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ABSTRACT 

The development of the number system has been a long and difficult process, and many landmark concepts and 

theorems have been put forward. By briefly reviewing the development of hypercomplex systems, the rules for 

constructing the unit elements are discussed. As a vector space defining multiplication, division, and norm of vectors, 

hypercomplex numbers synthesize the advantages of mathematical tools such as algebra, geometry, and analysis, 

faithfully describe the intrinsic properties of space-time and physical systems, and provide a unified language and a 

powerful tool for basic theories and engineering technology. In the application of hypercomplex numbers, the group-like 

properties of the basis vectors are the most important, and the zero factor has little influence on the algebraic operation. 

The multiplication table of the basis vectors fully describes the intrinsic properties of the hypercomplex system, and the 

matrix A constructed from the multiplication table satisfies the structure equation A2 = nA and thus obtains a set of faithful 

matrix representations of the basic elements. This paper also uses typical examples to show the simple and clear concepts 

and wide application of hypercomplex numbers. Therefore, hypercomplex numbers are worth learning in basic education 

and applying in scientific research and engineering technology. 

Keywords: Clifford algebra; Grassmann algebra; hypercomplex number; structure equation; consistent equation 

1. Sketching the history of number systems 
The understanding of numbers and number systems has gone through a long and difficult history, and the 

introductions of some key concepts are milestones in this process. In 500 BC, the Pythagoras school proposed 
the universal belief that “all is a number”, believing that all phenomena in the universe could be attributed to 
integers or rational numbers of the ratio of integers. However, Hippasus, a member of the school, found that 
the diagonal length and side length of the square were irreducible, revealing the existence of irrational 
numbers[1]. In “JiuZhang SuanShu (Nine Chapters of Arithmetic)” in the Han Dynasty of China, the concepts 
of negative numbers and computing rules have already been described. In 665, Brahmagupta in India allowed 
the existence of negative number solutions when solving the quadratic equation, but Cardan, Vieta, and Pascal 
all regarded this as an absurd number. R. Descartes thought that the negative number as the root of the equation 
should be a false one. Although Wallis accepted the concept of the negative number, he felt that the negative 
number should be larger than infinity[1]. The completion of the real number theory went through a long time 
until the 19th century. Only after R. Dedekind, G. Cantor, and K. Weierstrass developed the rigorous theory of 
irrational numbers was real number theory finally established[2]. 

In 1545, in order to express the roots of the three- and four-order equations, Geronimo Cardano introduced 
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the square root of the negative number. Since there was no intuitive explanation for this number at the time, 
he calls it “sophistic” and concludes that it is “as subtle as it is useless”. In 1637, Descartes called it an 
imaginary number, and in 1673, John Wallis gave a geometric interpretation of complex numbers. In 1777, 

Euler introduced the notation i = √−1 . At the beginning, the imaginary numbers were rejected by many 
mathematicians. Descartes believed that the appearance of complex roots meant that the equation was 
unsolvable; G.W. Leibniz said that they were a sort of amphibian, halfway between existence and nonexistence. 
This is somewhat similar to Schrödinger’s cat in quantum mechanics. In 1831, K.F. Gauss proposed the 
geometrical representation of complex numbers, that is, the points in a complex plane, which is widely used 
in solving practical problems. This new number system was widely recognized and accepted. From the 
perspective of algebra, the rational, real, and complex numbers are all number fields with operations of addition, 
subtraction, multiplication, and division and do not have a zero factor, and the computations satisfy the 
associativity, commutativity, and distributive law, so their algebraic properties can be said to be perfect.  

By the 19th century, people had a clear understanding of numerical computations and algebraic operations 
and began to study the legitimacy of symbolic operations. The “Report on the recent progress and present state 
of certain branches of analysis”, published by Peacock in 1834, clarified certain permanence principles of 
symbolic algebra, which paved the way for the later development of abstract algebra, especially Boolean 
algebra. In 1841, De Morgan published “On the Foundation of Algebra”, introducing symbolic algebra to 

explain the operation of a specific algebra, considering (+, −,×,/)  and zero, and concepts such as 
commutativity, associativity, and distributivity, studying the correct axiomatic treatment of equality. 

How to extend the superiority of complex numbers in the plane to 3-dimensional space was a difficult 
problem in front of people at that time, and many famous mathematicians were looking for “3-ary numbers”. 
The Irish mathematician Hamilton[3] also joined the ranks in the search for 3-ary numbers due to the actual 
needs of physics. After 15 years of trying and thinking, on October 16, 1843, he finally introduced ordered 
arrays of four real numbers, abandoned the commutativity of multiplication in the new number system, and 
defined the first hypercomplex number—quaternion[3] 

𝑞 = 𝑎 + 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌, 𝒊ଶ + 𝒋ଶ + 𝒌ଶ = 𝒊𝒋𝒌 = −1. 

With real numbers, complex numbers, and quaternions, a natural idea is to similarly expand 
logarithmically, abandoning algebraic properties as little as possible. Soon after the discovery of quaternions, 
the concepts of double complex systems, biquaternions, complex quaternions, and octonions were discovered. 

In 1848, Sylvester first used the term matrix to represent an array of numbers. In 1855, Cayley studied 
the matrix of the linear transformation and defined the matrix multiplication. In 1861, Weierstrass showed that, 
keeping all algebraic properties, the complex number is the only finite-dimensional extension of the real 

number. In 1878, Frobenius proved an important theorem: (ℝ, ℂ, H) is the only finite-dimensional associative 

division algebra over ℝ  without zero factor[4]. A generalized Frobenius theorem, proved by Hurwitz[5], 
Milnor[6], pointed out that if the associativity of multiplication is abandoned again, the algebra with modular 
product law and unit element is only an octonion or Cayley number.  

