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ABSTRACT 

This study explores a multiple-security, high-risk pricing model where the implied volatility has been portrayed 

through Generalized Wishart affine processes. The presence of dual dependency matrices distinctively characterizes this 

multifaceted model. These matrices encapsulate the relationship between the generalized Wishart processes and the 

evolving dynamics of several securities. The adaptability of the proposed model makes it a perfect fit for high-frequency 

market data, whether dealing with either long or short-term maturities of calls. The main objective paper is on its 

derivation and addressing the call option pricing problem within the context of the volatility mode using generalized 

Wishart stochastic. A combination of Fourier transforms techniques and perturbation methods are utilized, mainly 

focusing on pricing European call options. The model proposed in this study is theoretical and practical, showcasing the 

strong potential for real-world applications within the financial derivative market. 

Keywords: generalized Wishart processes; perturbation methods; Fourier Transforms; infinitesimal generator 

1. Introduction 
The conventional Black and Scholes model, established in 1973, has certain limitations, notably its failure 

to account for the implied security volatility when pricing financial derivative instruments that vary by exercise 
and maturity dynamics. It makes it less adaptable to mirror specific market conditions recorded in financial 
derivative prices. This shortcoming led to the discovery of the Heston pricing model in 1993. The Heston 
model quickly gained popularity and has been extensively utilized in financial derivatives markets due to its 
superior adaptability, insightful financial parameters clarification, and the analytical tractability it offers, as it 
falls under the category of affine processes. These traits facilitate the calculation of the call value for a 
European Option by reversing the Fourier transforms and creating a specific closed-form solution for the 
characteristic function of log-prices of securities. The Heston pricing model provides a more nuanced approach, 
allowing for better adaptation to dynamic market conditions and greater accuracy in financial modelling. 

Despite its popularity, the Heston model has documented limitations. Numerous studies, including those 
by Ahdida and Alfonsi[1], Christoffersen et al.[2], Odhiambo[3], Gourieroux[4], Heston[5], Shreve[6], have 
highlighted a key flaw: the model doesn’t accurately produce the true term structure of volatility movements. 
It suggests that the Heston model’s implied volatility surface is too flat to mirror certainty accurately. Normally, 
the implied volatility curve is locally convex for short maturities and tends to linearize for longer maturities. 
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It indicates that the Heston model needs help to reflect financial market data when pricing derivative products 
accurately. 

Several studies, including those by Bjork[7], Bru[8], Duffie et al.[9], Odhiambo et al.[10], Kang and Kang[11], 
Chandru et al.[12], and Odhiambo et al.[13] recommended addressing these deficiencies by expanding upon the 
Heston model in two ways: incorporating jumps in the security dynamic or volatility, and exploring the implied 
volatility multifactor nature. It’s widely recognized that a multifactor approach can better handle the pricing 
problem of financial derivatives and volatility skew, prompting the adoption of the Wishart multidimensional 
stochastic volatility model, a stochastic matrix-defined process. 

Introduced by Bru in 1991, the Wishart process is one positive semi-definite matrix-valued generalization 
of a Bessel function process that encapsulates multiple chi-squared distributions were pioneers in the 
application of the Wishart stochastic implied volatility model to the realm of finance Odhiambo et al.[13]. Since 
then, this model has gained considerable traction and is now extensively employed within derivatives markets. 
Its matrix specification nature offers flexibility, making it a more robust choice for modelling complex market 
dynamics, as shown in Odhiambo et al.[14] to help in modelling. 

This study proposes to address the valuation of the European call option under the framework of 
generalized Wishart variance processes. Expanding the Heston model to encompass the multifactor nature of 
implied volatility modelling, with two dependence matrices for a particular security, the security dynamics are 
assumed to rely on two separate Wishart volatility processes, termed “double Wishart volatility processes”. 
The matrix specifications inherent to the model make it possible to encapsulate stylized facts observed in 
financial markets by Naryongo et al.[15] and Odhiambo[16]. This adaptation allows for the effective pricing of 
options, regardless of whether the maturity is short or long, at any given level of volatility. 

The strategy for addressing the pricing issue associated with European call options employs transform 
methods, as illustrated by Benabid et al.[17]. Additionally, the Fast Fourier Transform technique, as Benabid et 
al.[17] proposed, plays a significant role in this process. These techniques are used in conjunction with 
perturbation methodologies. Considering that ordinary differential equations doesn’t permit a closed-form 
solution due to the non-commutative nature of the matrix multiplications involved, these methodologies are 
utilized to ascertain an approximation for the valuation of a specific European call option. 

