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ABSTRACT 

In this paper, by introducing predator-taxis into the diffusive predator-prey system with spatial memory, then we 

study the inhomogeneous spatial patterns of this system. Since in this system, the memory delay appears in the diffusion 

term, and the diffusion term is nonlinear, the classical normal form of Hopf bifurcation for the reaction-diffusion system 

with delay can’t be applied to this system. Thus, in this paper, we first derive an algorithm for calculating the normal 

form of Hopf bifurcation for this system. Then in order to illustrate the effectiveness of our newly developed algorithm, 

we consider the diffusive Holling-Tanner model with spatial memory and predator-taxis. The stability and Hopf 

bifurcation analysis of this model are investigated, and the direction and stability of Hopf bifurcation periodic solution 

are also studied by using our newly developed algorithm for calculating the normal form of Hopf bifurcation. At last, 

we carry out some numerical simulations to verify our theoretical analysis results, and two stable spatially 

inhomogeneous periodic solutions corresponding to the mode-1 and mode-2 Hopf bifurcations are found. 
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1. Introduction 

The reaction-diffusion systems based on the Fick’s law have been widely used in physics, chemistry and 

biology[1–3]. More precisely, based on the Fick’s law, that is the movement flux is in the direction of 

negative gradient of the density distribution function, the predator-prey model with cross-diffusion 

considering two different prey behaviors’ transition[4], the diffusive predator-prey model in heterogeneous 

environment[5,6], the diffusive predator-prey model with a protection zone[7], the diffusive predator-prey model 

with prey social behavior[8], the diffusive predator-prey model with protection zone and predator harvesting[9], 

the diffusive predator-prey model with Bazykin functional response have been studied by many researchers[10]. 

Furthermore, a predator-prey meta-population model is studied by Bajeux et al.[11]. In order to include the 

episodic-like spatial memory of animals, Shi et al.[12] directed movement toward the negative gradient of the 

density distribution function at the past time, and they proposed the following diffusive model with spatial 

memory 
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{
 
 

 
 
∂𝑢(𝑥, 𝑡)

∂𝑡
= 𝑑1𝑢𝑥𝑥(𝑥, 𝑡) + 𝑑2(𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡 − 𝜏))𝑥 + 𝑓(𝑢(𝑥, 𝑡)), 𝑥 ∈ Ω, 𝑡 > 0,

∂𝑢

∂𝐧
(𝑥, 𝑡) = 0, 𝑥 ∈ ∂Ω, 𝑡 > 0,

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡), 𝑥 ∈ Ω,−𝜏 ≤ 𝑡 ≤ 0,

 (1) 

where 𝑢(𝑥, 𝑡) is the population density at spatial location 𝑥 and time 𝑡, 𝑑1 and 𝑑2 are the Fickian diffusion 

coefficient and the memory-based diffusion coefficient, respectively, Ω ⊂ ℝ  is a smooth and bounded 

domain, 𝑢0(𝑥, 𝑡) is the initial function, 𝑢𝑥𝑥(𝑥, 𝑡) = ∂
2𝑢(𝑥, 𝑡)/ ∂𝑥2, 𝑢𝑥(𝑥, 𝑡) = ∂𝑢(𝑥, 𝑡)/ ∂𝑥, 𝑢𝑥(𝑥, 𝑡 − 𝜏) =

∂𝑢(𝑥, 𝑡 − 𝜏)/ ∂𝑥, 𝑢𝑥𝑥(𝑥, 𝑡 − 𝜏) = ∂
2𝑢(𝑥, 𝑡 − 𝜏)/ ∂𝑥2, and n is the outward unit normal vector at the smooth 

boundary ∂Ω. Here, the time delay 𝜏 > 0 represents the averaged memory period, which is usually called as 

the memory delay, and 𝑓(𝑢(𝑥, 𝑡))  describes the chemical reaction, and the biological birth or death. 

Moreover, in order to further investigate the influence of memory delay on the stability of the positive 

constant steady state, on the basis of model (1), Shi et al.[13] studied the spatial memory diffusion model with 

memory and maturation delays. Furthermore, Song et al.[14] have considered a diffusive predator-prey system 

with memory-based diffusion and Holling type-II functional response, and by carrying out some numerical 

simulations, the stable spatially inhomogeneous periodic solutions and the transition from the unstable mode-

2 spatially inhomogeneous periodic solution to the stable mode-1 spatially inhomogeneous periodic solution 

are found. 

For the general predator-prey models in ecology, apart from the random diffusion of the predator and 

prey populations, the spatial movement of predator and prey populations also occurs, which is usually shown 

as the predator pursuing prey and prey escaping from predator[15]. The pursuit and evasion between the 

predator and prey populations also have a strong impact on the movement pattern of the predator and prey 

populations[16–18]. By noticing that such movement is not random but directed, i.e., predator moves toward 

the gradient direction of prey distribution, which is called prey-taxis, or prey moves opposite to the gradient 

of predator distribution, which is called predator-taxis. Recently, the predator-prey model with prey-taxis[19–

24], the predator-prey model with indirect prey-taxis[25,26], the predator-prey model with predator-taxis[27] and 

the predator-prey model with indirect predator-taxis[28] have been researched. Especially, Wang et al.[15] 

considered the following diffusive predator-prey model with both predator-taxis and prey-taxis, and their 

proposed model is 

{
 
 
 

 
 
 
∂𝑢(𝑥, 𝑡)

∂𝑡
= 𝑑𝑢𝑥𝑥(𝑥, 𝑡) + 𝜉(𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡))𝑥 + 𝑓(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)), 𝑥 ∈ Ω, 𝑡 > 0,

∂𝑣(𝑥, 𝑡)

∂𝑡
= 𝑣𝑥𝑥(𝑥, 𝑡) − 𝜂(𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡))𝑥 + 𝑔(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)), 𝑥 ∈ Ω, 𝑡 > 0,

∂𝑢(𝑥, 𝑡)

∂𝐧
=
∂𝑣(𝑥, 𝑡)

∂𝐧
= 0, 𝑥 ∈ ∂Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥) ≥ 0, 𝑣(𝑥, 0) = 𝑣0(𝑥) ≥ 0, 𝑥 ∈ Ω,

 (2) 

where Ω = (0, ℓ𝜋)  with ℓ ∈ ℝ+, 𝑢(𝑥, 𝑡)  and 𝑣(𝑥, 𝑡)  represent the densities of prey and predator at the 

location 𝑥  and time 𝑡 , respectively, 𝑢0(𝑥) and 𝑣0(𝑥) are the initial functions, 𝑑  is the rescaled diffusion 

coefficient for the prey population, and the diffusion coefficient of the predator population is rescaled as 1. 

Furthermore, the term 𝜉(𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡))𝑥 represents the prey moves away from predator, and 𝜉 > 0 is the 

intrinsic predator-taxis rate. The term −𝜂(𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡))𝑥 represents the predator moves towards prey, and 

𝜂 > 0 is the intrinsic prey-taxis rate. Therefore, by combining with models (1) and (2), and by considering 

that the spatial memory and predator-taxis, we proposed the following diffusive predator-prey model with 

spatial memory and predator-taxis subjects to the homogeneous Neumann boundary condition 
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{
 
 

 
 
∂𝑢(𝑥, 𝑡)

∂𝑡
= 𝑑11𝑢𝑥𝑥(𝑥, 𝑡) + 𝜉(𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡))𝑥 + 𝑓(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)), 𝑥 ∈ (0, ℓ𝜋), 𝑡 > 0,

∂𝑣(𝑥, 𝑡)

∂𝑡
= 𝑑22𝑣𝑥𝑥(𝑥, 𝑡) − 𝑑21(𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡 − 𝜏))𝑥 + 𝑔(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)), 𝑥 ∈ (0, ℓ𝜋), 𝑡 > 0,

𝑢𝑥(0, 𝑡) = 𝑢𝑥(ℓ𝜋, 𝑡) = 𝑣𝑥(0, 𝑡) = 𝑣𝑥(ℓ𝜋, 𝑡) = 0, 𝑡 > 0,
𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡), 𝑣(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡), 𝑥 ∈ (0, ℓ𝜋), −𝜏 ≤ 𝑡 ≤ 0,

 (3) 

where 𝑑11 > 0 and 𝑑22 > 0 are the random diffusion coefficients, 𝑑21 > 0 is the memory-based diffusion 

coefficient, 𝑢0(𝑥, 𝑡) and 𝑣0(𝑥, 𝑡) are the initial functions, and 𝑓(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) and 𝑔(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) are 

the reaction terms. 

This paper is organized as follows. In Section 2, we derive an algorithm for calculating the normal form 

of Hopf bifurcation for the system (3). In Section 3, we obtain the normal form of Hopf bifurcation truncated 

to the third-order term by using our newly developed algorithm developed in Section 2, and the mathematical 

expressions of its corresponding coefficients are given. In Section 4, we consider the diffusive Holling-

Tanner model with spatial memory and predator-taxis. The stability and Hopf bifurcation analysis of this 

model are studied, and some numerical simulations are also carried out. In Section 5, we give a brief 

conclusion and discussion. 