To improve the limitations of quaternion algebra applied in physics, in 1944, Gibbs published the “Vector 
Analysis”[7], while Heaviside published “Electromagnetic Induction and its Propagation”, re-expressed 
Maxwell’s theory of electrodynamics, developed the modern vector calculus, and promoted the application of 
vector algebra in physics[8]. A further extension of the number system is general associative algebras. In 1844, 
Hermann Grassmann began to study exterior algebra, dealing with the geometric problem in the n-dimensional 
vector space[9]. He defines the inner and exterior products of vectors (a, b) by 
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𝒂 · 𝒃 = ෍ 𝑎௞

௡

௞ୀଵ

𝑏௞, 𝒂 ∧ 𝒃 = ෍ 𝑎௝

௡

௝,௞ୀଵ

𝑏௞𝒆௝ ∧ 𝒆௞ = −𝒃 ∧ 𝒂. (1) 

Their geometric meanings are as follows: |𝒂| = √𝒂 ⋅ 𝒂 indicates the length of the vector a, while 𝒂 ∧ 𝒃 

represents the area of a parallelogram composed of a and b as the edges. The Grassmann algebra ⊕௞ୀ଴
௡ 𝛬௞(𝑉) 

is a 2n-dimensional algebra, with each term having a clear geometric meaning. 

In 1878, Clifford proposed a modification to Grassmann algebra, which combines quaternion and 
Grassmann algebra and is now known as Clifford algebra[10]. Clifford algebra is closely related to n-
dimensional geometry, so he call it geometric algebra himself[11]. He defines the algebra by the following 
Clifford relation 

𝒆௔𝒆௕ + 𝒆௔𝒆௕ = 2𝜂௔௕𝑰, 𝒆௔𝒆௕ + 𝒆௔𝒆௕ = 2𝜂௔௕𝑰, (2) 

where (𝜂௔௕) = (𝜂௔௕) = diag(𝑰௣, −𝑰௤)  is the metric of n-dimensional Minkowski spacetime, 𝒆௔𝒆௕  is 

Clifford product. For any vectors (𝐚, 𝐛), by Equation (2) we have 

𝐚𝐛 =
1

2
(𝐚𝐛 + 𝐛𝐚) +

1

2
(𝐚𝐛 − 𝐛𝐚) = 𝐚 · 𝐛 + 𝐚 ∧ 𝐛. (3) 

Clifford algebra is also a 2n-dimensional associative algebra, equivalent to the Grassmann algebra in the 
sense of linear algebra. Unlike Grassmann algebra, Clifford algebra is isomorphic to some special matrix 
algebra, and the geometric product is directly corresponding to the matrix product. 

The classification of associative algebra began in 1872 with the work of Peirce[12] and his son, using the 
nilpotent An = 0 and idempotent A2 = A to classify the algebra and construct many specific associative algebras 
through the unit element multiplication table. If i is an idempotent i2 = i, every element A of the algebra can be 
written as the right Peirce decomposition 

𝐴 = 𝐵 + 𝐶,    𝐵 = i𝐴,    𝐶 = 𝐴 − i𝐴, 

thus, we have iB = B and iC = 0. A complete list of algebras with unity of dimensions up to 4 over the fields 

ℝ and ℂ was presented by the German geometer Study[13]. He added still another variant to the collection of 
complex products. The “dual” numbers arose from the convention that i2 = 0[14,15]. Then we obtain a 
multiplication rule different from the ordinary complex numbers as 

(𝑎 + 𝑏i)(𝑥 + 𝑦i) = 𝑎𝑥 + (𝑎𝑦 + 𝑏𝑥)i. (4) 

In 1854, Cayley introduced what we today call the group algebra of a finite group G. The basis elements 

of this algebra are just the group elements {𝑔௞; 𝑘 = 1, ⋯ , 𝑛}, with the multiplication rule 𝑔௝𝑔௞ = 𝑔௜. Every 

representation of the group G by linear transformations can be extended to a representation of the group algebra. 
Conversely, every representation of the group algebra yields a representation of the group. Therefore, the study 
of the structure of group algebra is of primary importance in the theory of group representations[16]. 

The first to investigate the structure of the group algebra of a finite group was Theodor Molien. In 1893–
1897, Molien proved several fundamental theorems concerning the structure of algebras over the complex 

fie1d ℂ, he applied his general theory to the group algebra of a finite group[17,18]. Molien[18] and Frobenius[19] 
proved independently that the finite group algebra is a direct sum of full matrix algebras, and from this, they 
concluded that every representation of the algebra is completely reducible, and that every irreducible 
representation is contained in the regular representation[19]. Several results obtained by Molien were 
rediscovered by Cartan in 1898[20], Cartan’s theory culminates in two theorems. The first theorem says, in 

modern terminology: Every simple algebra over ℂ  is a full matrix algebra. Cartan defines a semi-simple 
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algebra as a direct sum of simple algebras. His second theorem says: Every algebra over ℂ is a direct sum of 
a simple or semi-simple subalgebra and a nilpotent invariant subalgebra[21]. 