Filipovic and Mayerhofer[18] devised a numerical methodology to solve parabolic issues dominated by 
boundary and interior layers, specifically emphasising discontinuous convection coefficient and source terms. 
Carr and Madan[19] developed a higher-order difference method in his work. This work was targeted explicitly 
towards singularly perturbed parabolic partial differential equations, providing a valuable tool for solving 
Ordinary Differential Equations (ODEs). Odhiambo[20] and Black and Scholes[21], focused on a moving mesh 
refinement approach. They presented an optimally accurate and uniformly convergent computational method 
for a parabolic system. Boundary layers characterise this system and stem from reaction-diffusion problems 
with arbitrarily small diffusion terms. A research studies by Fouque et al.[22], Das et al.[23], Odhiambo et al.[24] 
and Da Fonseca et al.[25] showcased the parameter uniform optimal order numerical approximation applied to 
a particular class of singularly perturbed reaction-diffusion problems. These problems involve a small 
perturbation parameter. Finally, a paper by Odhiambo[26] discussed higher-order accurate approximations on 
equal distributed meshes. Their focus was on the mixed-type reaction-diffusion systems originating from 
boundary layers and exhibiting a multi-scale nature. These solutions will help in solving the proposed model. 

The organization of this paper is as follows: Section 2 lays the foundation by introducing the concept of 
the Wishart process, elaborating on the definitions of the Wishart stochastic volatility models, and the 
generalized Wishart model. It further delves into the correlation structures and the infinitesimal generator 
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specific to the multidimensional Wishart model. The focus is shifted toward the pricing mechanisms for the 
European call option in Section 3. The attainment of this objective is facilitated through the application of 
Fourier Transform methodologies and perturbation strategies. These tools formulate a pricing equation 
explicitly tailored for a European call option. Section 4 gives the numerical analysis of the results to verify the 
models. Lastly, Section 5 encapsulates the study’s findings and highlights potential avenues for further 
research. 

2. The Wishart process 
Definition 1. Let Wt, t ≥ 0 in a given martingale measure Q be a n × n matrix-indexed Wiener process. 

The Wishart matrix process is denoted by Σ, satisfies the following equation: 

𝑑𝛴௧ = (𝛽𝑄𝑄் + 𝑀𝛴௧ + 𝑀𝛴௧
்) 𝑑𝑡 + ඥ𝛴௧𝑑𝑊௧𝑄 + 𝑄்𝑑𝑊௧

்ඥ𝛴௧ (1)

with Q  GLn (R) as the invertible matrix, Mn  as the non-positive matrix,  is non negative symmetric 

matrix with β real parameter and 𝑆௡ is the price of security at time n. 

The condition of β > (n − 1) is measured to make sure existence and uniqueness of the  solution 

for equation (1) and eigen values of the solutions are all non-negative within t ≥ 0 whenever . 

2.1. Wishart implied volatility model in the securities exchange market 

Benabid et al.[27] stated an arbitrage-free frictionless finance market and using the risk-neutral measure, 
the risky securities whose value dynamics from the quadratic variation following;  

 

(2)

with r denoting risk less interest rate, trace is Tr, Z  Mn is Brownian matrix, and Σt being a set of symmetric 

n × n definite- positive matrices. 

It is observed that security implied volatility has a trace of Σt matrix, that is multidimensional processes 

of Ω,M,Q  Mn, as well as Wt  Mn is Brownian matrix. 

Das[28] and Shakti et al.[29] improved the Wishart process by offering a matrix analogue of the square root 
mean-reverting process. We consider M as a negative to make sure the mean-reverting property and positivity 
of the volatility with the parameter β > n − 1 for the existence and uniqueness of the solution. 

2.2. Correlation analysis structure 

Wt, Zt are the two correlated Brownian matrices that gives a constant correlated matrix R  Mn, in Das and 

Rana[30], that describes the structure of correlation for Zt: 
Zt := WtRT + BtpI – RRT 

where I denote identity matrix, T is transpose, and Bt is an independent matrix Wiener Process from Wt. The 
correlation structure is a Wiener Process (checkout proof in Appendix). 

2.3. Bi-variate Wishart stochastic process within Securities Exchange market 

This section presents a newly proposed model, which is a multifactor framework incorporating two 
Wishart variance processes, also referred to as a generalized Wishart stochastic volatility model with a pair of 
dependence matrices. This model integrates double volatility components: the trace of the Wishart process, 
where its diagonal components are intended to steer the volatility dynamics. Within an arbitrage-free financial 
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market and under the consideration of a risk-neutral measure, the dynamics of a risky security will be analyzed 
as follows: 

 

(3)

where β,β¯ defined as real parameters with β,β >¯ n−1, Q,QM,¯ M¯  Mn, Q is defined as invertible matrix and 

Wt,W¯ 
t  Mn called matrices Wiener Processes, also Zt,Z¯

t  Mn. 