2. Algorithm for calculating the normal form of Hopf bifurcation for the 

system (3) 

2.1. Characteristic equation at the positive constant steady state 

Define the real-valued Sobolev space 

𝑋:= {(𝑢, 𝑣)𝑇 ∈ (𝑊2,2(0, ℓ𝜋))
2
:
∂𝑢

∂𝑥
=
∂𝑣

∂𝑥
= 0 at  𝑥 = 0, ℓ𝜋} 

with the inner product defined by 

[𝑈1, 𝑈2] = ∫  
ℓ𝜋

0

𝑈1
𝑇𝑈2d𝑥  for  𝑈1 = (𝑢1, 𝑣1)

𝑇 ∈ 𝑋 and 𝑈2 = (𝑢2, 𝑣2)
𝑇 ∈ 𝑋, 

where the symbol 𝑇 represents the transpose of vector, and let 𝒞:= 𝐶([−1,0], 𝑋) be the Banach space of 

continuous mappings from [−1,0] to 𝑋 with the sup norm. It is well known that the eigenvalue problem 

{
�̃�′′(𝑥) = �̃��̃�(𝑥), 𝑥 ∈ (0, ℓ𝜋),

�̃�′(0) = �̃�′(ℓ𝜋) = 0
 

has eigenvalues �̃�𝑛 = −𝑛
2/ℓ2 with corresponding normalized eigenfunctions 

𝛽𝑛
(𝑗)
= 𝛾𝑛(𝑥)𝑒𝑗, 𝛾𝑛(𝑥) =

cos (𝑛𝑥/ℓ)

∥ cos (𝑛𝑥/ℓ) ∥𝐿2
=

{
 
 

 
 
1

√ℓ𝜋
, 𝑛 = 0,

√2

√ℓ𝜋
cos (

𝑛𝑥

ℓ
) , 𝑛 ≥ 1,

 (4) 

where 𝑒𝑗, 𝑗 = 1,2 is the unit coordinate vector of ℝ2, and 𝑛 ∈ ℕ0 = ℕ ∪ {0} is often called wave number, ℕ0 

is the set of all non-negative integers, ℕ = {1,2, … } represents the set of all positive integers. Without loss of 

generality, we assume that 𝐸∗(𝑢∗, 𝑣∗) is the positive constant steady state of system (3). The linearized 

equation of (3) at 𝐸∗(𝑢∗, 𝑣∗) is 

(

∂𝑢(𝑥, 𝑡)

∂𝑡
∂𝑣(𝑥, 𝑡)

∂𝑡

) = 𝐷1 (
𝑢𝑥𝑥(𝑥, 𝑡)
𝑣𝑥𝑥(𝑥, 𝑡)

) + 𝐷2 (
𝑢𝑥𝑥(𝑥, 𝑡 − 𝜏)
𝑣𝑥𝑥(𝑥, 𝑡 − 𝜏)

) + 𝐴 (
𝑢(𝑥, 𝑡)
𝑣(𝑥, 𝑡)

) (5) 

where 
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𝐷1 = (
𝑑11 𝜉𝑢∗
0 𝑑22

) , 𝐷2 = (
0 0

−𝑑21𝑣∗ 0
) , 𝐴 = (

𝑎11 𝑎12
𝑎21 𝑎22

) (6) 

and 

𝑎11 =
∂𝑓(𝑢∗, 𝑣∗)

∂𝑢
, 𝑎12 =

∂𝑓(𝑢∗, 𝑣∗)

∂𝑣
, 𝑎21 =

∂𝑔(𝑢∗, 𝑣∗)

∂𝑢
, 𝑎22 =

∂𝑔(𝑢∗, 𝑣∗)

∂𝑣
. (7) 

Therefore, the characteristic equation of (5) is 

∏  

𝑛∈ℕ0

Γ𝑛(𝜆) = 0, 

where Γ𝑛(𝜆) = det (ℳ𝑛(𝜆)) with 

ℳ𝑛(𝜆) = 𝜆𝐼2 +
𝑛2

ℓ2
𝐷1 +

𝑛2

ℓ2
e−𝜆𝜏𝐷2 − 𝐴. (8) 

Here, det (.) represents the determinant of a matrix, 𝐼2 is the identity matrix of 2 × 2, and 𝐷1, 𝐷2, 𝐴 are 

defined by (6). Then we can obtain 

Γ𝑛(𝜆) = det (ℳ𝑛(𝜆)) = 𝜆
2 − 𝑇𝑛𝜆 + 𝐽𝑛(𝜏) = 0, (9) 

where 

𝑇𝑛 = Tr (𝐴) − Tr (𝐷1)
𝑛2

ℓ2
,

𝐽𝑛(𝜏) = (𝑑11𝑑22 + 𝑑21𝜉𝑢∗𝑣∗e
−𝜆𝜏)

𝑛4

ℓ4
− (𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ + 𝑑21𝑣∗𝑎12e

−𝜆𝜏)
𝑛2

ℓ2
+ Det (𝐴)

 (10) 

with Tr (𝐴) = 𝑎11 + 𝑎22,Tr (𝐷1) = 𝑑11 + 𝑑22 and Det (𝐴) = 𝑎11𝑎22 − 𝑎12𝑎21. 

2.2. Basic assumption and equation transformation 

Assumption 1. Assume that at 𝜏 = 𝜏𝑐 , the characteristic Equation (9) has a pair of purely imaginary 

roots  ±𝑖𝜔𝑛𝑐  with 𝜔𝑛𝑐 > 0  for 𝑛 = 𝑛𝑐 ∈ ℕ , and all other roots of the characteristic Equation (9) have 

negative real parts. Let 𝜆(𝜏) = 𝛼1(𝜏) ± 𝑖𝛼2(𝜏) be a pair of roots of the characteristic Equation (9) near 𝜏 =

𝜏𝑐 satisfying 𝛼1(𝜏𝑐) = 0 and 𝛼2(𝜏𝑐) = 𝜔𝑛𝑐. Meanwhile, the corresponding transversality condition holds. 

Let 𝜏 = 𝜏𝑐 + 𝜇 such that 𝜇 = 0 corresponds to the Hopf bifurcation value for system (3). Moreover, we 

shift 𝐸∗(𝑢∗, 𝑣∗) to the origin by setting 

𝑈(𝑥, 𝑡) = (𝑈1(𝑥, 𝑡), 𝑈2(𝑥, 𝑡))
𝑇
= (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡))𝑇 − (𝑢∗, 𝑣∗)

𝑇 , 

and normalize the delay by rescaling the time variable 𝑡 → 𝑡/𝜏. Furthermore, we rewrite 𝑈(𝑡) for 𝑈(𝑥, 𝑡), 

and 𝑈𝑡 ∈ 𝒞 for 𝑈𝑡(𝜃) = 𝑈(𝑥, 𝑡 + 𝜃),  − 1 ≤ 𝜃 ≤ 0. Then the system (3) becomes the compact form 

d𝑈(𝑡)

d𝑡
= 𝑑(𝜇)Δ(𝑈𝑡) + 𝐿(𝜇)(𝑈𝑡) + 𝐹(𝑈𝑡 , 𝜇), (11) 

where for 𝜑 = (𝜑(1), 𝜑(2))
𝑇
∈ 𝒞, 𝑑(𝜇)Δ is given by 

𝑑(𝜇)Δ(𝜑) = 𝑑0Δ(𝜑) + 𝐹
𝑑(𝜑, 𝜇) 

with 

𝑑0Δ(𝜑) = 𝜏𝑐𝐷1𝜑𝑥𝑥(0) + 𝜏𝑐𝐷2𝜑𝑥𝑥(−1)

𝐹𝑑(𝜑, 𝜇) = (
𝜉(𝜏𝑐 + 𝜇) (𝜑𝑥

(1)
(0)𝜑𝑥

(2)
(0) + 𝜑(1)(0)𝜑𝑥𝑥

(2)
(0))

−𝑑21(𝜏𝑐 + 𝜇) (𝜑𝑥
(1)
(−1)𝜑𝑥

(2)
(0) + 𝜑𝑥𝑥

(1)
(−1)𝜑(2)(0))

)

+𝜇 (
𝑑11𝜑𝑥𝑥

(1)
(0) + 𝜉𝑢∗𝜑𝑥𝑥

(2)
(0)

−𝑑21𝑣∗𝜑𝑥𝑥
(1)
(−1) + 𝑑22𝜑𝑥𝑥

(2)
(0)

) .

. (12) 

Furthermore, 𝐿(𝜇): 𝒞 → 𝑋 is given by 

𝐿(𝜇)(𝜑) = (𝜏𝑐 + 𝜇)𝐴𝜑(0), (13) 

and 𝐹: 𝒞 × ℝ → 𝑋 is given by 
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𝐹(𝜑, 𝜇) = (𝜏𝑐 + 𝜇) (
𝑓(𝜑(1)(0) + 𝑢∗, 𝜑

(2)(0) + 𝑣∗)

𝑔(𝜑(1)(0) + 𝑢∗, 𝜑
(2)(0) + 𝑣∗)

) − 𝐿(𝜇)(𝜑). (14) 

In what follows, we assume that 𝐹(𝜑, 𝜇) is 𝐶𝑘(𝑘 ≥ 3) function, which is smooth with respect to 𝜑 and 

𝜇. Notice that 𝜇 is the perturbation parameter and is treated as a variable in the calculation of normal form. 