The first to develop a general theory of algebras over an arbitrary field was Wedderburn. He defines the 

invariant subcomplex B of A, we call it a two-sided ideal by 𝐴𝐵 ⊆ 𝐵 and 𝐵𝐴 ⊆ 𝐵. Every such ideal defines 
a residue-class algebra A/B. He proves that all simple associative algebras over a field F are precisely the full 
matrix algebras with elements from an associative division algebra over F[22]. Wedderburn’s structural theorem 
says: 

Any algebra is the sum of its radical N and a semi-simple algebra. 

A semi-simple algebra can be uniquely expressed as a direct sum of simple algebras. 

A simple algebra is a full matrix algebra over a division algebra. 

The Cayley-Dickson construction generates a new algebraic system sequence of complex, quaternion, 
and octonion starting from the real numbers[23,24]. Each algebra has the concepts of norm and conjugation, and 
the dimension of each algebraic system in the sequence is 2 times that of its predecessor. For example, in the 
construction of quaternions, the ordered pair of complex numbers (a, b), addition is defined as the addition of 
the corresponding components, while multiplication is defined as 

(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑ሜ, 𝑎𝑑 + 𝑏𝑐̄). 

The conjugate of (a, b) is defined as (𝑎, 𝑏)ା = (�̄�, −𝑏), then we have 

(𝑎, 𝑏)ା(𝑎, 𝑏) = (�̄�, −𝑏)(𝑎, 𝑏) = (�̄�𝑎 + 𝑏ሜ 𝑏, 𝑏�̄� − 𝑏�̄�) = (|𝑎|ଶ + |𝑏|ଶ, 0). 

Quaternions consist of two independent complex numbers which constitute a 4-dimensional vector space 

over ℝ. The multiplication of the quaternions is non-commutative. Starting with the quaternions, and repeating 
the above steps, we can construct octonions. Since an octonion consists of two independent quaternions, they 

constitute an 8-dimensional vector space over ℝ. The multiplication of octonions is non-associative, so it 
cannot be regarded as a “number system” in the normal sense. The subsequent algebras remain a power-
associative property, but lose the property as an alternative algebra, and thus is no longer a synthetic algebra. 
Cayley-Dickson construction can continue, and each step produces a power-associative algebra with twice the 
dimension of the previous algebra. 

2. Rules to construct basis elements 
From the classical pieces of literature, we cannot find a clear definition of hypercomplex numbers. 

Hypercomplex numbers usually refer to the finite-dimensional associative algebra and the non-associative 
algebras such as Cayley-Dickson construction, which are somewhat different from the ordinary number 
systems. For example, many associative algebras do not have the definitions of norm and division, and the 
Cayley-Dickson construction larger than 8 dimensions can hardly be treated as a number system. The division 
of a number system is closely related to the solvability of the equation. For example, for the linear 
hypercomplex equation, we have 

𝒂𝒙 = 𝒃, (||𝒂|| ≠ 𝟎) ⇔ 𝒙 = 𝒂ି𝟏𝒃. 

For the nonlinear hypercomplex equation f(x) = 0, under the appropriate conditions the solution can be solved 
by the following hypercomplex Newton iteration method[25] 

𝒙𝒎ା𝟏 = 𝒙𝒎 − 𝒇(𝒙𝒎)(𝒇ᇱ(𝒙𝒎))ି𝟏. 

Many complicated systems in Nature are high-dimensional and nonlinear, and it is difficult to describe 
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the intrinsic structure of the system only by vector space. In addition, the parameters of nonlinear systems are 
rarely globally valid, but they have only continuous dependence and solvability in a certain domain, which is 
very different from a linear space. These two features should be reflected in the definition of hypercomplex 
numbers. Specifically, like ordinary numbers, hypercomplex numbers should meet the associativity and 
distributivity, including unit element I and appropriate definitions of norm and reciprocal. Only in this way 
can they be easily used to solve practical problems, such as solving the root of algebraic equations, and 
analyzing the hydrodynamics and gauge field equations[26]. 

Thus, as the standard basis elements of hypercomplex numbers over field F, {𝒆௞}  should satisfy the 
following group-like properties as the necessary conditions for effective computation: 

Existing unit element: 𝒆଴ = 𝑰, such that 𝑰𝒆௞ = 𝒆௞𝑰 = 𝒆௞ . 

Associativity: (𝒆௝𝒆௞)𝒆௠ = 𝒆௝(𝒆௞𝒆௠). 

Closure for multiplication 

𝒆௝𝒆௞ = 𝑓௝௞𝒆௠, ห𝑓௝௞ห = 1, 𝑓௝௞ ∈ 𝐅. (5) 

Existing generalized inverse elements: 𝒆௞
ିଵ = 𝑒௜ఏೖ𝒆௝, such that 

𝒆௞𝒆௞
ିଵ = 𝒆௞

ିଵ𝒆௞ = 𝒆଴. (6) 

Unitary norm: ||𝐞௞|| = 1. 

Obviously, the hypercomplex number is first a vector space over F. For a given set of basis vectors {𝒆଴ =

𝑰, 𝒆௞; 𝑘 = 1, ⋯ , 𝑛 − 1}, we have hypercomplex numbers 

𝐱 = 𝐱௔𝐞௔, 𝑥௔ ∈ F. 

Hereafter we adopt the Einstein summation convention, if not specified, the upper and lower double marks 
indicate the sum of all indicators. 