Lemma 1: In the event where correlations are provided between two Brownian matrices—one belonging to 
the security price dynamics and the other associated with the Wishart processes, which possess Brownian 
matrices as expressed in equation (3)—then the following will be assumed: 

 

Proof. The correlations of the process are derived as follows: 

 
with Xt and X¯

t are standard Wiener Processes and trace respectively of the dynamics of Wishart volatility 
dynamics defined in equation (3). It becomes 

dTr(Σt) = ((βTr(QT Q)) + 2Tr(MΣt))dt + 2Tr(QdWtΣt) 

dTr(Σ
¯

t) = ((βTr
¯ 

(Q
¯T Q

¯
)) + 2Tr(M

¯ 
Σ

¯
t))dt + 2Tr(Qd

¯
W

¯
tΣ

¯
t) 

We rewrite the processes in the form 

 
with ξt and ηt being Wiener Processes, therefore 

 
We go ahead to find out the covariation of the generalized Wishart processes and security prices as; 
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On the same note, for the second SDE (stochastic differential equation) of the generalized Wishart 

processes, its covariation determination that follow a similar procedure given as; 

 

2.4. The generalized model correlation structure 

Wt with Zt and W¯
t with Z¯

t are correlated Brownian matrices respectively which results in constant 

correlation matrices R,R¯  Mn, which describes the double correlation structures, with Zt and Z¯
t can be 

presented as; 

 
With I as the identity matrix, T is the transposition, Bt and B¯t being Brownian matrices independent of Wt and 
W¯

t in respectively of the generalized Wishart process. 

2.5. The log-call price dynamics for the generalized Wishart model 

The two matrices R and R¯ respectively describes the correlations between the Brownian of the security 
and of the generalized Wishart processes. In addition, the value of M and M¯ mean reversion matrices while 
Q,Q¯ are implied volatility dynamics. 

Lemma 2: The log-call price dynamics Yt = log(St) under generalized Wishart and by application of the Ito’s 
formula on Yt, as proved by Das and Vigo-Aguiar[31] and Shakti et al[32], we will obtain 

 
(4)

Proof. Let Yt  be log(St), the security dynamics defined as, 

 
(5)

When we apply the Ito’s formula on the value of Yt 

 
(6)

Through substitution in the security process (5) within the derivative equation (6) of Yt 

 
(7)

 
that will yield an equation given as 

 
(8)

3. Call option valuation problem 
This section deals with the European call option valuation problem, with its payoff given as. 

(ST − K)+ 
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Addressing the pricing issue requires obtaining the infinitesimal generator of the Wishart processes. This 
approach is integral as it enables the application of the conditional characteristic function to the logarithmic 
return of the security. The Riccati ordinary differential equations are linearized to achieve a closed-form 
solution for this pricing problem. The issue at hand is addressed using Fast Fourier Transforms, a technique 
comprehensively delineated by Das et al.[33] .It’s worth emphasizing that the Wishart processes retain a crucial 
feature of analytical tractability. This characteristic is due to their categorization under affine processes, an 
observation noted by Shreve[34].This aspect simplifies the analysis of these processes and enhances the 
computational efficiency of pricing and hedging instruments based on them. Combining these methods allows 
for a systematic and efficient approach to handling the pricing issue. It leads to deeper insights into how the 
multifactor Wishart stochastic volatility model operates and its implications for financial market dynamics. 
This methodology paves the way for further research, potential financial market modelling, and risk 
management improvements. 

3.1. Generator of infinitesimal operator 

The log-call price process and its volatility differential equations, having equivalent pair of two correlated 

Wiener Processes,  and , can be denoted in terms of determinants for simplicity when dealing 
of the complex securities of the dynamics given as follows; 

 

(9) 

 

Proposition 1: Let the infinitesimal generator of the generalized Wishart stochastic volatility model for vector 
(Yt ,Σt ,Σ¯

t) be defined as; 

 

(10)

Proof. The generator of infinitesimal having a non-trivial term will arise from covariation d < Σθ
ij, 

Y >corresponding up to the terms’ coefficients defined as; 

 
Let Vθ;t := pΣθ;t be denoted as the square root matrix with 

 

From the value of Vθ;t that is symmetric, we determine the covariation terms that matches with  
coefficients 
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It leads to corresponding term coefficients as it is given by; 

 
The notation occurs when 

 

whereas for θ = 2, Σ2 = , as the value of D is symmetric. 

3.2. The security returns Laplace transformations 

To address the pricing problem of European options for dynamic process (10), we use the transforms 
introduced by Das et al.[35]. Because the Wishart process is exponentially affine, as noted in studies by Das et 
al.[36] introduced the conditional expectation of security returns can be expressed as an affine exponential of Y 
and the components of the Wishart process. As such, we put forward deterministic functions λ1(t), λ2(t) in the 
Mn set and δ(t), ε(t) in the R set, serving as parameters for the transformation. This approach allows for a 
thorough and accurate representation of the factors influencing European options pricing. The equation is given 
by; 

ψγ,t(τ) = E(eγYt+τ ) = exp{Trλ1(τ)Σt + Trλ2(τ)Σ¯
t + δ(τ)Yt + ε(τ)} (11)

with γ  R. 

From the Feynman-Kac argument given in equation (12), assist in obtaining matrix Riccati equations 
given as; 

 
(12)

Proposition 2: Let solution of the stochastic differential equation of the security returns under Laplace 
Transforms be given by 

ψγ,t(τ) = exp{Tr[λ1(τ)Σt + λ2(τ)Σ¯
t] + δ(τ)Yt + ε(τ)} 

where λ1, λ2, ε will be solutions to the differential equations below 

 
(13)

 

(14)
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with boundary conditions; λ1(0) = 0, λ2(0) = 0, ε(0) = 0,δ(τ) = γ = C0. All solutions of λ1, λ2, ε, are derived 
as follows 

λ1(τ) = H1(τ)−1H2(τ) 

 

(15)

with 

 

(16)

Proof. From the Laplace Equation (12), we take up the computation of the problem through consideration 
of proposition (1) for the generalized Wishart stochastic implied volatility model, thus offers the proof. 