Moreover, by Equation (13), if we denote 𝐿0(𝜑) = 𝜏𝑐𝐴𝜑(0), then Equation (11) can be rewritten as 

d𝑈(𝑡)

d𝑡
= 𝑑0Δ(𝑈𝑡) + 𝐿0(𝑈𝑡) + �̃�(𝑈𝑡 , 𝜇), (15) 

where the linear and nonlinear terms are separated, and 

�̃�(𝜑, 𝜇) = 𝜇𝐴𝜑(0) + 𝐹(𝜑, 𝜇) + 𝐹𝑑(𝜑, 𝜇). (16) 

Thus, the linearized equation of (15) can be written as 
d𝑈(𝑡)

d𝑡
= 𝑑0Δ(𝑈𝑡) + 𝐿0(𝑈𝑡). (17) 

Moreover, the characteristic equation for the linearized Equation (17) is 

∏  

𝑛∈ℕ0

Γ̃𝑛(𝜆) = 0, (18) 

where Γ̃𝑛(𝜆) = det (ℳ̃𝑛(𝜆)) with 

ℳ̃𝑛(𝜆) = 𝜆𝐼2 + 𝜏𝑐
𝑛2

ℓ2
𝐷1 + 𝜏𝑐

𝑛2

ℓ2
e−𝜆𝐷2 − 𝜏𝑐𝐴. (19) 

By comparing Equation (19) with Equation (8), we know that Equation (18) has a pair of purely 

imaginary roots ±i𝜔𝑐 for 𝑛 = 𝑛𝑐 ∈ ℕ, and all other eigenvalues have negative real parts, where 𝜔𝑐 = 𝜏𝑐𝜔𝑛𝑐. 

In order to write Equation (15) as an abstract ordinary differential equation in a Banach space, follows by 

Faria[29], we can take the enlarged space 

ℬ𝒞:= {�̃�(𝜃): [−1,0] → 𝑋: �̃�(𝜃)  is continuous on  [−1,0), ∃ lim
𝜃→0−

 �̃�(𝜃) ∈ 𝑋}, 

then Equation (15) is equivalent to an abstract ordinary differential equation on ℬ𝒞 

d𝑈𝑡
d𝑡

= �̃�𝑈𝑡 + 𝑋0(𝜃)�̃�(𝑈𝑡 , 𝜇). 

Here, �̃� is an operator from 𝒞0
1 = {𝜑 ∈ 𝒞: �̇� ∈ 𝒞, 𝜑(0) ∈ dom (Δ)} to ℬ𝒞, which is defined by 

�̃�𝜑 = �̇� + 𝑋0(𝜏𝑐𝐷1𝜑𝑥𝑥(0) + 𝜏𝑐𝐷2𝜑𝑥𝑥(−1) + 𝐿0(𝜑) − �̇�(0)), 

and 𝑋0(𝜃) is given by 

𝑋0(𝜃) = {
0, −1 ≤ 𝜃 < 0,
𝐼2, 𝜃 = 0.

 

In the following, the method given by Faria[29] is used to complete the decomposition of ℬ𝒞. Let 𝐶:= 

𝐶([−1,0],ℝ2), 𝐶∗: = 𝐶([0,1],ℝ2∗), where ℝ2∗ is the two-dimensional space of row vectors, and define the 

adjoint bilinear form on 𝐶∗ × 𝐶 as follows 

⟨�̂�(𝑠), �̂�(𝜃)⟩𝑛 = �̂�(0)�̂�(0) − ∫  
0

−1

∫  
𝜃

0

�̂�(𝜉 − 𝜃)d𝑀𝑛(𝜃)�̂�(𝜉)d𝜉 

for �̂� ∈ 𝐶∗, �̂� ∈ 𝐶 and 𝜉 ∈ [−1,0], where 𝑀𝑛(𝜃) is a bounded variation function from [−1, 0] to ℝ2 × ℝ2, 

i.e., 𝑀𝑛(𝜃) ∈ 𝐵𝑉([−1,0], ℝ
2 ×ℝ2), such that for �̂�(𝜃) ∈ 𝐶, one has 

−𝜏𝑐
𝑛2

ℓ2
𝐷1�̂�(0) − 𝜏𝑐

𝑛2

ℓ2
𝐷2�̂�(−1) + 𝐿0(�̂�(𝜃)) = ∫  

0

−1

d𝑀𝑛(𝜃)�̂�(𝜃). 

By choosing 

Φ(𝜃) = (𝜙(𝜃), 𝜙‾(𝜃)),Ψ(𝑠) = col (𝜓𝑇(𝑠), 𝜓‾𝑇(𝑠)), 

where col(. ) represents column vector,  𝜙(𝜃) = col (𝜙1(𝜃), 𝜙2(𝜃)) = 𝜙e
i𝜔𝑐𝜃 ∈ ℂ2  with 𝜙 = col (𝜙1, 𝜙2) 

is the eigenvector of Equation (17) associated with the eigenvalue i𝜔𝑐, and 𝜓(𝑠) = col (𝜓1(𝑠), 𝜓2(𝑠)) =
𝜓e−i𝜔𝑐𝑠 ∈ ℂ2 with 𝜓 = col (𝜓1, 𝜓2) is the corresponding adjoint eigenvector such that 
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⟨Ψ(𝑠),Φ(𝜃)⟩𝑛𝑐 = 𝐼2, 

where 

𝜙 = (

1
𝑎11 − i𝜔𝑛𝑐 − 𝑑11(𝑛𝑐

2/ℓ2)

𝜉𝑢∗(𝑛𝑐
2/ℓ2) − 𝑎12

) ,𝜓 = 𝜂 (

1
𝑎12 − 𝜉𝑢∗(𝑛𝑐

2/ℓ2)

i𝜔𝑛𝑐 + 𝑑22(𝑛𝑐
2/ℓ2) − 𝑎22

) 

and 

𝜂 =
i𝜔𝑛𝑐 + (𝑛𝑐/ℓ)

2𝑑22 − 𝑎22

2i𝜔𝑛𝑐 + (𝑛𝑐/ℓ)
2𝑑11 − 𝑎11 + (𝑛𝑐/ℓ)

2𝑑22 − 𝑎22 + 𝜏𝑐𝑎12𝑑21𝑣∗(𝑛𝑐/ℓ)
2e−i𝜔𝑐

. 

According to the method given by Faria[29], the phase space 𝒞 can be decomposed as 

𝒞 = 𝒫⊕𝒬,𝒫 = Im𝜋 , 𝒬 = Ker𝜋,  

where for �̃�(𝜃) ∈ 𝒞, the projection 𝜋: 𝒞 → 𝒫 is defined by 

𝜋(�̃�(𝜃)) = Φ(𝜃) ⟨Ψ(𝜃), (
[�̃�(𝜃), 𝛽𝑛𝑐

(1)
]

[�̃�(𝜃), 𝛽𝑛𝑐
(2)
]
)⟩

𝑛𝑐

𝛾𝑛𝑐(𝑥). (20) 

Therefore, by following the method given by Faria[29], ℬ𝒞 can be divided into a direct sum of center 

subspace and its complementary space, that is 

ℬ𝒞 = 𝒫⊕Ker 𝜋, (21) 

where dim 𝒫 = 2. It is easy to see that the projection 𝜋 which is defined by (20), is extended to a continuous 

projection (which is still denoted by 𝜋 ), that is, 𝜋: ℬ𝒞 → 𝒫. In particular, for �̃� ∈ 𝑋, we have 

𝜋(𝑋0(𝜃)�̃�) = Φ(𝜃)Ψ(0)(
[�̃�, 𝛽𝑛𝑐

(1)
]

[�̃�, 𝛽𝑛𝑐
(2)
]
)𝛾𝑛𝑐(𝑥). (22) 

By combining with Equations (20)–(22), 𝑈𝑡(𝜃) can be decomposed as 

𝑈𝑡(𝜃) = Φ(𝜃) (
𝑧1
𝑧2
) 𝛾𝑛𝑐(𝑥) + 𝑤 = (𝑧1𝜙e

i𝜔𝑐𝜃 + 𝑧2𝜙‾e
−i𝜔𝑐𝜃)𝛾𝑛𝑐(𝑥) + 𝑤

= (𝜙(𝜃)  �̅�(𝜃))(
𝑧1𝛾𝑛𝑐(𝑥)

𝑧2𝛾𝑛𝑐(𝑥)
) + (

𝑤1
𝑤2
) ,

 (23) 

where 𝑤 = col (𝑤1, 𝑤2) and 

(
𝑧1
𝑧2
) = ⟨Ψ(𝜃), (

[𝑈𝑡(𝜃), 𝛽𝑛𝑐
(1)
]

[𝑈𝑡(𝜃), 𝛽𝑛𝑐
(2)
]
)⟩

𝑛𝑐

+Ψ(0)(
[𝑈𝑡(𝜃), 𝛽𝑛𝑐

(1)
]

[𝑈𝑡(𝜃), 𝛽𝑛𝑐
(2)
]
). 

If we assume that 

Φ(𝜃) = (𝜙(𝜃), 𝜙‾(𝜃)) ,  𝑧𝑥 = (𝑧1𝛾𝑛𝑐(𝑥), 𝑧2𝛾𝑛𝑐(𝑥))
𝑇
, 

then (23) can be rewritten as 

𝑈𝑡(𝜃) = Φ(𝜃)𝑧𝑥 +𝑤  with  𝑤 ∈ 𝒞0
1 ∩ Ker𝜋 := 𝒬1. (24) 

Then by combining with Equation (24), the system (15) is decomposed as a system of abstract ordinary 

differential equations (ODEs) on ℝ2 × Ker 𝜋, with finite and infinite dimensional variables are separated in 

the linear term. That is 

{
 
 

 
 
�̇� = 𝐵𝑧 +Ψ(0)(

[�̃�(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇), 𝛽𝑛𝑐
(1)
]

[�̃�(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇), 𝛽𝑛𝑐
(2)
]
) ,

�̇� = 𝐴𝒬1𝑤 + (𝐼2 − 𝜋)𝑋0(𝜃)�̃�(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇),

 (25) 

where 𝑧 = (𝑧1, 𝑧2)
𝑇 , 𝐵 = diag {i𝜔𝑐 , −i𝜔𝑐} is the diagonal matrix, and 𝐴𝒬1: 𝒬

1 → Ker 𝜋 is defined by 

𝐴𝒬1𝑤 = �̇� + 𝑋0(𝜃)(𝜏𝑐𝐷1𝑤𝑥𝑥(0) + 𝜏𝑐𝐷2𝑤𝑥𝑥(−1) + 𝐿0(𝑤) − �̇�(0)). 