If the hypercomplex has an m-th order matrix representation, then the norm of x can be defined as ||𝒙|| =

ඥ| det( 𝒙)|
೘ . This Calvet’s norm ||x|| is an invariant scalar under the transformation of rotation, reflection, and 

translation[27]. In fact, for any given unitary matrix, the similarity transformation transforms one set of 
orthogonal bases to another set of orthogonal bases. By the multiplication rule of the matrix determinant, we 

have ||x’|| = ||x|| and the modulus product law ||𝒙𝒚|| = ||𝒙|| ⋅ ||𝒚||. This norm is the same as the usual moduli 
for ordinary numbers of real, complex, and quaternions. Easy to prove that the set of {||x|| = 0} is a low-
dimensional closed set. The zero norm set {det(x) = 0} is some analytic hypersurfaces similar to light cones, 
which has little influence on the algebraic operation, far from the serious problem of abandoning the 
associativity[25]. 

For Pauli matrices 

𝜎௔ ∈ ቄቀ
1 0
0 1

ቁ , ቀ
0 1
1 0

ቁ , ቀ
0 −i
i 0

ቁ , ቀ
1 0
0 −1

ቁቅ, (7) 

their multiplication rule is as 

𝜎௔
ଶ = 𝑰, 𝜎ଵ𝜎ଶ = −𝜎ଶ𝜎ଵ = i𝜎ଷ, 𝜎௔𝜎௕ = 𝜖௔௕௖i𝜎௖ . 

The coefficients 𝑓௝௞ contain the complex units i, so 𝐱 = 𝑥௔𝜎௔ constitutes the quaternions over ℂ. If taking 

all the following matrices as basic elements 
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𝒆௔ = (𝑰, 𝜎௝, i𝜎௞, i𝑰), (8) 

then 𝑓௝௞ = ±1 and 

𝒙 = 𝑠𝑰 + 𝐸௔𝜎௔ + 𝐵௕i𝜎௕ + 𝑝i𝑰 

constitutes a class of associative octonions over ℝ. We have 

det( 𝒙) = 𝑠ଶ − 𝑝ଶ − 𝐸ሬ⃗ ଶ + 𝐵ሬ⃗ ଶ + 2i(𝑠𝑝 − 𝐸ሬ⃗ ⋅ 𝐵ሬ⃗ ), 

||𝒙|| ≡ ඥ| det( 𝒙)| = ට(𝑠ଶ − 𝑝ଶ − 𝐸ሬ⃗ ଶ + 𝐵ሬ⃗ ଶ)ଶ + 4(𝑠𝑝 − 𝐸ሬ⃗ ⋅ 𝐵ሬ⃗ )ଶ
ర

. 

This hypercomplex system is isomorphic to Clifford algebra 𝐶ℓ(ℝଷ,଴), and the imaginary unit i appearing 
in the determinant has no effect on neither the hypercomplex calculation nor the norm calculation[28,29]. In the 
next section, we examine some applications of this kind of hypercomplex number in physics. 

If taking {𝑰ଶ, 𝒊 = i𝜎ଵ, 𝒋 = −i𝜎ଶ, 𝒌 = i𝜎ଷ} as bases, then we have multiplication rules as 

𝐢𝟐 = 𝐣𝟐 = 𝐤𝟐 = 𝐢𝐣𝐤 = −𝐈. 

So, we obtain the quaternions over real field ℝ, which is isomorphic to the Clifford algebra 𝐶ℓ(ℝ଴,ଶ). Due to 
the group-like properties of the multiplication of basis matrices, the number field of the hypercomplex 
coordinates and the number field of the basis matrices is sometimes independent of each other. If the basis 
multiplication of a hypercomplex number is 𝒆௝𝒆௞ = 𝑓௝௞𝒆௠, then in the case of 𝑓௝௞ = ±1 the coordinates 𝑥௔ 

can be defined on any number field F, but in the case 𝑓௝௞ = 𝑒୧ఏ ∉ ℝ the coordinates 𝑥௔ ∈ ℂ. 

The properties of the hypercomplex numbers are completely determined by the multiplication table of the 
basis vectors. Converting the multiplication table into multiplication matrix we get 

𝑴 ≡ 𝒆்𝒆, 𝒆 = (𝒆଴, 𝒆ଵ, ⋯ , 𝒆௡ିଵ), (9) 

then M fully describes the algebraic properties of the basic elements. For the normal bases that satisfy the 
above group-like properties, we have the following basic conclusions[26]. 

Theorem 1. If the bases {𝐞௞} satisfy the above group-like properties, and M is the multiplication matrix 
of the bases, denote 

𝑪௠ =
𝜕𝑴

𝜕𝒆௠
, 𝑬௠ = 𝑪௠(𝑪଴)ିଵ, 𝑨 = 𝑴(𝑪଴)ିଵ = 𝑬௠𝒆௠, (10)

then we have structure equation 𝑨ଶ = 𝑛𝑨, and 𝑬௠ ≡ 𝑬
௠

↔ 𝒆௠ is an isomorphic map. {𝐄௞} is a faithful 
matrix representation of {𝐞௞} satisfying | det( 𝐄௞)| = 1. 

By the above theorem, for any given multiplication table of elements, we can establish the multiplication 

matrix M and 𝑨 = 𝑴(𝑪଴)ିଵ. If 𝐀ଶ = 𝑛𝐀, then the canonical matrix representation {𝐄௞} can be defined and 

then we can establish a hypercomplex number system by using {𝐄௞}. By Equation (2) we find 𝑪଴ = (𝑪଴)். 