 

(17)

Taking into consideration of Boundary conditions in (11) and equation (12) λ1(0) = 0, λ2(0) = 0, δ(0) = γ, 
ε(0) = 0 

 

(18)

 

(19) 

 

(20) 

 

(21) 

−δ´(τ)Yt − ε´(τ) + µδ(τ) + Tr[βQT Q]λ1(τ) + Tr[β¯Q¯T Q¯]λ2(τ) = 0 (22) 

Now we proceed to make identification of the coefficients for the respective equations and by deriving 
the matrix Riccati ODE (ordinary differential equations); 
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(23)

 
(24)

For the constant value of ε, the matrix Riccati ordinary differential is derived as follows 

−δ´(τ)Yt − ε´(τ) + rδ(τ) + Tr(βQT Q)λ1(τ) + Tr(β¯Q¯T Q¯)λ2(τ) = 0 

 

(25)

Lastly, ε(τ) is derived through integration directly 

 
We note that λ1,λ2  Mn(R) as well as δ(τ),ε(τ)  R. 

Following the methodologies proposed by Das et al.[37], we proceed to linearize the matrix Riccati 
equations previously mentioned. This step enables us to derive a closed-form solution. This solution results 
from the systematic application of Equations (23) and (24), providing a comprehensive and practical approach 
to understand the underpinnings of the model. 

Let λ1(τ) = H1(τ)−1H2(τ) with H1(τ)  GLn(R) and H2(τ)  Mn(R) and thus 

 

(26)

 

(27)

 

(28)

Given that H2(τ) = H1(τ)λ1(τ) now we will have 

 
The solution implies that 

 
(29)

Therefore, we obtain an expression 

 

(30)

 
(31)
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(32)

 
(33)

The differential equation solution as in Equation (33) above yields; 

 (34)

under the conditions H1(0) = KIn and  and for  

we have 

(H2(τ) H1(τ)) = (λ1(0) In)eτQ 

 

λ111 (τ) λ121 (τ)! 

(H2(τ) H1(τ)) = (λ1(0) In) 21(τ) λ221 (τ) λ1 

= [λ1(0)λ11
1 (τ) + λ21

1 (τ) λ1(0)λ12
1 (τ) + λ22

1 (τ)] 

(35)

and since λ1(0) = 0, then 

 
accordingly, 

 (36)

It is first Riccati Equation (23) closed-form solution. 

Now we relook at the second Riccati Equation (24) solution. 

Definition 2: Let equation (37) be given by: 

 (37)

then 

 

(38)

We have, 
(I2(τ) I1(τ)) = (I2(0) I1(0))eQτ¯ (39)

From equation (39), we repeat a similar procedure as given above having similar conditions as 

I2(0) = I1(0)λ2(0) = λ2(0) 

I1(0) = K¯I = K¯ = I 

thus 

(I2(τ) I1(τ)) = (λ2(0) In) 
 

λ122 (τ)! λ222 (τ) 
(40)

(I2(τ)I1(τ)) = (λ2(0)λ11
2 (τ) + λ21

2 (τ)→  (41)
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and since λ2(0) = 0, then 

 
thus 

 (42)

Let the computation of the last Riccati equation (25) for a constant ε , 

 
(43)

From two Riccati equations (23) and (24) respectively, we get  

 
(44)

and 

 
(45)

 
(46)

Deriving from the equation (44) we have; 

 
(47)

And from the equation (45) 

 
(48)

then substituting both equations (47) and (48) within the equation (46), results to 

 
(49)

 
(50)

Through integration of the equation (50), we get 

 
(51)

3.3. The characteristic function and Fast Fourier transformation method 

In this section, we utilize the Fast Fourier Transform (FFT) method as specified in Odhiambo et al.[38] 
work, aiming to calculate the price of a European call option. In this context, ‘α’ is a value exceeding zero, ‘t’ 
signifies time, and the strike price is represented as ‘k’, which corresponds to the logarithm of ‘K’. Furthermore, 
‘T’ signifies the time to maturity. The intention is to provide a comprehensive calculation of the option's value 
under the aforementioned conditions as 

Ct(T,K) = e−r(T−t)E[(XT − K)+ | Ft] (52)

Ct(T,K) = Ct(T, k) = e−r(T−t)E[(exp(Yt) − exp(k))+|Ft] (53)

We turn our attention to the adjusted Price formulation found in DasP et al.[38], where α = 1.1 serves as a 
sound empirical figure applicable to the Heston model. By utilizing this modified price, we achieve a function 
that is square integrable. This function subsequently aids in the application of the inverse Fourier transform, 
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thereby facilitating our calculation processes and enabling the successful execution of the pricing model,  
given by; 

 (54)

We incorporate the Fourier transformation of the modified price while simultaneously employing the 
Fubini integration theorem: 

 

 

(55)

 

(56)

We determine the price of a call option through the inversion of the Fourier transform, provided that the 
ψtα(T,θ) function encompasses both odd imaginary and even real parts. This process can be illustrated by 
revisiting equation (56). 

