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ABSTRACT 

In this paper, we define a new subclass of bi-univalent functions of complex order ∑ (𝜏, 𝜁; 𝜑)  which is defined 

by subordination in the open unit disc D by using 𝛻𝐹(𝜗)  operator. Furthermore, using the Faber polynomial 

expansions, we get upper bounds for the coefficients of function belonging to this class. It is known that the calculus 

without the notion of limits is called q-calculus which has influenced many scientific fields due to its important 

applications. The generalization of derivative in q-calculus that is q-derivative was defined and studied by Jackson. A 

function 𝐹 ∈ 𝐴 is said to be bi-univalent in D if both F and F−1 are univalent in D. The class consisting of bi-univalent 

functions is denoted by σ. The Faber polynomials play an important role in various areas of mathematical sciences, 

especially in geometric function theory. The purpose of our study is to obtain bounds for the general coefficients 
|𝑎|(𝑛 ≥ 3) by using Faber polynomial expansion under certain conditions for analytic bi-univalent functions in 

subclass ∑ (𝜏, 𝜁; 𝜙)  and also, we obtain improvements on the bounds for the first two coefficients |𝑎ଶ| and |𝑎ଷ| of 

functions in this subclass. In certain cases, our estimates improve some of those existing coefficient bounds. 
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1. Introduction 
Let 𝐴 be the class of functions 

𝐹(𝜗) = 𝜗 +  𝑎ఌ𝜗ఌ

∞

ఌୀଶ

, (1)

defined in 𝐷 = {𝜗 ∈ 𝐶  : |𝜗| < 1} normalized by the conditions 𝐹(0) = 𝐹′(0) − 1 = 0 for every 𝜗 ∈

𝐷 and S be the subclass of A consisting of univalent functions in D. For every F ∈ S there exists an inverse 

function F−1 which is defined in some neighborhood of the origin, and satisfying the conditions, 

𝐹ିଵ(𝐹(𝜗)) = 𝜗, (𝜗 ∈ 𝐷) 
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and, 

𝐹ିଵ(𝐹(𝜔)) = 𝜔, (𝜗 < 𝑟(𝐹); 𝑟(𝐹) ≥
1

4
, 

where, 

𝑔(𝜔) = 𝐹ିଵ(𝜔) = 𝜔 − 𝑎ଶ𝜔ଶ + (2𝑎ଶ
ଶ − 𝑎ଷ)𝜔ଷ + −(5𝑎ଶ

ଷ − 5𝑎ଶ𝑎ଷ + 𝑎ସ)𝜔ସ+. . . = 𝜔 +  𝐴ఌ𝜔ఌ

∞

ఌୀଶ

. (2)

If both F and F−1 are univalent in D, then F A  is called bi-univalent in D and the class of these 

functions is denoted by σ. For there are many studies in this class[1–6]. 

Faber[7] introduced a polynomial which bears his name and is very important role in geometric function 
theory. 

By using the expansion of this polynomial for 𝐹 ∈ 𝑆, the coefficients of its inverse 𝑔 = 𝐹ିଵ may be 

expressed as[8,9] 

𝑔(𝜔) = 𝐹ିଵ(𝜔) = 𝜔 + 
1

𝜀
𝜒ఌିଵ

ିఌ (𝑎ଶ, 𝑎ଷ, . . . , 𝑎ఌ)𝜔ఌ ,

∞

ఌୀଶ

 (3)

where, 

𝜒ఌିଵ
ିఌ =

(−𝜀)!

(−2𝜀 + 1)! (𝜀 − 1)!
𝑎ଶ

ఌିଵ +
(−𝜀)!

(2(−𝜀 + 1))! (𝜀 − 3)!
𝑎ଶ

ఌିଷ𝑎ଷ 

=
(−𝜀)!

(−2𝜀 + 3)! (𝜀 − 4)!
𝑎ଶ

ఌିସ𝑎ସ +
(−𝜀)!

(2(−𝜀 + 2))! (𝜀 − 5)!
𝑎ଶ

ఌିହ 

× [𝑎ହ + (−𝜀 + 2)𝑎ଷ
ଶ] +

(−𝜀)!