Consider the formal Taylor expansions 
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�̃�(𝜑, 𝜇) =∑  

𝑗≥2

1

𝑗!
�̃�𝑗(𝜑, 𝜇), 𝐹(𝜑, 𝜇) =∑  

𝑗≥2

1

𝑗!
𝐹𝑗(𝜑, 𝜇), 𝐹

𝑑(𝜑, 𝜇) =∑  

𝑗≥2

1

𝑗!
𝐹𝑗
𝑑(𝜑, 𝜇). 

From Equation (16), we have 

�̃�2(𝜑, 𝜇) = 2𝜇𝐴𝜑(0) + 𝐹2(𝜑, 𝜇) + 𝐹2
𝑑(𝜑, 𝜇) (26) 

and 

�̃�𝑗(𝜑, 𝜇) = 𝐹𝑗(𝜑, 𝜇) + 𝐹𝑗
𝑑(𝜑, 𝜇), 𝑗 = 3,4,⋯. (27) 

By combining with Equation (22), the system (25) can be rewritten as 

{
 
 

 
 �̇� = 𝐵𝑧 +∑  

𝑗≥2

 
1

𝑗!
𝑓𝑗
1(𝑧, 𝑤, 𝜇),

�̇� = 𝐴𝒬1𝑤 +∑ 

𝑗≥2

 
1

𝑗!
𝑓𝑗
2(𝑧, 𝑤, 𝜇),

 

where 

𝑓𝑗
1(𝑧, 𝑤, 𝜇) = Ψ(0)(

[�̃�𝑗(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇), 𝛽𝑛𝑐
(1)
]

[�̃�𝑗(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇), 𝛽𝑛𝑐
(2)
]
) ,

𝑓𝑗
2(𝑧, 𝑤, 𝜇) = (𝐼2 − 𝜋)𝑋0(𝜃)�̃�𝑗(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇).

 (28) 

In terms of the normal form theory of retarded functional differential equations with parameters[30], after 

a recursive transformation of variables of the form 

(𝑧, 𝑤) = (�̃�, �̃�) +
1

𝑗!
(𝑈𝑗

1(�̃�, 𝜇), 𝑈𝑗
2(�̃�, 𝜇)(𝜃)) , 𝑗 ≥ 2, (29) 

where 𝑧, �̃� ∈ ℝ2, 𝑤, �̃� ∈ 𝒬1 and 𝑈𝑗
1: ℝ3 → ℝ2, 𝑈𝑗

2:ℝ3 → 𝒬1 are homogeneous polynomials of degree 𝑗 in �̃� 

and 𝜇, a locally center manifold for Equation (15) satisfies 𝑤 = 0 and the flow on it is given by the two-

dimensional ODEs 

�̇� = 𝐵𝑧 +∑ 

𝑗≥2

1

𝑗!
𝑔𝑗
1(𝑧, 0, 𝜇), 

which is the normal form as in the usual sense for ODEs. By following study[29,30], we have 

𝑔2
1(𝑧, 0, 𝜇) = ProjKer (𝑀21) 𝑓2

1(𝑧, 0, 𝜇) (30) 

and 

𝑔3
1(𝑧, 0, 𝜇) = ProjKer(𝑀31) 𝑓3

1(𝑧, 0, 𝜇) = Proj𝑆 𝑓3
1(𝑧, 0,0) + 𝑂(𝜇2|𝑧|), (31) 

where Proj𝑝 (𝑞) represents the projection of 𝑞 on 𝑝, and 𝑓3
1(𝑧, 0, 𝜇) is vector and its element is the cubic 

polynomial of (𝑧, 𝜇) after the variable transformation of (29), and it is determined by (41), 

Ker (𝑀2
1) = Span {(

𝜇𝑧1
0
) , (

0
𝜇𝑧2

)} ,

Ker(𝑀3
1) = Span {(𝑧1

2𝑧2
0
) , (𝜇

2𝑧1
0
) , (

0
𝑧1𝑧2

2) , (
0

𝜇2𝑧2
)} ,

 (32) 

and 

𝑆 = Span {(𝑧1
2𝑧2
0
) , (

0
𝑧1𝑧2

2)}. (33) 

In the following, for notational convenience, we let 

ℋ(𝛼𝑧1
𝑞1𝑧2

𝑞2𝜇) = (
𝛼𝑧1

𝑞1𝑧2
𝑞2𝜇

𝛼‾𝑧1
𝑞2𝑧2

𝑞1𝜇
) , 𝛼 ∈ ℂ.  

We then calculate 𝑔𝑗
1(𝑧, 0, 𝜇), 𝑗 = 2,3 step by step. 
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2.3. Algorithm for calculating the normal form of Hopf bifurcation 

2.3.1. Calculation of 𝒈𝟐
𝟏(𝒛, 𝟎, 𝝁) 

From the second mathematical expression in (12), we have 

𝐹2
𝑑(𝜑, 𝜇) = 𝐹20

𝑑 (𝜑) + 𝜇𝐹21
𝑑 (𝜑) (34) 

and 

𝐹3
𝑑(𝜑, 𝜇) = 𝜇𝐹31

𝑑 (𝜑), 𝐹𝑗
𝑑(𝜑, 𝜇) = (0,0)𝑇 , 𝑗 = 4,5,⋯, (35) 

where 

{
 
 
 
 

 
 
 
 
𝐹20
𝑑 (𝜑) = 2(

𝜉𝜏𝑐 (𝜑𝑥
(1)(0)𝜑𝑥

(2)(0) + 𝜑(1)(0)𝜑𝑥𝑥
(2)(0))

−𝑑21𝜏𝑐 (𝜑𝑥
(1)(−1)𝜑𝑥

(2)(0) + 𝜑𝑥𝑥
(1)(−1)𝜑(2)(0))

) ,

𝐹21
𝑑 (𝜑) = 2𝐷1𝜑𝑥𝑥(0) + 2𝐷2𝜑𝑥𝑥(−1),

𝐹31
𝑑 (𝜑) = 6(

𝜉 (𝜑𝑥
(1)(0)𝜑𝑥

(2)(0) + 𝜑(1)(0)𝜑𝑥𝑥
(2)(0))

−𝑑21 (𝜑𝑥
(1)(−1)𝜑𝑥

(2)(0) + 𝜑𝑥𝑥
(1)(−1)𝜑(2)(0))

) .

 (36) 

Furthermore, it is easy to verify that 

(
[2𝜇𝐴(Φ(0)𝑧𝑥), 𝛽𝑛𝑐

(1)
]

[2𝜇𝐴(Φ(0)𝑧𝑥), 𝛽𝑛𝑐
(2)
]
) = 2𝜇𝐴(Φ(0) (

𝑧1
𝑧2
)) ,

(
[𝜇𝐹21

𝑑 (Φ(𝜃)𝑧𝑥), 𝛽𝑛𝑐
(1)
]

 [𝜇𝐹21
𝑑 (Φ(𝜃)𝑧𝑥), 𝛽𝑛𝑐

(2)
] 
) = −

2𝑛𝑐
2

ℓ2
𝜇 (𝐷1 (Φ(0) (

𝑧1
𝑧2
)) + 𝐷2 (Φ(−1) (

𝑧1
𝑧2
))) .

 (37) 

From Equation (14), we have 𝐹2(Φ(𝜃)𝑧𝑥 , 𝜇) = 𝐹2(Φ(𝜃)𝑧𝑥 , 0) for all 𝜇 ∈ ℝ. It follows from the first 

mathematical expression in (28) that 

𝑓2
1(𝑧, 0, 𝜇) = Ψ(0)(

[�̃�2(Φ(𝜃)𝑧𝑥, 𝜇), 𝛽𝑛𝑐
(1)
]

[�̃�2(Φ(𝜃)𝑧𝑥, 𝜇), 𝛽𝑛𝑐
(2)
]
). 

This, together with Equation (26), (30), (32) and (34)–(37), yields to 

𝑔2
1(𝑧, 0, 𝜇) = ProjKer(𝑀21) 𝑓2

1(𝑧, 0, 𝜇) = ℋ(𝐵1𝜇𝑧1), (38) 

where 

𝐵1 = 2𝜓
𝑇(0) (𝐴𝜙(0) −

𝑛𝑐
2

ℓ2
(𝐷1𝜙(0) + 𝐷2𝜙(−1))). (39) 

2.3.2. Calculation of 𝒈𝟑
𝟏(𝒛, 𝟎, 𝝁) 

In this subsection, we calculate the third term 𝑔3
1(𝑧, 0, 𝜇) in terms of Equation (31). Denote 

𝑓2
(1,1)

(𝑧, 𝑤, 0) = Ψ(0)(
[𝐹2(Φ(𝜃)𝑧𝑥 +𝑤, 0), 𝛽𝑛𝑐

(1)
]

[𝐹2(Φ(𝜃)𝑧𝑥 +𝑤, 0), 𝛽𝑛𝑐
(2)
]
) ,

𝑓2
(1,2)

(𝑧, 𝑤, 0) = Ψ(0)(
[𝐹2

𝑑(Φ(𝜃)𝑧𝑥 +𝑤, 0), 𝛽𝑛𝑐
(1)
]

[𝐹2
𝑑(Φ(𝜃)𝑧𝑥 +𝑤, 0), 𝛽𝑛𝑐

(2)
]
) .