Getting 

 

(57)

It is a Fourier transform 

 
(58)

Corollary 1: Let D be defined as symmetric matrix, it is sufficient to determine the conditional characteristic 
function of the generalized Wishart Σt and Σ¯

t denoted by, (see proof in Appendix) 

 
(59)

Where values of A1(τ), A2(τ)  Mn and C  C are used when verifying the following dynamics 
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(60)

Proposition 3: Let the call option price under generalized Wishart is given as 

 
(61)

whereas 

 
Proof. let φ˜(t,T) be the log-call price, Yt as the characteristic function. We will have, 

 
and 

φ˜
γ,0(t,T) = E[exp{iγYt,T }] = E[Eexp{iγ(YT − Yt)}] 

 
φ˜

γ,0(t,T) = exp{Tr[A1(t)Σ0 + A2(t)Σ¯
0] + C(t) + ε(T − t)} 

Aj(t) is got from the equation (61) with τ = t if Aj(0) = λj(T − t), j = 1,2. 

Therefore 

 
(62)

With the 

 

3.4. Riccati differential equations under Perturbation techniques 

This section is devoted to the implementation of the perturbation technique. We resort to this method to 
approximate the Call Option price, given the absence of a closed-form solution to the system of Riccati 
differential equations stemming from the non-commutative nature of matrix multiplication. The attainment of 
an analytical closed-form solution remains a daunting challenge. 

Despite the inherent complexity of the procedure, it retains affine properties and can accommodate higher 
orders in alignment with the conventional perturbation scheme applied to partial differential equations. 
However, as OdhiamboJo et al.[38] highlight, it tends to need to be clarified beyond the first order. 
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Our exploration focuses on the Riccati differential equations intrinsic to the double Wishart stochastic 
volatility model, when solving the equations. We consider a dimension n = 3. Additionally, we account for the 
two distinct orders in perturbation, symbolized as p and q. The solution for A(τ) is conveyed in the ensuing 
form: 

 
The perturbation-infused differential equations are then meticulously expanded. This is accomplished by 

aligning coefficients and isolating terms related to p and q. This methodical process sets the stage for deriving 
the anticipated approximations. 

Let p = M1 and q = M2 are small while νi quantities remain constant. The approximation at order one ( p,
 q) and order the two (p, q) with these notations. 

 
Also 

 
with noting that Q as the implied volatility of the volatility 

 
while can be rewritten as 

 √ √ 
Q =pQ1 +qQ2 

We can denote the Riccati equations as in the new form 

A1
0 (τ) = p[−A1(τ)M1−M1A1(τ)+2A1(τ)Q2

1A1(τ)]+q[−A1(τ)M2−M2A1(τ)+2A1(τ)Q2
2A1(τ)] (63) 

and for 

 

(64)

 

(65)

This section proceeds to expand the Riccati functions A1, A2, λ1, λ2, C, and ε by implementing a second-
order perturbation on the Riccati equations. This manipulation is executed to extract the formula for pricing a 
European call option, which is presented as follows: 

 (66)

Let us determine A0
k
,0, ..., Ak

1,1 

Through identifying of the terms in their respective orders we get 

 
Since A1(0) = iD1, whereas 
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Then we get 

 (67)

therefore 

 
 

 

 
Also 

 

Since all  for values of all τ  R+ the C = 0. 

For function A2(τ), we again follow a similar procedure 

 
therefore 

 
Since the value of A2(0) = iD2, whereas 

 
then we will get 

 
(68) 

 
we proceed through getting 

 

 

and  , since  for all τ  R+, then C = 0 constant. Meaning that we 

obtain similar functions of λ1 and λ2 using the given Ordinary differential equations as 

 

(69)

 (70)

 

then 
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also for 

 

 
Then similarly for λ2,we have these similar approximations 

 

 
Therefore we relook at the specific Riccati differential equation for the value of C(τ) 

 
C0,0(τ) = 0 

As the value of C(0) = 0 

C1,0(τ) = C0,1(τ) = 0 

C2,0(τ) = iβν12d1τ + iβ¯ν¯12d2τ 

C0,2(τ) = iβν22d1τ + iβ¯ν¯22d2τ 

with 
C1,1(τ) = 0 

For the constant, ε the differential equation is determined as; 

 
with 

ε0,0(τ) = rγτ 

 
ε1,1(τ) = 0 
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By substituting it back in the derived perturbation function, we get 

 (71)

 
and 

 
The determined variance processes denoted as Σ0 and Σ¯0 are as follows 

 
getting the trace, and 

 

 

For functions C and ε 

C(τ) = pC2,0(τ) + qC0,2(τ) + o(max(p, q)) 

