟⟨𝚫, 𝐑⟩ + 𝜀𝑟ଶ + ⋯ 

Here, there are linear and quadratic parts on 𝐑, 𝑟, and the situation is like a normal form of the Hamiltonian 

with 𝑛 + 1 degrees of freedom in the neighborhood of the fixed point. 

Therefore, according to Markeev[21,22], for 𝑛 = 1 and 𝑛 = 2  respectively formulated without proof 
formal stability conditions similar to the Markeev 2 condition from Subsection 2.3. Namely: 

Markeev’s condition 3. A system of two equations 

𝑞଴ −
1

2
⟨𝛂, 𝐪⟩ = 0,

−
1

4
⟨𝐶𝐪, 𝐪⟩ − 𝑞଴⟨𝚫, 𝐪⟩ + 𝜀𝑞଴

ଶ = 0

 

has no solution 𝐪 ≥ 0, |𝑞଴|+∥ 𝐪 ∥≠ 0, i.e., equation 

⟨𝐶𝐪, 𝐪⟩ + 2⟨𝛂, 𝐪⟩⟨𝚫, 𝐪⟩ − 𝜀⟨𝛂, 𝐪⟩ଶ = 0, (*) 

has no solution 𝐪 ≥ 0. 

It differs from the condition (94) of Theorem 3.3 and is easier to check. 

3.5. Scattering order of solution 

Definition 3.2. Let the solution 

𝛏(𝑡), 𝜑(𝑡), 𝛈(𝑡), 𝜌(𝑡) (97)

tends to a periodic solution (73) at 𝑡 → −∞. On the solution (97) the order of the expansion 

Δ = min൛𝛿(||𝛏||), 𝛿(||𝛈||), 𝛿൫ඥ|𝜌|൯ൟ (98)

Definition 3.3. Scattering order of solution to the system (75) from its periodic solution (73) 𝛥ሚ is the 

lower bound of the 𝛥 scatter order over all solutions (97) that tend to the periodic solution (73) at 𝑡 → −∞. 

Here, as in Section 2.6, we estimate the order of dispersion of solutions from a periodic solution in the 
absence of formal stability. 

Conjecture 3.1. Let the condition 𝐵ଶ
௡  be satisfied and  = 𝑚𝑖𝑛 ∥ 𝐩 + 𝐪 ∥> 2 by integer solutions 

𝐩 ≥ 0, 𝐪 ≥ 0, 𝑚 of the equation ⟨𝛂, 𝐩 − 𝐪⟩ + 𝑚 = 0, then the order of dispersion of the solutions of the 

system (75) from the periodic solution, denoted by 𝛥ሚ ≥ (2 − )ିଵ. 

An example similar to 2.5 and using Equation (91) is recommended for the reader to construct. 
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