 (40) 

It follows from Equation (38) that 𝑔2
1(𝑧, 0,0) = (0,0)𝑇. Then 𝑓3

1(𝑧, 0,0) is determined by 
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𝑓3
1(𝑧, 0,0) = 𝑓3

1(𝑧, 0,0) +
3

2
((𝐷𝑧𝑓2

1(𝑧, 0,0))𝑈2
1(𝑧, 0) + (𝐷𝑤𝑓2

(1,1)
(𝑧, 0,0))𝑈2

2(𝑧, 0)(𝜃)

+ (𝐷𝑤,𝑤𝑥,𝑤𝑥𝑥𝑓2
(1,2)

(𝑧, 0,0))𝑈2
(2,𝑑)

(𝑧, 0)(𝜃)) ,
 (41) 

where 𝑓2
1(𝑧, 0,0) = 𝑓2

(1,1)
(𝑧, 0,0) + 𝑓2

(1,2)
(𝑧, 0,0), 

𝐷𝑤,𝑤𝑥,𝑤𝑥𝑥𝑓2
(1,2)

(𝑧, 0,0) = (𝐷𝑤𝑓2
(1,2)

(𝑧, 0,0), 𝐷𝑤𝑥𝑓2
(1,2)

(𝑧, 0,0), 𝐷𝑤𝑥𝑥𝑓2
(1,2)

(𝑧, 0,0)) ,

𝑈2
1(𝑧, 0) = (𝑀2

1)−1ProjIm (𝑀21) 𝑓2
1(𝑧, 0,0), 𝑈2

2(𝑧, 0)(𝜃) = (𝑀2
2)−1𝑓2

2(𝑧, 0,0),
 (42) 

and 

𝑈2
(2,𝑑)(𝑧, 0)(𝜃) = col (𝑈2

2(𝑧, 0)(𝜃), 𝑈2,𝑥
2 (𝑧, 0)(𝜃), 𝑈2,𝑥𝑥

2 (𝑧, 0)(𝜃)). (43) 

According to Equation (41), we calculate Proj
𝑆
 𝑓3

1(𝑧, 0,0) by the following four steps. 

Step 1 Calculation of 𝐏𝐫𝐨𝐣𝑺 𝒇𝟑
𝟏(𝒛, 𝟎, 𝟎): 

Writing 𝐹3(Φ(𝜃)𝑧𝑥 , 0) as follows 

𝐹3(Φ(𝜃)𝑧𝑥 , 0) = ∑  

𝑞1+𝑞2=3

𝐴𝑞1𝑞2𝑧1
𝑞1𝑧2

𝑞2𝛾𝑛𝑐
3 (𝑥), (44) 

where 𝐴𝑞1𝑞2 = 𝐴
‾
𝑞2𝑞1  with 𝑞1, 𝑞2 ∈ ℕ0 . From Equations (27) and (35), we have �̃�3(Φ(𝜃)𝑧𝑥 , 0) =

𝐹3(Φ(𝜃)𝑧𝑥 , 0), and thus 

Proj𝑆 𝑓3
1(𝑧, 0,0) = ℋ(𝐵21𝑧1

2𝑧2), 

where 

𝐵21 =
3

2ℓ𝜋
𝜓𝑇𝐴21. (45) 

Step 2 Calculation of 𝐏𝐫𝐨𝐣𝑺 ((𝑫𝒛𝒇𝟐
𝟏(𝒛, 𝟎, 𝟎))𝑼𝟐

𝟏(𝒛, 𝟎)): 

Form Equations (26) and (34), we have 

�̃�2(Φ(𝜃)𝑧𝑥 , 0) = 𝐹2(Φ(𝜃)𝑧𝑥 , 0) + 𝐹20
𝑑 (Φ(𝜃)𝑧𝑥). (46) 

From Equation (14), we write 

𝐹2(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇) = 𝐹2(Φ(𝜃)𝑧𝑥 +𝑤, 0)

= ∑  

𝑞1+𝑞2=2

 𝐴𝑞1𝑞2𝑧1
𝑞1𝑧2

𝑞2𝛾𝑛𝑐
2 (𝑥) + 𝑆2(Φ(𝜃)𝑧𝑥, 𝑤) + 𝑂(|𝑤|

2), (47) 

where 𝑆2(Φ(𝜃)𝑧𝑥 , 𝑤) is the product term of Φ(𝜃)𝑧𝑥 and 𝑤. By combining with Equations (34) and (36), we 

write 

𝐹2
𝑑(Φ(𝜃)𝑧𝑥 , 0) = 𝐹20

𝑑 (Φ(𝜃)𝑧𝑥) = ∑  

𝑞1+𝑞2=2

𝐴𝑞1𝑞2
𝑑 𝑧1

𝑞1𝑧2
𝑞2(𝜉𝑛𝑐

2 (𝑥) − 𝛾𝑛𝑐
2 (𝑥))

𝑛𝑐
2

ℓ2
, (48) 

where 𝜉𝑛𝑐(𝑥) = (√2/√ℓ𝜋)sin ((𝑛𝑐/ℓ)𝑥), and 

{
 
 

 
 𝐴20

𝑑 = (
2𝜉𝜏𝑐𝜙1(0)𝜙2(0)

−2𝑑21𝜏𝑐𝜙1(−1)𝜙2(0)
) = 𝐴‾02

𝑑 ,

𝐴11
𝑑 = (

4𝜉𝜏𝑐Re {𝜙1(0)𝜙‾2(0)}

−4𝑑21𝜏𝑐Re {𝜙1(−1)𝜙‾2(0)}
) .

 (49) 

From 𝜉𝑛𝑐(𝑥) = (√2/√ℓ𝜋)sin ((𝑛𝑐/ℓ)𝑥) and Equation (4), it is easy to verify that 

∫  
ℓ𝜋

0

𝛾𝑛𝑐
3 (𝑥)d𝑥 = ∫  

ℓ𝜋

0

𝜉𝑛2
2 (𝑥)𝛾𝑛𝑐(𝑥)d𝑥 = 0. 

Then by combining with Equations (46)–(48), we have 
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𝑓2
1(𝑧, 0,0) = Ψ(0)(

[�̃�2(Φ(𝜃)𝑧𝑥, 0), 𝛽𝑛𝑐
(1)
]

[�̃�2(Φ(𝜃)𝑧𝑥, 0), 𝛽𝑛𝑐
(2)
]
) = (

0
0
). (50) 

Thus, by combining with Equations (33) and (50), we have 

Proj𝑆 ((𝐷𝑧𝑓2
1(𝑧, 0,0))𝑈2

1(𝑧, 0)) = (
0
0
). 

Step 3 Calculation of 𝐏𝐫𝐨𝐣𝑺 ((𝑫𝒘𝒇𝟐
(𝟏,𝟏)

(𝒛, 𝟎, 𝟎))𝑼𝟐
𝟐(𝒛, 𝟎)(𝜽)): 

Let 

𝑈2
2(𝑧, 0)(𝜃) ≜ ℎ(𝜃, 𝑧) = ∑  

𝑛∈ℕ0

ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥), (51) 

where 

ℎ𝑛(𝜃, 𝑧) = ∑𝑞1+𝑞2=2  ℎ𝑛,𝑞1𝑞2(𝜃)𝑧1
𝑞1𝑧2

𝑞2 . 

Then we have 

(

 
 
 
 [𝑆2(Φ(𝜃)𝑧𝑥 , ∑  

𝑛∈ℕ0

 ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥)) , 𝛽𝑛𝑐
(1)
]

[𝑆2(Φ(𝜃)𝑧𝑥 , ∑  

𝑛∈ℕ0

 ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥)) , 𝛽𝑛𝑐
(2)
]

)

 
 
 
 

= ∑  

𝑛∈ℕ0

 𝑏𝑛 (𝑆2(𝜙(𝜃)𝑧1, ℎ𝑛(𝜃, 𝑧)) + 𝑆2(𝜙‾(𝜃)𝑧2, ℎ𝑛(𝜃, 𝑧))) ,

 

where 

𝑏𝑛 = ∫  
ℓ𝜋

0

𝛾𝑛𝑐
2 (𝑥)𝛾𝑛(𝑥)d𝑥 =

{
 
 

 
 
1

√ℓ𝜋
, 𝑛 = 0,

1

√2ℓ𝜋
, 𝑛 = 2𝑛𝑐 ,

0, otherwise.

 (52) 

Hence, we have 

(𝐷𝑤𝑓2
(1,1)

(𝑧, 0,0))𝑈2
2(𝑧, 0)(𝜃)

= Ψ(0)( ∑  

𝑛=0,2𝑛𝑐

 𝑏𝑛 (𝑆2(𝜙(𝜃)𝑧1, ℎ𝑛(𝜃, 𝑧)) + 𝑆2 (𝜙‾(𝜃)𝑧2, ℎ𝑛(𝜃, 𝑧)))) ,
 

and 

Proj𝑆 ((𝐷𝑤𝑓2
(1,1)(𝑧, 0,0))𝑈2

2(𝑧, 0)(𝜃)) = ℋ(𝐵22𝑧1
2𝑧2), 

where 

𝐵22 =
1

√ℓ𝜋
𝜓𝑇 (𝑆2(𝜙(𝜃), ℎ0,11(𝜃)) + 𝑆2(𝜙‾(𝜃), ℎ0,20(𝜃)))

+
1

√2ℓ𝜋
𝜓𝑇 (𝑆2(𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) + 𝑆2(𝜙

‾(𝜃), ℎ2𝑛𝑐,20(𝜃))) .