For 𝑩 = (𝑪଴)ିଵ𝑨𝑪଴ = (𝑪଴)ିଵ𝑴, we have conclusions similar to Theorem 1. The condition 𝒆௝𝒆௞ = 𝑓௝௞𝒆௠ 

guarantees that the inverse element 𝐞௠
ିଵ is also a monomial, otherwise it will be too complicated to form a 

number system. 

The calculations show that the multiplication matrix M has some interesting properties. For example, 

|| det( 𝐌)|| = 0 may be a necessary and sufficient condition for number system having zero factor. Assume 

the matrices {𝐄௞} are the canonical representation of the normal bases {𝐞௞}, by 𝐀 = 𝐌(𝐂଴)ିଵ = 𝐄௠𝐞௠, we 

have || det( 𝐌)|| = || det( 𝐀)||.  For complex numbers we have || det( 𝐌)|| = 2 , and for quaternions we 
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have || det( 𝐌)|| = 4. However, for the hyperbolic number of 𝐞ଵ
ଶ = 𝐞଴ we have 

|| det( 𝐌)|| = || det ቀ
𝐞𝟎 𝐞𝟏

𝐞𝟏 𝐞𝟎
ቁ || = 𝟎. 

In the case of any basis without inverse element, e.g., Equation (4), the multiplication matrix is singular. 

The simplest hypercomplex numbers are the following commutative cyclic numbers 

𝑨𝒏 = ෍ 𝒂𝒌

𝒏ି𝟏

𝒌ୀ𝟎

𝒆𝒌, (𝒂𝟎, 𝒂𝟏, ⋯ , 𝒂𝒏ି𝟏) ∈ 𝑭𝒏, (11)

in which 

𝒆଴ = 𝑰௡, 𝒆௠ = ൬
0 𝑰௡ି௠

𝑰௠ 0
൰ , 1 ≤ 𝑚 ≤ 𝑛 − 1. 

{𝒆௠; 𝑚 = 0, 1, … , 𝑛 − 1}  is a matrix representation of n-element cyclic group. The roots of an n-th order 
algebraic equation can be expressed by Equation (11), according to Gu[25] 

Theorem 2. Let 𝑤 = exp(2𝜋𝑖/𝑛), for n-ary number (11) over ℝ or ℂ, denoting 

𝑅௞ = 𝑎଴ + 𝑎ଵ𝑤௞ + 𝑎ଶ𝑤ଶ௞ + ⋯ + 𝑎௡ିଵ𝑤(௡ିଵ)௞, 

where (𝑘 = 0, 1, 2, … , 𝑛 − 1), then the determinant has the following factorization, 

det( 𝐀𝐧) = 𝑅଴𝑅ଵ𝑅ଶ ⋯ 𝑅௡ିଵ. 

The mapping 

(𝑎଴, 𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௡ିଵ) ↔ (𝑅଴, 𝑅ଵ, 𝑅ଶ, ⋯ , 𝑅௡ିଵ) 

is a discrete Fourier transformation. Let 𝑎଴ = −𝑥, we get the representation of roots for n-th order algebraic 
equation det( 𝐀௡) = 0. 

In the literatures of hypercomplex numbers, the multiplication rules of bases are in the following general 
form[17,20,30] 

𝒆௝𝒆௞ = 𝐶௝௞
௠𝒆௠, 𝐶௝௞

௠ ∈ 𝐅. (12)

If the basis has inverse element 𝒆௞
ିଵ = 𝑈௝௞𝒆௝ and satisfies 

𝒆௞𝒆௞
ିଵ = 𝒆௞

ିଵ𝒆௞ = 𝒆଴, (𝒆଴, 𝒆ଵ
ିଵ, ⋯ , 𝒆௡ିଵ

ିଵ ) = 𝒆𝑈, | det( 𝑈)| = 1. (13)

Like Equation (10) we also denote matrices 

𝑪௠ =
𝜕𝑴

𝜕𝒆௠
= ൫𝐶௝௞

௠൯, 𝑬௠ = 𝑪௠(𝑪଴)ିଵ, 𝑨 = 𝑴(𝑪଴)ିଵ = 𝑬௠𝒆௠, (14)

then we have 

Theorem 3. If the basic elements {𝐞௞}  satisfy Equations (12–14), then the associative algebra also 
satisfies the structure equation 𝐀ଶ = 𝑛𝐀, and the matrices {𝐄௔} satisfy 

𝐶௔௕
௖ 𝑬௔𝑬௕ = 𝑛𝑬௖ , (𝑐 = 0,1, ⋯ , 𝑛 − 1). (15)

Proof. By Equation (13) we find 

𝑪𝟎 = (𝑪𝟎)𝑻 = 𝑼ି𝟏, 𝑼 = (𝑪𝟎)ି𝟏 
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is a symmetric matrix. Thus, the diagonal elements of matrix (𝑪଴)ିଵ𝑴 = (𝒆(𝑪଴)ିଵ)்𝒆  are 𝒆଴𝑰 . By the 
associativity of multiplication, we have 

𝑨𝟐 = 𝒆𝑻(𝒆(𝑪𝟎)ି𝟏𝒆𝑻)𝒆(𝑪𝟎)ି𝟏 = 𝒆𝑻(𝒏𝒆𝟎)𝒆(𝑪𝟎)ି𝟏 = 𝒏𝑨 = 𝒏𝑬𝒄𝒆𝒄. 