= p(iβν1
2d1τ + iβ¯ν¯1

2d2τ) + q(iβν2
2d1τ + iβ¯ν¯2

2d2τ) + o(max(p, q)) = iβd1(pν1
2 + qν2

2)τ + iβd¯ 
2(pν¯1

2 + 
qν¯2

2)τ + o(max(p, q)) 
(72)

 

(73)

When you substitute them back in equation (61), we get 

 

(74)

The equation can be rewritten as 
φ˜ΣΣ¯(τ) = e∆1(t)ei∆2(t) 

with 

 
and 

∆2(t) = {(1 − 2pt)ud1 + (1 − 2qt)wd1 + (1 − 2pt)¯ud2+(1 − 2qt) ¯wd2 + βd1(pν1
2 + qν2

2)t + βd¯ 
2(pν¯1

2 + qν¯2
2)t 

+ o(max(p, q))} 

From equation (69) 
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since 

 
In the end, we get the approximated value of the European option call value as 

Ct(T,K) ≈ e(−r(T−t)+∆1(t))(1 − ek)cos∆2(t) (75)

4. Numerical analysis 
The volatility specification of the generalized Wishart model lends remarkable flexibility, enabling it to 

generate price predictions that closely mimic actual market behavior. We derive our market data from QQQ 
options, a fund managed by Invesco that mirrors the performance of the stocks listed under the S & P 500 
Index, covering the period from April 2020 to April 2022. 

Based on the selected parameter values, it’s noticeable that the price predictions generated by the double 
Wishart model align closely with the market price over short maturity periods. This alignment is contingent 

on the chosen model parameters, specifically, 𝛾 = 0.6, 𝛽 = 3,  𝑑1 = 0.5, 𝑑2 = 0.55. This instance illustrates 
the superior flexibility offered by the double Wishart volatility model as shown in Figure 1. 

 
Figure 1. European call option Vs S & P 500 Index Price in 4. months. 

The model successfully mirrors market price trends in longer maturity periods of a year. It’s noteworthy 
that the parameters within the model play a pivotal role in shaping the price trajectories, providing significant 
insights to those holding long positions, and preventing the occurrence of unwarranted arbitrage profits. 

Our analysis revealed a significant relationship between the forecasted Call Option prices and the Market 
Index. The Call Option prices and the Market Index displayed a similar movement pattern. When the Market 
Index experienced an increase, there was a corresponding increase in the Call Option prices and vice versa. 
This observation suggests that the movement strongly influenced the Call Option prices in the Market Index. 

However, it was also observed that the volatility of the Call Option prices was slightly higher than that of 
the Market Index. It indicates that while the Call Option prices generally followed the trend of the Market 
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Index, they were subject to more significant fluctuations. This higher volatility in Call Option prices can be 
attributed to the inherent risk associated with options trading as shown in Figure 2. 

Moreover, the Call Option prices demonstrated a delayed reaction to changes in the Market Index. When 
there was a significant movement in the Market Index, it took a while for the Call Option prices to reflect this 
change. 

In conclusion, our findings suggest that the forecasted Call Option prices strongly correlate with the 
Market Index such as S & P 500 thus proving that our proposed model does better than the market index. Still, 
they are also subject to higher volatility and a delayed response to market changes as shown in Figure 2. Future 
work should involve further analysis of these observations and the development of more sophisticated 
forecasting models to accurately predict Call Option prices based on movements in the Market Index. 

 
Figure 2. A comparison between Forecasted Call option Vs Market Index. 

5. Conclusion 
We can efficiently address European call options pricing by expanding the Heston model into a multiple-

factor structure involving dual dependency matrices. This strategic approach enhances the fitting accuracy of 
financial market data across both short and long-term maturities. Our proposed Wishart affine model retains 
the advantage of analytical tractability, paving the way for a closed-form solution of the conditional 
characteristic function. This function is pivotal in articulating the price of a call option, achievable through 
applying Fourier transformations and perturbation techniques. 

A noteworthy feature of our model is its flexibility, driven by the effects of its parameters. This flexibility 
makes it an excellent fit for relevant data across various maturities, from short to long-term. In terms of future 
research directions, the precise simulation with discretization schemes is a worthy area to delve into. 
Additionally, investigating the behaviour of non-diagonal matrix components within our model would provide 
valuable insights. Regarding room for further research, Numerical Analysis and analytical consequences 
always done using data to test the proposed model will be done in the following paper as this study was more 
on analytical proof. 

Data availability 
The data used in this paper is available in Microsoft Excel Worksheet and Python programming language. 

Upon request, the data will be availed for anyone who needs it for now and as well as in the future. 

 



Mathematics and Systems Science | doi: 10.54517/mss.v1i1.2189 

20 

Conflict of interest 
The author declares no conflict of interest. 