 (53) 

Step 4 Calculation of 𝐏𝐫𝐨𝐣𝑺 ((𝑫𝒘,𝒘𝒙,𝒘𝒙𝒙𝒇𝟐
(𝟏,𝟐)

(𝒛, 𝟎, 𝟎))𝑼𝟐
(𝟐,𝒅)

(𝒛, 𝟎)(𝜽)): 

Denote 𝜑(𝜃) = (𝜑(1)(𝜃), 𝜑(2)(𝜃))
𝑇
= Φ(𝜃)𝑧𝑥, 
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𝐹2
𝑑(𝜑(𝜃), 𝑤, 𝑤𝑥 , 𝑤𝑥𝑥) = 𝐹2

𝑑(𝜑(𝜃) + 𝑤, 0) = 𝐹20
𝑑 (𝜑(𝜃) + 𝑤)

= 2

(

 
 
𝜉𝜏𝑐 ((𝜑𝑥

(1)
(0) + (𝑤1)𝑥(0))(𝜑𝑥

(2)
(0) + (𝑤2)𝑥(0)) + (𝜑

(1)(0) + 𝑤1(0))(𝜑𝑥𝑥
(2)
(0) + (𝑤2)𝑥𝑥(0)))

−𝑑21𝜏𝑐 (
(𝜑𝑥

(1)(−1) + (𝑤1)𝑥(−1)) (𝜑𝑥
(2)(0) + (𝑤2)𝑥(0)) +

(𝜑𝑥𝑥
(1)
(−1) + (𝑤1)𝑥𝑥(−1))(𝜑

(2)(0) + 𝑤2(0))
)

)

 
  

and 

�̃�2
(𝑑,1)(𝜑(𝜃),𝑤) = 2(

𝜉𝜏𝑐𝜑𝑥𝑥
(2)(0)𝑤1(0)

−𝑑21𝜏𝑐𝜑𝑥𝑥
(1)(−1)𝑤2(0)

) ,

�̃�2
(𝑑,2)

(𝜑(𝜃), 𝑤𝑥) = 2(
𝜉𝜏𝑐 (𝜑𝑥

(2)
(0)(𝑤1)𝑥(0) + 𝜑𝑥

(1)
(0)(𝑤2)𝑥(0))

−𝑑21𝜏𝑐 (𝜑𝑥
(2)
(0)(𝑤1)𝑥(−1) + 𝜑𝑥

(1)
(−1)(𝑤2)𝑥(0))

) ,

�̃�2
(𝑑,3)

(𝜑(𝜃), 𝑤𝑥𝑥) = 2(
𝜉𝜏𝑐𝜑

(1)(0)(𝑤2)𝑥𝑥(0)

−𝑑21𝜏𝑐𝜑
(2)(0)(𝑤1)𝑥𝑥(−1)

) .

 

By combining with Equations (4) and (51), we have 

{
 
 

 
 𝑈2,𝑥

2 (𝑧, 0)(𝜃) = ℎ𝑥(𝜃, 𝑧) = − ∑  

𝑛∈ℕ0

 ℎ𝑛(𝜃, 𝑧)𝜉𝑛(𝑥)
𝑛

ℓ
,

𝑈2,𝑥𝑥
2 (𝑧, 0)(𝜃) = ℎ𝑥𝑥(𝜃, 𝑧) = − ∑  

𝑛∈ℕ0

 ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥)
𝑛2

ℓ2
.

 

Then we have 

(𝐷𝑤,𝑤𝑥,𝑤𝑥𝑥𝐹2
𝑑(𝜑(𝜃), 𝑤,𝑤𝑥 , 𝑤𝑥𝑥))𝑈2

(2,𝑑)
(𝑧, 0)(𝜃)

= �̃�2
(𝑑,1)

(𝜑(𝜃), ℎ(𝜃, 𝑧)) + �̃�2
(𝑑,2)(𝜑(𝜃), ℎ𝑥(𝜃, 𝑧)) + �̃�2

(𝑑,3)(𝜑(𝜃), ℎ𝑥𝑥(𝜃, 𝑧))
 

and 

(
[�̃�2
(𝑑,1)

(𝜑(𝜃), ℎ(𝜃, 𝑧)), 𝛽𝑛𝑐
(1)
]

[�̃�2
(𝑑,1)

(𝜑(𝜃), ℎ(𝜃, 𝑧)), 𝛽𝑛𝑐
(2)
]
)

= −(𝑛𝑐/ℓ)
2 ∑  

𝑛∈ℕ0

 𝑏𝑛 (𝑆2
(𝑑,1)

(𝜙(𝜃)𝑧1, ℎ𝑛(𝜃, 𝑧)) + 𝑆2
(𝑑,1)

(𝜙‾(𝜃)𝑧2, ℎ𝑛(𝜃, 𝑧))) ,

(
[�̃�2
(𝑑,2)(𝜑(𝜃), ℎ𝑥(𝜃, 𝑧)), 𝛽𝑛𝑐

(1)
]

[�̃�2
(𝑑,2)(𝜑(𝜃), ℎ𝑥(𝜃, 𝑧)), 𝛽𝑛𝑐

(2)
]
)

= (𝑛𝑐/ℓ) ∑  

𝑛∈ℕ0

  (𝑛/ℓ)𝑐𝑛 (𝑆2
(𝑑,2)(𝜙(𝜃)𝑧1, ℎ𝑛(𝜃, 𝑧)) + 𝑆2

(𝑑,2)(𝜙‾(𝜃)𝑧2, ℎ𝑛(𝜃, 𝑧))) ,

(
[�̃�2
(𝑑,3)(𝜑(𝜃), ℎ𝑥𝑥(𝜃, 𝑧)), 𝛽𝑛𝑐

(1)
]

[�̃�2
(𝑑,3)

(𝜑(𝜃), ℎ𝑥𝑥(𝜃, 𝑧)), 𝛽𝑛𝑐
(2)
]
)

= − ∑  

𝑛∈ℕ0

  (𝑛/ℓ)2𝑏𝑛 (𝑆2
(𝑑,3)(𝜙(𝜃)𝑧1, ℎ𝑛(𝜃, 𝑧)) + 𝑆2

(𝑑,3)(𝜙‾(𝜃)𝑧2, ℎ𝑛(𝜃, 𝑧))) ,

 

where 𝑏𝑛 is defined by Equation (52) and 

𝑐𝑛 = ∫  
ℓ𝜋

0

𝜉𝑛𝑐(𝑥)𝜉𝑛(𝑥)𝛾𝑛𝑐(𝑥)d𝑥 = {

1

√2ℓ𝜋
, 𝑛 = 2𝑛𝑐 ,

0, otherwise,

 

and for 

𝜙(𝜃) = (𝜙1(𝜃), 𝜙2(𝜃))
𝑇
, 𝑦(𝜃) = (𝑦1(𝜃), 𝑦2(𝜃))

𝑇
∈ 𝐶([−1,0],ℝ2), 

we have 
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{
  
 

  
 𝑆2

(𝑑,1)
(𝜙(𝜃), 𝑦(𝜃)) = 2 (

𝜉𝜏𝑐𝜙2(0)𝑦1(0)

−𝑑21𝜏𝑐𝜙1(−1)𝑦2(0)
) ,

𝑆2
(𝑑,2)

(𝜙(𝜃), 𝑦(𝜃)) = 2(
𝜉𝜏𝑐(𝜙2(0)𝑦1(0) + 𝜙1(0)𝑦2(0))

−𝑑21𝜏𝑐(𝜙2(0)𝑦1(−1) + 𝜙1(−1)𝑦2(0))
) ,

𝑆2
(𝑑,3)

(𝜙(𝜃), 𝑦(𝜃)) = 2 (
𝜉𝜏𝑐𝜙1(0)𝑦2(0)

−𝑑21𝜏𝑐𝜙2(0)𝑦1(−1)
) .

 

Furthermore, by combining with Equations (40), (42) and (43), we have 

(𝐷𝑤,𝑤𝑥,𝑤𝑥𝑥𝑓2
(1,2)

(𝑧, 0,0))𝑈2
(2,𝑑)

(𝑧, 0)(𝜃)

= Ψ(0)(
[𝐷𝑤,𝑤𝑥,𝑤𝑥𝑥𝐹2

𝑑(𝜑(𝜃), 𝑤,𝑤𝑥 , 𝑤𝑥𝑥)𝑈2
(2,𝑑)(𝑧, 0)(𝜃), 𝛽𝑛𝑐

(1)
]

[𝐷𝑤,𝑤𝑥,𝑤𝑥𝑥𝐹2
𝑑(𝜑(𝜃), 𝑤,𝑤𝑥 , 𝑤𝑥𝑥)𝑈2

(2,𝑑)(𝑧, 0)(𝜃), 𝛽𝑛𝑐
(2)
]
) ,

 

and then we obtain 

Proj𝑆 ((𝐷𝑤,𝑤𝑥,𝑤𝑥𝑥𝑓2
(1,2)(𝑧, 0,0))𝑈2

(2,𝑑)(𝑧, 0)(𝜃)) = ℋ(𝐵23𝑧1
2𝑧2), 

where 

𝐵23 = −
1

√ℓ𝜋
(𝑛𝑐/ℓ)

2𝜓𝑇 (𝑆2
(𝑑,1)

(𝜙(𝜃), ℎ0,11(𝜃)) + 𝑆2
(𝑑,1)

(𝜙‾(𝜃), ℎ0,20(𝜃)))

+
1

√2ℓ𝜋
𝜓𝑇 ∑  

𝑗=1,2,3

 𝑏2𝑛𝑐
(𝑗)
(𝑆2

(𝑑,𝑗)
(𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) + 𝑆2

(𝑑,𝑗)
(𝜙‾(𝜃), ℎ2𝑛𝑐,20(𝜃)))

 (54) 

with 

𝑏2𝑛𝑐
(1)

= −
𝑛𝑐
2

ℓ2
, 𝑏2𝑛𝑐
(2) =

2𝑛𝑐
2

ℓ2
, 𝑏2𝑛𝑐
(3) = −

(2𝑛𝑐)
2

ℓ2
. 