So the structure equation 𝑨ଶ = 𝑛𝑨 holds. On the other hand, we have 

𝑛𝑬௖𝒆௖ = 𝑨ଶ = (𝑬௔𝒆௔)(𝑬௕𝒆௕) = 𝑬௔𝑬௕(𝒆௔𝒆௕) = (𝐶௔௕
௖ 𝑬௔𝑬௕)𝒆௖. (16)

By Equation (16) and the linear independence of {𝐞௖} , we find Equation (15) holds. The proof is 
completed. 

By Equation (14), for suitable structural coefficients 𝐶௔௕
௖ , if the following map 

𝑬௞ ≡ (𝑬௞)ି் = (𝐶௞𝑈)ି் ↔ 𝒆௞ (17)

is an isomorphism, and the norm of 𝐗 = 𝑥௔𝐄௔  is defined as Calvet’s norm, then 𝐱 ↔ 𝐗  meets the 
requirements of addition, subtraction, multiplication and division of the hypercomplex system. Unless the 

multiplication rule Equation (12) is reduced to Equation (5), for the general case  {𝒙 = 𝑥௔𝒆௔} , the basis 
elements are difficult to satisfy the isomorphic mapping Equation (17), so x is impossible to form a 
hypercomplex system. The above group-like properties should be the main feature of hypercomplex bases, in 
this case the basic elements are isomorphic to special matrices. 

If {𝐞௔; 𝑎 = 0, 1 ⋯ 𝑛 − 1}  and {𝐄௕; 𝑏 = 0,1 ⋯ 𝑁 − 1}  are the canonical bases of two hypercomplex 

numbers, by the Kronecker product of the matrices 𝐞௔ ⊗ 𝐄௕, we obtain a composite hypercomplex system of 
nN unit elements 

𝒛 = 𝑧௔௕𝒆௔ ⊗ 𝑬௕ , (0 ≤ 𝑎 ≤ 𝑛 − 1, 0 ≤ 𝑏 ≤ 𝑁 − 1). (18)

For example, the above quaternion over ℂ generated by Pauli matrices is equivalent to octonion ℂ ⊗ H. 
Thus, we can construct hypercomplex numbers with very complicated structure. 

3. Clifford algebra as hypercomplex number 
As a unified language of science, Clifford algebra has wide applications in geometry, physics, and 

engineering[31–38]. Clifford algebra has achieved good results in differential geometry, theoretical physics, 
classical analysis, and other aspects. The present author uses Clifford algebras in differential geometry[28] and 
unified field theory[39], and systematically explores the structure and fundamental properties of the 
hypercomplex system as well as its deep relationship with physical theories[25,29,40,41]. 

Recently, great progress has been made in the application of hypercomplex numbers in engineering. For 
example, in terms of image processing, in 1992, Ell proposed to use quaternion tracing to describe the RGB 
three-primary color model for each pixel[42]. In 1996, Sangwine used the hypercomplex Fourier transform for 
color processing[43]. These methods have the characteristics of simple programming and high data processing 
efficiency. The hypercomplex number has now been greatly developed and widely used in multi-channel 
information processing[44,45]. Hypercomplex numbers are also increasingly used in artificial intelligence, such 
as signal processing and deep learning[46,47]. Using the properties of Clifford algebra, the number of parameters 
can be significantly reduced while obtaining an efficient large-scale neural network model[48,49]. Quaternions 
are also used for precision control; for example, in 2000, Nadler et al. used quaternions for the iterative 
algorithm of GPS measurement to overcome the singularity problem when describing the coordinates of rigid 
body angle with Euler angle, and the quaternionic equation has the features of simple form and a small 
calculation amount[50]. In 2006, Tayebi and Mcgilvray used a quaternion as the feedback signal controlling the 
gyro moment of the vehicle[51]. 
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Now we examine the relationship between Clifford algebra and hypercomplex numbers. For any vector 

in Minkowski space 𝐱 = 𝑥௔𝐞௔ ∈ ℝ௣,௤, we have product 

𝐱ଶ = 𝑥௔𝑥௕(𝐞௔𝐞௕) =
1

2
(𝐞௔𝐞௕ + 𝐞௕𝐞௔)𝑥௔𝑥௕ = 𝜂௔௕𝑥௔𝑥௕𝐈, (19)

where (𝜂௔௕) = (𝜂௔௕) = diag(𝐈௣, −𝐈௤)  is Minkowski metric. For orthonormal basis vectors {𝐞௔}  and co-

frames {𝐞௔ = 𝜂௔௕𝐞௕}, by Equation (19), the product of bases satisfies the Clifford relations Equation (2). The 

products 𝐞௔𝐞௕ and 𝐞௔𝐞௕ are called Clifford product or geometric product, and the algebra with geometric 

product is called Clifford algebra or geometric algebra, and denoted by 𝐶ℓ(ℝ௣,௤) . In the case without 
confusion, we also use 1 to represent the unit matrix I. 

By Equation (19), we define the length of the vector as 

|𝐱| = ඥ|𝜂௔௕𝑥௔𝑥௕| = ඥ|𝑥௔𝑥௔|. 