References 
1. Ahdida A, Alfonsi A. Exact and high-order discretization schemes for Wishart processes and their affine 

extensions. The Annals of Applied Probability 2013; 23(3): 1025–1073. doi: 10.1214/12-AAP863 
2. Christoffersen P, Heston S, Jacobs K. The shape and term structure of the index option smirk: Why multifactor 

stochastic volatility models work so well. Management Science 2009; 55(12): 1914–1932. doi: 
10.2139/ssrn.1447362 

3. Odhiambo JO. Stochastic Modelling of Systematic mortality Risk Under Collateral Data and Its Applications [PhD 
thesis]. University of Nairobi; 2022. 

4. Gourieroux C. Continuous time Wishart process for stochastic risk. Econometric Reviews 2006; 25(2–3): 177–217. 
doi: 10.1080/07474930600713234 

5. Heston SL. A closed-form solution for options with stochastic volatility with applications to bond and currency 
options. The Review of Financial Studies 1993; 6(2): 327–343. 

6. Shreve SE. Stochastic Calculus for Finance II: Continuous-Time Models. Springer Science & Business Media; 
2004. Volume 11. 

7. Bjork T. Arbitrage Theory in Continuous Time. Oxford university press; 2009. 
8. Bru MF. Wishart processes. Journal of Theoretical Probability 1991; 4(4): 725–751. doi: 10.1007/BF01259552 
9. Duffie D, Pan J, Singleton K. Transform analysis and security pricing for affine jump-diffusions. Econometrical 

2000; 68(6): 1343–1376. doi: 10.1111/1468-0262.00164 
10. Odhiambo J, Weke P, Wendo J. Modeling of returns of Nairobi securities exchange 20 share index using log-

normal distribution. Research Journal of Finance and Accounting 2020; 11(8): 2222–2847. doi: 
10.7176/RJFA/11-8-08 

11. Kang C, Kang W. Exact simulation of Wishart multidimensional stochastic volatility model. Available online: 
https://arxiv.org/abs/1309.0557 (accessed on 2 September 2013). 

12. Chandru M, Prabha T, Das P, Shanthi V. A numerical method for solving boundary and interior layers dominated 
parabolic problems with discontinuous convection coefficient and source terms. Differential Equations and 
Dynamical Systems 2019; 27: 91–112. doi: 10.1007/s12591-017-0385-3 

13. Odhiambo J, Onsongo W, Osman S. An analytical comparison between Python vs R programming languages. 
Which one is the best for machine learning and deep learning? 2020. 

14. Odhiambo J, Ngare P, Weke P. Bühlmann credibility approach to systematic mortality risk modeling for sub-
Saharan Africa populations (Kenya). Research in Mathematics 2022; 9(1): 2023979. doi: 
10.1080/27658449.2021.2023979 

15. Naryongo R, Onyango J, Njagi L, Nakirya M. Modeling of covid-19 transmission under Markov chains in 
Uganda. Journal of Applied Mathematics and Computation 2022; 6(1): 4–12. doi: 10.26855/jamc.2022.03.002 

16. Odhiambo J, Weke P, Ngare P. Modeling Kenyan economic impact of corona virus in Kenya using discrete-time 
Markov chains. Journal of Finance and Economics 2020; 8(2): 80–85. doi: 10.12691/jfe-8-2-5 

17. Benabid A, Bensusan H, El Karoui N. Wishart stochastic volatility: Asymptotic smile and numerical framework. 
Available online: https://hal.science/hal-00458014v2/document (accessed on 18 July 2023). 

18. Filipovic D, Mayerhofer E. Affine diffusion processes: Theory and applications. Advanced Financial Modelling 
2009; 8: 1–40. doi: 10.48550/arXiv.0901.4003 

19. Carr P, Madan D. Option valuation using the fast Fourier transform. Journal of Computational Finance 1999; 
2(4): 61–73. 

20. Odhiambo JO. Deep learning incorporated Bühlmann credibility in the modified lee—carter mortality model. 
Mathematical Problems in Engineering 2023; 2023: 8543909. doi: 10.1155/2023/8543909 

21. Black F, Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy 1973; 81(3): 
637–654. doi: 10.1142/9789814759588_0001 

22. Fouque JP, Papanicolaou G, Sircar R, Solna K. Singular perturbations in option pricing. SIAM Journal on Applied 
Mathematics 2003; 63(5): 1648–1665. doi: 10.1137/S0036139902401550 

23. Das P, Rana S, Ramos H. Homotopy perturbation method for solving Caputo‐type fractional‐order Volterra‐
Fredholm integro‐differential equations. Computational and Mathematical Methods 2019; 1(5): e1047. doi: 
10.1002/cmm4.1047 

24. Odhiambo JO, Ngare P, Weke P, Otieno RO. Modelling of COVID-19 transmission in Kenya using compound 
Poisson regression model. Journal of Advances in Mathematics and Computer Science 2020; 101: 111. 

25. Da Fonseca J, Grasselli M, Tebaldi C. A multifactor volatility Heston model. Quantitative Finance 2008; 8(6): 
591–604. doi: 10.1080/14697680701668418 



Mathematics and Systems Science | doi: 10.54517/mss.v1i1.2189 

21 

26. Odhiambo JO. Stochastic Modelling of Systematic mortality Risk Under Collateral Data and Its Applications [PhD 
thesis]. University of Nairobi; 2022. 