(−2𝜀 + 5))! (𝜀 − 6)!
𝑎ଶ

ఌି × [𝑎 + (−2𝜀 + 5)𝑎ଷ𝑎ସ] 

+  𝑎ଶ
ఌି

𝑉

∞

ஹ

, 

such that Vj with 7 ≤ j ≤ ε is a homogeneous polynomial in the variables aଶ, aଷ, . . . , aε
[9]. The first three 

terms of χε-ଵ
-ε  are 

𝜒ଵ
ିଶ = −2𝑎ଶ, 𝜒ଶ

ିଷ = 3(2𝑎ଶ
ଶ − 𝑎ଷ), 𝜒ଷ

ିସ = −4(5𝑎ଶ
ଷ − 5𝑎ଶ𝑎ଷ + 𝑎ସ). 

In general, for any p ∈ ϑ = {0, ±1, ±2, . . . }, an expansion of 𝜒ఌ
 is 

𝜒ఌ


= 𝑝𝑎ఌାଵ +
𝑝(𝑝 − 1)

2
𝐻ఌ

ଶ +
𝑝!

(𝑝 − 3)! 3!
𝐻ఌ

ଷ+. . . +
𝑝!

(𝑃 − 𝜀)! 𝜀!
𝐻ఌ

ఌ , 

where Hε
୮

= Hε
୮

(aଶ, aଷ, . . . ) and by Jahangiri et al.[10], (see for details[8,9,11,12,13]) 

𝐻ఌ
(𝑎ଶ, 𝑎ଷ, . . . , 𝑎ఌାଵ) = 

𝑚! (𝑎ଶ)ఓభ . . . (𝑎ఌାଵ)ఓഄ

𝜇ଵ!. . . 𝜇ఌ!
,

∞

ఌୀ

 (4)

where the sum is taken ∀μ
ଵ

, . . . , με ∈ N = {1,2, . . . } satisfying 

ቄ ఓభାଶఓమା...ାఓഄୀఌ.
ఓభାఓమା...ାఓഄୀ,  

Note that Hε
ε(aଶ, aଷ, . . . , aεାଵ) = aଶ

ε .  

In the rest of this paper, assume that φ is an analytic function with positive real part in 𝐷, satisfying 

𝜑(0) = 1, 𝜑′(0) > 0 and 𝜑(𝐷) is symmetric w. r. to the real axis and has the expansion, 

𝜑(𝜗) = 1 + 𝜓ଵ𝜗 + 𝜓ଶ𝜗ଶ + 𝜓ଷ𝜗ଷ+. . .      (𝜓ଵ > 0). 

Let u(ϑ) and v(ϑ) be analytic in 𝐷 with 𝑢(0) = 𝑣(0) = 0, |𝑢(𝜗)| < 1, |𝑣(𝜗)| < 1, and 
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𝑢(𝜗) = 𝜗(𝑝ଵ +  𝑝ఌ𝜗ఌିଵ

∞

ఌୀଶ

) and 𝑣(𝜗) = 𝜗(𝑞ଵ +  𝑞ఌ𝜗ఌିଵ

∞

ఌୀଶ

)    (𝜗 ∈ D). (5)

Then[14], 

𝑝ଵ ≤ 1, 𝑝ఌ ≤ 1 − 𝑝ଵ, 𝑞ଵ ≤ 1, 𝑞ఌ ≤ 1 − 𝑞ଵ, (𝜀 ∈ 𝛮\{1}). (6)

Jackson[15] 𝑞 − derivative, 0 < 𝑞 < 1, was defined by Annby and Mansour and other researchers[16–21]: 

𝛻𝐹(𝜗) = ൝
ி′(),                  ణୀ 

ி(ణ)ିி(ణ)
(ଵି)ణ

,   ణஷ

, 

that is, 

𝛻𝐹(𝜗) = 1 + [𝜀]𝑎ఌ𝜗ఌିଵ

∞

ఌୀଶ

, (7)

where, 

[𝑗] =
1 − 𝑞

1 − 𝑞
, [0] = 0. (8)

As 𝑞 → 1ି, [𝑗] = 𝑗 and 𝛻𝐹(𝜗) = 𝐹′(𝜗). 

Definition 1: For 𝐹, 𝑔, analytic in D, 𝐹 is subordinate to 𝑔 in D written 𝐹 ≺ 𝑔, if ∃ 𝛺(𝜗), analytic 

in D, with 𝛺(0) = 0 and |𝛺(𝜗)| < 1  (𝜗 ∈ 𝐷) such that 𝐹(𝜗) = 𝑔(𝛺(𝜗)) (𝜗 ∈ 𝐷)[22,23]. 