For any two vectors 𝐱 = 𝑥௔𝐞௔ = 𝑥௔𝐞௔ and 𝐲 = y௔𝐞௔ = y௔𝐞௔, we have 

𝒙𝒚 = 𝒙𝒂𝒚𝒃 ൬
𝟏

𝟐
(𝒆𝒂𝒆𝒃 + 𝒆𝒃𝒆𝒂) +

𝟏

𝟐
(𝒆𝒂𝒆𝒃 − 𝒆𝒃𝒆𝒂)൰ = 𝒙 · 𝒚 + 𝒙 ∧ 𝒚, 

in which 𝐱 ∧ 𝐲 is the exterior product of the vectors. The geometric meaning of the exterior product is the 
oriented area of the parallelogram constructed by the vectors x and y. 

𝒆𝒂𝒃 = 𝒆𝒂 ∧ 𝒆𝒃 =
𝟏

𝟐
(𝒆𝒂𝒆𝒃 − 𝒆𝒃𝒆𝒂) = −𝒆𝒃𝒂 

forms the basis of an oriented area. 𝐱 · 𝐲 = 𝜂௔௕𝑥௔𝑦௕  is the inner product, and 𝐱 · 𝐲 = 0  is call the two 

vectors are orthogonal. The basis set {𝐞௔} satisfying Equation (2) is called orthonormal bases. Since Clifford 
algebra is isomorphic to special matrix algebra, the orthonormal basis vectors can be expressed by special 
square matrices, so that the geometric algebra transforms into the familiar matrix algebra. For the orthonormal 
basis vectors, Clifford products satisfy 

𝒆𝒋𝒆𝒌 = −𝒆𝒌𝒆𝒋 = 𝒆𝒋 ∧ 𝒆𝒌, (𝒋 ≠ 𝒌). 

In this case, the Clifford product and the exterior product of bases are equivalent. However, if the basis 
vectors are not orthogonal, the exterior product represents the directional volume of the parallelohedron, but it 
is not equivalent to the matrix product. On the contrary, the Clifford product has no geometric meaning but is 
equivalent to matrix multiplication. Therefore, the two products should be converted into each other in the 
computation. This is a subtle problem[26]. 

For the 1+3 dimensional realistic spacetime, the lowest-order complex matrix representation of the 

generators of Clifford algebra 𝐶ℓ(ℝଵ,ଷ) is Dirac-𝛾 matrices 

𝛾଴ = 𝛾଴ = ൬
0 𝑰ଶ

𝑰ଶ 0
൰ , 𝛾௔ = −𝛾௔ = ൬

0 −𝜎௔

𝜎௔ 0
൰, 

which generate the Grassmann bases of 𝐶ℓ(ℝଵ,ଷ) as 

𝐈ସ, 𝛾௔ , 𝛾௔௕ , 𝛾௔௕௖ = −𝜖௔௕௖ௗ𝛾ௗ𝛾଴ଵଶଷ, 𝛾଴ଵଶଷ = −i𝛾ହ, (20)

in which 𝛾ହ = diag(𝐈ଶ, −𝑰ଶ), 𝜖଴ଵଶଷ = 1. We have the Clifford-Grassmann number as 

𝐊 = 𝑠𝐈ସ + 𝐴௔𝛾௔ + 𝐻௔௕𝛾௔௕ + 𝑄௔𝛾௔𝛾଴ଵଶଷ + 𝑝𝛾଴ଵଶଷ, (21)
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where (𝑠, 𝑝, 𝐴௔ , ⋯ ∈ ℝ) . In the region {det (𝐊) ≠ 0} , the Clifford-Grassmann number Equation (21) is a 
hypercomplex number closed for addition, subtraction, multiplication and division, and it has 24 = 16 

dimension. We can also define the analytic functions for the hypercomplex numbers on the field ℝ, such as 

𝑯 = 𝑵𝑒𝑾 sin( 𝜔𝑻)𝑨ି௡ , where (𝐇, 𝐍, 𝐖, ⋯ )  are all Clifford-Grassmann numbers over ℝ . The matrix 

representation of the basis elements shows that Clifford algebra is equivalent to the matrix algebra expanded 
on the 2n-dimensional Grassmannian bases Equation (20). 

Clifford algebra has profound insights in description of physical laws[26,38,40,41]. We take the stationary 
fluid equations as example to show the application of geometric algebra and to reveal the hypercomplex 

structure of nonlinear physical equations[25]. The independent variables of the Newtonian fluid are density 𝜌 

and flow velocity v, the pressure p is determined by equation of state 𝑝 = 𝑓(𝜌, 𝑇, ⋯ ), and the unit volume 

force g is a known condition. For stationary fluid, all of these variables are functions of 𝐱 ∈ ℝଷ. In 𝐶ℓ(ℝଷ,଴), 

the generators {𝜎௔; 𝑎 = 1,2,3} satisfy the Clifford relation 

𝜎௔𝜎௕ + 𝜎௕𝜎௔ = 2𝛿௔௕ , 𝜎ఓ𝜎ఔ + 𝜎ఔ𝜎ఓ = 2𝑔ఓఔ , 𝜎௔ = 𝛿௔௕𝜎௕ , (22)

where 𝜎௔’s is Pauli matrices Equation (7). We have the Grassmann basis elements 

𝐈 ∈ 𝛬଴, 𝜎௔ ∈ 𝛬ଵ, 𝜎௔௕ ≡ 𝜎௔ ∧ 𝜎௕ = 𝜖௔௕௖i𝜎௖ ∈ 𝛬ଶ, 𝜎௔௕௖ = 𝜖௔௕௖i𝐈 ∈ 𝛬ଷ. (23)

From the point of view of hypercomplex numbers, 

𝑑𝒙 = 𝑑𝑥௔𝜎௔, 𝒗 = 𝑣௔𝜎௔, 𝛻 = 𝜎௔𝜕௔, (𝑎 = 1,2,3) 

are all Λଵ numbers in 𝐶ℓ(ℝଷ,଴), and 𝜌 = 𝜌𝐈 ∈ Λ଴ is a scalar. 