27. Benabid A, Bensusan H, El Karoui N. Wishart stochastic volatility: Asymptotic smile and numerical framework. 
Available online: https://hal.science/hal-00458014v2/document (accessed on 18 July 2023). 

28. Das P. A higher order difference method for singularly perturbed parabolic partial differential equations. Journal 
of Difference Equations and Applications 2018; 24(3): 452–477. doi: 10.1080/10236198.2017.1420792 

29. Shakti D, Mohapatra J, Das P, Vigo-Aguiar J. A moving mesh refinement based optimal accurate uniformly 
convergent computational method for a parabolic system of boundary layer originated reaction—diffusion 
problems with arbitrary small diffusion terms. Journal of Computational and Applied Mathematics 2022; 404: 
113167. doi: 10.1016/j.cam.2020.113167 

30. Das P, Rana S. Theoretical prospects of fractional order weakly singular Volterra Integro differential equations 
and their approximations with convergence analysis. Mathematical Methods in the Applied Sciences 2021; 44(11): 
9419–9440. doi: 10.1002/mma.7369 

31. Das P, Vigo-Aguiar J. Parameter uniform optimal order numerical approximation of a class of singularly perturbed 
system of reaction diffusion problems involving a small perturbation parameter. Journal of Computational and 
Applied Mathematics 2019; 354: 533–544. doi: 10.1016/j.cam.2017.11.026 

32. Shakti D, Mohapatra J, Das P, Vigo-Aguiar J. A moving mesh refinement based optimal accurate uniformly 
convergent computational method for a parabolic system of boundary layer originated reaction—diffusion 
problems with arbitrary small diffusion terms. Journal of Computational and Applied Mathematics 2022; 404: 
113167. doi: 10.1016/j.cam.2020.113167 

33. Das P, Rana S, Vigo-Aguiar J. Higher order accurate approximations on equidistributed meshes for boundary layer 
originated mixed type reaction diffusion systems with multiple scale nature. Applied Numerical Mathematics 
2020; 148: 79–97. doi: 10.1016/j.apnum.2019.08.028 

34. Shreve SE. Stochastic Calculus for Finance II: Continuous-Time Models. Springer Science & Business Media; 
2004. Volume 11. 

35. Das P, Rana S, Ramos H. A perturbation-based approach for solving fractional-order Volterra–Fredholm integro 
differential equations and its convergence analysis. International Journal of Computer Mathematics 2020; 97(10): 
1994–2014. doi: 10.1080/00207160.2019.1673892 

36. Das P, Rana S, Ramos H. A perturbation-based approach for solving fractional-order Volterra–Fredholm integro 
differential equations and its convergence analysis. International Journal of Computer Mathematics 2020; 97(10): 
1994–2014. doi: 10.1080/00207160.2019.1673892 

37. Das P, Rana S, Ramos H. Homotopy perturbation method for solving Caputo‐type fractional‐order Volterra‐
Fredholm integro‐differential equations. Computational and Mathematical Methods 2019; 1(5): e1047. doi: 
10.1002/cmm4.1047 

38. Odhiambo JO, Okungu JO, Mutuura CG. Stochastic modeling and prediction of the COVID-19 spread in Kenya. 
Engineering Mathematics 2020; 4(2): 31–35. doi: 10.11648/j.engmath.20200402.12 

 

 

 

 

 

 
 

 

 

 



Mathematics and Systems Science | doi: 10.54517/mss.v1i1.2189 

22 

Appendix 
The correlation structures 

The Wiener process matrices Wt, Zt are correlated to result to a specific constant correlated matrix R ∈ 

Mn, in Kang[11],  describing the correlation structure for Zt 

Zt := WtRT + BtpI − RRT 

whereas I is identity matrix, T is transpose, and Bt is an independent Wiener Process matrix from Wt . The 

correlation structure is a Wiener Process Proof. Zt is matrix Wiener Process iff a,b  Rn 

Covt(dZta, dZtb) = Et[(dZta)(dZtb)T ] = aT bIdt 

Since the value of 

 

Generalized Wishart Processes and the characteristic functions 

Let D be symmetric matrix, the given conditional characteristic function of the generalized Wishart Σt 

and Σ¯
t is derived by  

 

whereas A1(τ),A2(τ)  Mn and C  C are used in the verification the given dynamics 

Proof. Getting expressions of A1(τ),A2(τ) and C(τ) , using the Riccati equations 

 
(76)

 

Now 

  
We get 

 

For 
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h2(τ) = iD1A11
1 (τ) + A21

1 (τ) 

A1(τ) = (iD1A121 (τ) + A221 (τ))−1(iD1A111 (τ) + A121 (τ)) 

A2(τ) = i−
1 

1(τ)i2(τ) i1(τ) = iD2A12
2 (τ) + A22

2 (τ) i2(τ) = iD2A11
2 (τ) + A21

2 (τ) 

A2(τ) = (iD2A122 (τ) + A222 (τ))−1(iD2A112 (τ) + A221 (τ)) 