Definition 2: For 𝜏 ∈ 𝐶∗ = 𝐶? {0}, 0 ≤ 𝜁 ≤ 1, 0 < 𝑞 < 1 and 𝐹 ∈ 𝜎, 𝐹 ∈ ∑ (𝜏, 𝜁; 𝜑)  if for all 

𝜗, 𝜔 ∈ 𝐷  :: 

1 +
1

𝜏
ൣ𝛻(𝐹(𝜗)) + 𝜁𝜗𝛻(𝛻𝐹(𝜗)) − 1൧ ≺ 𝜑(𝜗), (9)

and 

1 +
1

𝜏
ൣ𝛻(𝑔(𝜔)) + 𝜁𝜔𝛻(𝛻𝑔(𝜔)) − 1൧ ≺ 𝜑(𝜔), (10)

where 𝑔(𝜔) = 𝐹ିଵ(𝜔). 

Note that: 

1) ; 

2) , , where 

=

⎩
⎪
⎨

⎪
⎧ 𝐹 ∈ 𝜎  :  

𝑒ఏൣ𝛻(𝐹(𝜗)) + 𝜁𝜗𝛻(𝛻𝐹(𝜗))൧ − (𝛼 𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃)

(1 − 𝛼) 𝑐𝑜𝑠 𝜃
≺ 𝜑(𝜗)

𝑔 ∈ 𝜎  :  
𝑒ఏൣ𝛻(𝑔(𝜔)) + 𝜁𝜔𝛻(𝛻𝑔(𝜔))൧ − (𝛼 𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃)

(1 − 𝛼) 𝑐𝑜𝑠 𝜃
≺ 𝜑(𝜔)

; 

3) [24]; 

4) [25]; 

5) ,  , 
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=

⎩
⎪
⎨

⎪
⎧ 𝐹 ∈ 𝜎  :  

𝑒ఏ[𝐹′(𝜗) + 𝜁𝜗𝐹′′(𝜗)] − (𝛼 𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃)

(1 − 𝛼) 𝑐𝑜𝑠 𝜃
≺

1 + 𝜗

1 − 𝜗

𝑔 ∈ 𝜎  :  
𝑒ఏ[𝑔′(𝜔) + 𝜁𝜔𝑔′′(𝜔)] − (𝛼 𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃)

(1 − 𝛼) 𝑐𝑜𝑠 𝜃
≺

1 + 𝜔

1 − 𝜔

. 

2. Main results 
We assume that 𝜏 ∈ 𝐶∗, 0 < 𝑞 < 1, 0 ≤ 𝜁 ≤ 1  and 𝐹(𝜗) ∈ 𝜎. 

In this section we obtain some inequalities for the function class . 

Theorem 1: Let . If  for  then, 

  
(11)

Proof: For functions  given by Equation (7) and g = F−1 we have: 

 

(12)

 

(13)

Using Equation (3), we have: 

 

(14)

Considering Equations (9) and (10), there are two Schwarz functions with 𝑢(0) =

𝑣(0) = 0, which are given by Equation (5), so that, 

1 +
1

𝜏
ൣ𝛻(𝐹(𝜗)) + 𝜁𝜗𝛻(𝛻𝐹(𝜗)) − 1൧ = 𝜑(𝑢(𝜗)), (15)

1 +
1

𝜏
ൣ𝛻(𝑔(𝜔)) + 𝜁𝜔𝛻(𝛻𝑔(𝜔)) − 1൧ = 𝜑(𝑣(𝜔)). (16)

Also, by Equation (4) we get: 

 

(17)

and, 
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(18)

Comparing the coefficients of Equations (12), (15) and (17), we get: 

1

𝜏
(1 + 𝜁[𝜀 − 1])[𝜀]𝑎ఌ =  𝜓ఐ𝐻ఌିଵ

ఐ (𝑝ଵ, 𝑝ଶ, . . . , 𝑝ఌିଵ)

ఌିଵ

ఐୀଵ

(𝜀 ≥ 2). (19)

Similarly, from Equations (14), (16) and (18), we get: 

 
(20)

Now, from 𝑎ఌ = 0  for , we have  and the Equations (19) and (20) yield 

 
(21)

Taking the modulus of each of the two equations in Equation (21) and using Equation (6), we obtain 
Equation (11). 