3. Normal form of Hopf bifurcation for the system (3) 

By using the algorithm developed in Section 2, we can obtain the normal form of Hopf bifurcation for 

the system (3) truncated to the third-order term 

�̇� = 𝐵𝑧 +
1

2
(
𝐵1𝑧1𝜇

𝐵‾1𝑧2𝜇
) +

1

3!
(
𝐵2𝑧1

2𝑧2
𝐵‾2𝑧1𝑧2

2) + 𝑂(|𝑧|𝜇
2 + |𝑧|4), (55) 

where 

𝐵1 = 2𝜓
𝑇(0) (𝐴𝜙(0) −

𝑛𝑐
2

ℓ2
(𝐷1𝜙(0) + 𝐷2𝜙(−1))) ,

𝐵2 = 𝐵21 +
3

2
(𝐵22 + 𝐵23).

 (56) 

Here, 𝐵1 is determined by Equation (39), 𝐵21, 𝐵22 and 𝐵23 are determined by Equations (45), (53), (54), 

respectively, and they can be calculated by using the MATLAB software. The normal form Equation (55) 

can be written in real coordinates through the change of variables 𝑧1 = 𝑣1 − i𝑣2, 𝑧2 = 𝑣1 + i𝑣2, and then 

changing to polar coordinates by 𝑣1 = 𝜌cos Θ, 𝑣2 = 𝜌sin Θ, where Θ is the azimuthal angle. Therefore, by 

the above transformations and removing the azimuthal term Θ, Equation (55) can be rewritten as 

�̇� = 𝐾1𝜇𝜌 + 𝐾2𝜌
3 + 𝑂(𝜇2𝜌 + |(𝜌, 𝜇)|4), 

where 

𝐾1 =
1

2
Re(𝐵1) , 𝐾2 =

1

3!
Re(𝐵2). 

According to the study[31], the sign of 𝐾1𝐾2 determines the direction of the Hopf bifurcation, and the 

sign of 𝐾2 determines the stability of the Hopf bifurcation periodic solution. More precisely, we have the 
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following results:  

(i) when 𝐾1𝐾2 < 0, the Hopf bifurcation is supercritical, and the Hopf bifurcation periodic solution is 

stable for 𝐾2 < 0 and unstable for 𝐾2 > 0;  

(ii) when 𝐾1𝐾2 > 0, the Hopf bifurcation is subcritical, and the Hopf bifurcation periodic solution is 

stable for 𝐾2 < 0 and unstable for 𝐾2 > 0. 

By combining with (53), (54) and the second mathematical expression in Equation (56), it is obvious 

that in order to obtain the value of 𝐾2, we still need to calculate ℎ0,20(𝜃), ℎ0,11(𝜃), ℎ2𝑛𝑐,20(𝜃), ℎ2𝑛𝑐,11(𝜃) and 

𝐴𝑞1𝑞2
. 

3.1. Calculations of 𝒉𝟎,𝟐𝟎(𝜽), 𝒉𝟎,𝟏𝟏(𝜽), 𝒉𝟐𝒏𝒄,𝟐𝟎(𝜽) and 𝒉𝟐𝒏𝒄,𝟏𝟏(𝜽) 

From the study[29], we have 

𝑀2
2(ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥)) = 𝐷𝑧(ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥))𝐵𝑧 − 𝐴𝒬1(ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥)), 

which leads to 

(
[𝑀2

2(ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥)), 𝛽𝑛
(1)
]

[𝑀2
2(ℎ𝑛(𝜃, 𝑧)𝛾𝑛(𝑥)), 𝛽𝑛

(2)
]
)

= 2i𝜔𝑐(ℎ𝑛,20(𝜃)𝑧1
2 − ℎ𝑛,02(𝜃)𝑧2

2) − (ℎ̇𝑛(𝜃, 𝑧) + 𝑋0(𝜃) (ℒ0(ℎ𝑛(𝜃, 𝑧)) − ℎ̇𝑛(0, 𝑧))) ,

 (57) 

where 

ℒ0(ℎ𝑛(𝜃, 𝑧)) = −𝜏𝑐(𝑛/ℓ)
2(𝐷1ℎ𝑛(0, 𝑧) + 𝐷2ℎ𝑛(−1, 𝑧)) + 𝜏𝑐𝐴ℎ𝑛(0, 𝑧). 

By Equation (22) and the second mathematical expression in (28), we have 

𝑓2
2(𝑧, 0,0) = 𝑋0(𝜃)�̃�2(Φ(𝜃)𝑧𝑥 , 0) − 𝜋 (𝑋0(𝜃)�̃�2(Φ(𝜃)𝑧𝑥 , 0))

= 𝑋0(𝜃)�̃�2(Φ(𝜃)𝑧𝑥, 0) − Φ(𝜃)Ψ(0)(
[�̃�2(Φ(𝜃)𝑧𝑥, 0), 𝛽𝑛𝑐

(1)
]

[�̃�2(Φ(𝜃)𝑧𝑥, 0), 𝛽𝑛𝑐
(2)
]
) 𝛾𝑛𝑐(𝑥).

 (58) 

Furthermore, by Equations (46)–(48), we have 

(
[𝑓2
2(𝑧, 0,0), 𝛽𝑛

(1)
]

[𝑓2
2(𝑧, 0,0), 𝛽𝑛

(2)
]
) =

{
 

 
1

√ℓ𝜋
𝑋0(𝜃)(𝐴20𝑧1

2 + 𝐴02𝑧2
2 + 𝐴11𝑧1𝑧2), 𝑛 = 0,

1

√2ℓ𝜋
𝑋0(𝜃)(�̃�20𝑧1

2 + �̃�02𝑧2
2 + �̃�11𝑧1𝑧2), 𝑛 = 2𝑛𝑐 ,

 (59) 

where �̃�𝑗1𝑗2  is defined as follows 

{
�̃�𝑗1𝑗2 = 𝐴𝑗1𝑗2 − 2(𝑛𝑐/ℓ)

2𝐴𝑗1𝑗2
𝑑 ,

𝑗1, 𝑗2 = 0,1,2, 𝑗1 + 𝑗2 = 2,
 (60) 

where 𝐴𝑗1𝑗2
𝑑  is determined by Equation (49), and 𝐴𝑗1𝑗2 will be calculated in the following section. Therefore, 

by Equations (42), (57), (58), (59), and by matching the coefficients of 𝑧1
2 and 𝑧1𝑧2, we have 

𝑛 = 0,

{
  
 

  
 
𝑧1
2: {

ℎ̇0,20(𝜃) − 2i𝜔𝑐ℎ0,20(𝜃) = (0,0)
𝑇 ,   

ℎ̇0,20(0) − 𝐿0 (ℎ0,20(𝜃)) =
1

√ℓ𝜋
𝐴20,

𝑧1𝑧2: {

ℎ̇0,11(𝜃) = (0,0)
𝑇 ,                               

ℎ̇0,11(0) − 𝐿0(ℎ0,11(𝜃)) =
1

√ℓ𝜋
𝐴11

 (61) 

and 
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𝑛 = 2𝑛𝑐

{
  
 

  
 
𝑧1
2: {

ℎ̇2𝑛𝑐,20(𝜃) − 2i𝜔𝑐ℎ2𝑛𝑐,20(𝜃) = (0,0)
𝑇 ,     

ℎ̇2𝑛𝑐,20(0) − ℒ0 (ℎ2𝑛𝑐,20(𝜃)) =
1

√2ℓ𝜋
�̃�20,

𝑧1𝑧2: {

ℎ̇2𝑛𝑐,11(𝜃) = (0,0)
𝑇 ,                                       

ℎ̇2𝑛𝑐,11(0) − ℒ0 (ℎ2𝑛𝑐,11(𝜃)) =
1

√2ℓ𝜋
�̃�11.

 (62) 

Next, by combining with Equations (61) and (62), we will give the mathematical expressions of 

ℎ0,20(𝜃), ℎ0,11(𝜃), ℎ2𝑛𝑐,20(𝜃) and ℎ2𝑛𝑐,11(𝜃). 

Calculations of 𝒉𝟎,𝟐𝟎(𝜽) and 𝒉𝟎,𝟏𝟏(𝜽): 

Notice that 

{

ℎ̇0,20(𝜃) − 2i𝜔𝑐ℎ0,20(𝜃) = (0,0)
𝑇 ,

ℎ̇0,20(0) − 𝐿0 (ℎ0,20(𝜃)) =
1

√ℓ𝜋
𝐴20,

 (63) 

then from (63), we have 

ℎ0,20(𝜃) = e
2i𝜔𝑐𝜃ℎ0,20(0) 

and 

ℎ̇0,20(0) − 2i𝜔𝑐ℎ0,20(0) = (0,0)
𝑇 . 