Theorem 4. The stationary flow of Newtonian fluid satisfies the following hypercomplex number 
equations 

1

2
[𝛻(𝜌𝐯) + (𝛻(𝜌𝐯))ା] = 0, (24) 

1

2
[𝒗𝛻𝒗 − 𝒗(𝛻𝒗)ା + 𝛻𝒗ଶ] = 𝑻 − 𝜌ିଵ𝛻𝑝 + 𝒈, (25) 

in which 

𝑻 = 𝜈𝛻ଶ𝒗 +
1

2
𝜇𝛻(𝛻𝒗 + (𝛻𝒗)ା) 

is viscous force, (𝜇 ≥ 0, 𝜈 ≥ 0) are viscosity coefficients. The velocity v satisfies the following consistent 
equation 

�⃗� ⋅ (curl �⃗�) = 𝑣ଵ(𝜕ଶ𝑣ଷ − 𝜕ଷ𝑣ଶ) + 𝑣ଶ(𝜕ଷ𝑣ଵ − 𝜕ଵ𝑣ଷ) + 𝑣ଷ(𝜕ଵ𝑣ଶ − 𝜕ଶ𝑣ଵ) = 0. (26)

Proof. By expanding Equation (24) and using Clifford relation Equation (22), we have 

1

2
𝜕௔(𝜌𝑣௕)(𝜎௔𝜎௕ + 𝜎௕𝜎௔) = 𝜕௔(𝜌𝑣௔) = 0. 

The above equation is the continuity equation div(𝜌�⃗�) = 0. 

According to Clifford algebra, the nonlinear terms in Equation (25) belong to the Λଵ ∪ Λଷ. Projecting 

Equation (25) onto the Grassmann bases Equation (23), then the Λଵ terms give the equation of motion 

𝑣௕𝜕௕𝑣௔ = 𝜈𝛥𝑣௔ + 𝜇𝜕௔(div �⃗�) − 𝜌ିଵ𝜕௔𝑝 + 𝑔௔ , (27)

and the Λଷ terms are a pseudo scalar, which give the consistent Equation (26). The proof is completed. 
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For the stationary fluid, the speed should satisfy the consistent Equation (26). Therefore, the Navier-
Stokes equation may need other constraints to determine the solution. The Navier-Stokes equation satisfies 

neither Clifford algebra 𝐶ℓ(ℝଷ,଴) nor 𝐶ℓ(ℝଵ,ଷ), thus it is flawed in algebra. The above discussion shows that 
the description of nonlinear phenomena only by vector algebra is incomplete, ignoring the order and solvability 
of physical quantities. Only expressed by hypercomplex numbers, can the certainty of solution of physical 
equations can be guaranteed, otherwise the equations may be contradictory or undetermined. 

4. Discussion and conclusion 
From the development course of hypercomplex numbers, we learn that the construction of mathematical 

theory is quite arbitrary. Mathematics is similar to a sea without boundaries, and any set of logically compatible 
relations and propositions can be regarded as a mathematical theory. However, only the mathematical theories 
suitable for describing the laws of nature are the best and the simplest ones, so we should learn math from 
nature. From this point of view, we can define that a hypercomplex number is a finite dimensional vector space 
over field F, and the basis vectors satisfy the group-like properties. Natural laws are high-dimensional and 
nonlinear and therefore should be described by hypercomplex numbers. Although vector algebra is also a good 
tool to describe high-dimensional variables, it still lacks the operation of numbers and does not define division 
operations, so it is difficult to adapt to the nonlinear relations of complicated systems. According to the 

Frobenius theorem, ℝ, ℂ, H are the only finite-dimensional associative division algebras over ℝ without zero 
factor. If the multiplication associativity is abandoned again, the division algebra without zero factor remains 
only octonions or Cayley numbers. The main reasons limiting the expansion of number systems are the 

universal definition of norm || ⋅ || and the zero factor condition ||𝐚|| = 0 ⇔ 𝐚 = 0, while the zero factor 
condition has little effect on the algebraic operation and application of hypercomplex numbers. If this limitation 
is relaxed, then we can construct a large number of hypercomplex systems with high application value. 

Hypercomplex numbers are isomorphic to some special matrix algebras, with addition, subtraction, 
multiplication, and division operations, and meet distributivity and associativity, so they are easy to learn and 
easy to use. This paper briefly introduces several basic properties and application examples of hypercomplex 
numbers, and we can see from the discussion that physical quantities have a structure of hypercomplex 
numbers. The hypercomplex number system combines the advantages of mathematical tools such as algebra, 
geometry, and analysis, and its orthonormal bases form a group-like associative algebra that satisfies the 

structural equation 𝐀ଶ = 𝑛𝐀. The zero norm set of hypercomplex numbers has special geometric significance, 
reflecting the intrinsic properties of algebra and fundamental space, so it is worthy of further study. The 
existence of a zero norm set will have little influence on algebraic operation, which is far from the serious 
problem of giving up associativity. The hypercomplex number is simple and intuitive and has wide applications, 
so it is worthy of learning in basic education and application in scientific research and engineering technology. 
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