Corollary 1: For 𝜑(𝜗) = (
ଵାణ

ଵିణ
)ఈ (0 < 𝛼 ≤ 1),  let  then 

 
(22)

Corollary 2: For 𝜑(𝜗) =
ଵା(ଵିଶఉ)ణ

ଵିణ
 (0 ≤ 𝛽 < 1),  let  then 

 
(23)

Remark 1: For 𝜏 = 1,  𝑞 → 1ି in Corollary 2, we get results obtained by Srivastava et al.[13], for all 

0 ≤ 𝜁 ≤ 1. 

Theorem 2: Let . Then, 

 

(24)

 (25)

where, 

 

(26)

and 
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(27)

Proof: If we set 𝜀 = 2 and 𝜀 = 3 in Equations (19) and (20), respectively, we have 
1

𝜏
[2](1 + 𝜁)𝑎ଶ = 𝜓ଵ𝑝ଵ, (28)

1

𝜏
[3]൫1 + 𝜁[2]൯𝑎ଷ = 𝜓ଵ𝑝ଶ + 𝜓ଶ𝑝ଵ

ଶ, (29)

−
1

𝜏
[2](1 + 𝜁)𝑎ଶ = 𝜓ଵ𝑞ଵ, 

(30)

and 
1

𝜏
[3]൫1 + 𝜁[2]൯(2𝑎ଶ

ଶ − 𝑎ଷ) = 𝜓ଵ𝑞ଶ + 𝜓ଶ𝑞ଵ
ଶ. (31)

From Equations (28) and (30), we obtain: 

𝑝ଵ = −𝑞ଵ. (32)

Adding Equations (29) and (31), and using Equation (32), we have: 
2

𝜏
[3]൫1 + 𝜁[2]൯𝑎ଶ

ଶ − 2𝑝ଵ
ଶ𝜓ଶ = 𝜓ଵ(𝑝ଶ + 𝑞ଶ). (33)

From Equation (28), we get: 

 
(34)

By Equations (6), (28) and (32), we obtain: 

 

(35)

Consequently, 

 
So, we obtain the bound on |𝑎ଶ| in Equation (24). 

Next, in order to find the bound on the coefficient |𝑎ଷ|, by subtracting Equation (31) from Equation (29), 

and using Equation (32), we get: 
2

𝜏
[3]൫1 + 𝜁[2]൯𝑎ଶ

ଶ −
2

𝜏
[3]൫1 + 𝜁[2]൯𝑎ଷ = 𝜓ଵ(𝑞ଶ − 𝑝ଶ). (36)

Using Equation (6), we have: 

 

(37)

From Equation (28), we get: 
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(38)

On the other hand, from Equation (29), we have: 

 
Consequently, 

 

(39)

Hence, from Equations (38) and (39), we obtain Equation (25). 

By letting 𝜁 = 0, 𝜏 = 1,  we have: 

Corollary 3: Let . Then 

 (40)

where, 

 

(41)

and, 

 

(42)

3. Future work 

The authors suggest to fined upper bounds for the coefficients of function class  for all 

𝜗, 𝜔 ∈ 𝐷  :: 

1 +
1

𝜏
ൣ𝛻ఒ,

 (𝐹(𝜗)) + 𝜁𝜗𝛻(𝛻ఒ,
 𝐹(𝜗)) − 1൧ ≺ 𝜑(𝜗), (43)

and, 

1 +
1

𝜏
ൣ𝛻ఒ,

 (𝑔(𝜔)) + 𝜁𝜔𝛻(𝛻ఒ,
 𝑔(𝜔)) − 1൧ ≺ 𝜑(𝜔), (44)

where, 

𝛻ఒ,
 (𝐹(𝜗)) = 𝜗 + [1 + 𝜆([𝑘] − 1)]𝑎𝜗, 𝜆 ≥ 0, 𝑚 ∈ 𝑁 = 𝑁 ∪ {0}

∞

ୀଶ

, (45)

is the 𝑞 − Al-Oboudi operator is defined by Aouf et al.[26]. 

4. Conclusions 

Throughout the paper, we defined a new subclass of bi-univalent functions of complex order  

by using 𝛻𝐹(𝜗)  operator. Furthermore, using the Faber polynomial expansions, we find the initial 

coefficient bounds for this function class. This paper generalized many results. 
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