Notice that 

𝐿0(ℎ0,20(𝜃)) = 𝜏𝑐𝐴ℎ0,20(0), 

then we have 

(2i𝜔𝑐𝐼2 − 𝜏𝑐𝐴)ℎ0,20(0) =
1

√ℓ𝜋
𝐴20, 

and hence 

ℎ0,20(𝜃) = e
2i𝜔𝑐𝜃𝐶1 

with 

𝐶1 = (2i𝜔𝑐𝐼2 − 𝜏𝑐𝐴)
−1

1

√ℓ𝜋
𝐴20. 

Notice that 

{

ℎ̇0,11(𝜃) = (0,0)
𝑇 ,

ℎ̇0,11(0) − 𝐿0 (ℎ0,11(𝜃)) =
1

√ℓ𝜋
𝐴11,

 (64) 

then from Equation (64), we have ℎ0,11(𝜃) = ℎ0,11(0) and ℎ̇0,11(0) = (0,0)
𝑇. Notice that 

𝐿0(ℎ0,11(𝜃)) = 𝜏𝑐𝐴ℎ0,11(0), 
then we have 

−𝜏𝑐𝐴ℎ0,11(0) =
1

√ℓ𝜋
𝐴11, 

and hence ℎ0,11(𝜃) = 𝐶2 with 

𝐶2 = (−𝜏𝑐𝐴)
−1

1

√ℓ𝜋
𝐴11. 

Calculations of 𝒉𝟐𝒏𝒄,𝟐𝟎(𝜽) and 𝒉𝟐𝒏𝒄,𝟏𝟏(𝜽): 

Notice that 

{

ℎ̇2𝑛𝑐,20(𝜃) − 2i𝜔𝑐ℎ2𝑛𝑐,20(𝜃) = (0,0)
𝑇 ,

ℎ̇2𝑛𝑐,20(0) − ℒ0 (ℎ2𝑛𝑐,20(𝜃)) =
1

√2ℓ𝜋
�̃�20,

 (65) 
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then from Equation (65), we have ℎ2𝑛𝑐,20(𝜃) = e
2i𝜔𝑐𝜃ℎ2𝑛𝑐,20(0) , and hence ℎ2𝑛𝑐,20(−1) =

e−2i𝜔𝑐ℎ2𝑛𝑐,20(0). Furthermore, from Equation (65) and 

ℒ0(ℎ2𝑛𝑐,20(𝜃)) = −𝜏𝑐
4𝑛𝑐

2

ℓ2
(𝐷1ℎ2𝑛𝑐,20(0) + 𝐷2ℎ2𝑛𝑐,20(−1)) + 𝜏𝑐𝐴ℎ2𝑛𝑐,20(0), 

we have 

2i𝜔𝑐ℎ2𝑛𝑐,20(0) =
1

√2ℓ𝜋
�̃�20 − 𝜏𝑐

4𝑛𝑐
2

ℓ2
(𝐷1ℎ2𝑛𝑐,20(0) + 𝐷2ℎ2𝑛𝑐,20(−1)) + 𝜏𝑐𝐴ℎ2𝑛𝑐,20(0). (66) 

Therefore, by combining with ℎ2𝑛𝑐,20(−1) = e−2i𝜔𝑐ℎ2𝑛𝑐,20(0) and (66), we can obtain 

(2i𝜔𝑐𝐼2 + 𝜏𝑐
4𝑛𝑐

2

ℓ2
𝐷1 + 𝜏𝑐

4𝑛𝑐
2

ℓ2
𝐷2e

−2i𝜔𝑐 − 𝜏𝑐𝐴)ℎ2𝑛𝑐,20(0) =
1

√2ℓ𝜋
�̃�20, 

and hence 

ℎ2𝑛𝑐,20(𝜃) = e
2i𝜔𝑐𝜃𝐶3 

with 

𝐶3 = (2i𝜔𝑐𝐼2 + 𝜏𝑐
4𝑛𝑐

2

ℓ2
𝐷1 + 𝜏𝑐

4𝑛𝑐
2

ℓ2
𝐷2e

−2i𝜔𝑐 − 𝜏𝑐𝐴)

−1
1

√2ℓ𝜋
�̃�20. 

Here, �̃�20 and 𝐴20
𝑑  are defined by Equations (60) and (49), respectively. 

Notice that 

{

ℎ̇2𝑛𝑐,11(𝜃) = (0,0)
𝑇 ,

ℎ̇2𝑛𝑐,11(0) − ℒ0 (ℎ2𝑛𝑐,11(𝜃)) =
1

√2ℓ𝜋
�̃�11,

 (67) 

then from Equation (67), we have ℎ2𝑛𝑐,11(𝜃) = ℎ2𝑛𝑐,11(0) , and hence ℎ2𝑛𝑐,11(−1) = ℎ2𝑛𝑐,11(0) . 

Furthermore, by combining with Equation (67) and 

ℒ0(ℎ2𝑛𝑐,11(𝜃)) = −𝜏𝑐
4𝑛𝑐

2

ℓ2
(𝐷1ℎ2𝑛𝑐,11(0) + 𝐷2ℎ2𝑛𝑐,11(−1)) + 𝜏𝑐𝐴ℎ2𝑛𝑐,11(0), 

we have 

(0,0)𝑇 = −𝜏𝑐
4𝑛𝑐

2

ℓ2
(𝐷1ℎ2𝑛𝑐,11(0) + 𝐷2ℎ2𝑛𝑐,11(−1)) + 𝜏𝑐𝐴ℎ2𝑛𝑐,11(0) +

1

√2ℓ𝜋
�̃�11. (68) 

Therefore, by combining with ℎ2𝑛𝑐,11(−1) = ℎ2𝑛𝑐,11(0) and Equation (68), we can obtain 

(𝜏𝑐
4𝑛𝑐

2

ℓ2
𝐷1 + 𝜏𝑐

4𝑛𝑐
2

ℓ2
𝐷2 − 𝜏𝑐𝐴)ℎ2𝑛𝑐,11(0) =

1

√2ℓ𝜋
�̃�11, 

and hence 

ℎ2𝑛𝑐,11(𝜃) = 𝐶4 

with 

𝐶4 = (𝜏𝑐
4𝑛𝑐

2

ℓ2
𝐷1 + 𝜏𝑐

4𝑛𝑐
2

ℓ2
𝐷2 − 𝜏𝑐𝐴)

−1
1

√2ℓ𝜋
�̃�11. 

Here, �̃�11 and 𝐴11
𝑑  are defined by Equations (60) and (49), respectively.  

3.2. Calculations of 𝑨𝒒𝟏𝒒𝟐  and 𝑺𝟐(𝚽(𝜽)𝒛𝒙, 𝒘) 

In this subsection, let 

𝐹(𝜑, 𝜇) = (𝐹(1)(𝜑, 𝜇), 𝐹(2)(𝜑, 𝜇))
𝑇

 

and 𝜑 = (𝜑1, 𝜑2)
𝑇 ∈ 𝒞, and we write 

1

𝑗!
𝐹𝑗(𝜑, 0) = ∑  

𝑗1+𝑗2=𝑗

1

𝑗1! 𝑗2!
𝑓𝑗1𝑗2𝜑1

𝑗1(0)𝜑2
𝑗2(0), (69) 



Mathematics and Systems Science | doi: 10.54517/mss.v1i1.2289 

16 

where 

𝑓𝑗1𝑗2 = col (𝑓𝑗1𝑗2
(1)
, 𝑓𝑗1𝑗2
(2)
) 

with 

𝑓𝑗1𝑗2
(𝑘)

=
∂𝑗1+𝑗2𝐹(𝑘)(0,0)

∂𝜑1
𝑗1(0) ∂𝜑2

𝑗2(0)
, 𝑘 = 1,2. 

Then from Equation (69), we have 

𝐹2(𝜑, 𝜇) = 𝐹2(𝜑, 0) = 2 ∑  

𝑗1+𝑗2=2

 
1

𝑗1! 𝑗2!
𝑓𝑗1𝑗2𝜑1

𝑗1(0)𝜑2
𝑗2(0)

= 𝑓20𝜑1
2(0) + 𝑓02𝜑2

2(0) + 2𝑓11𝜑1(0)𝜑2(0)

 (70) 

and 

𝐹3(𝜑, 0) = 6 ∑  

𝑗1+𝑗2=3

 
1

𝑗1! 𝑗2!
𝑓𝑗1𝑗2𝜑1

𝑗1(0)𝜑2
𝑗2(0)

= 𝑓30𝜑1
3(0) + 𝑓03𝜑2

3(0) + 3𝑓21𝜑1
2(0)𝜑2(0) + 3𝑓12𝜑1(0)𝜑2

2(0).

 (71) 

Notice that 

𝜑(𝜃) = Φ(𝜃)𝑧𝑥 = 𝜙(𝜃)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙
‾(𝜃)𝑧2𝛾𝑛𝑐(𝑥)

           = (
𝜙1(𝜃)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙

‾
1(𝜃)𝑧2𝛾𝑛𝑐(𝑥)

𝜙2(𝜃)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙
‾
2(𝜃)𝑧2𝛾𝑛𝑐(𝑥)

)

           = (
𝜑1(𝜃)
𝜑2(𝜃)

) ,

 (72) 

and similar to Equation (44), we have 

𝐹2(Φ(𝜃)𝑧𝑥 , 0) = ∑  

𝑞1+𝑞2=2

𝐴𝑞1𝑞2𝛾𝑛𝑐
𝑞1+𝑞2(𝑥)𝑧1

𝑞1𝑧2
𝑞2 , (73) 

then by combining with Equations (70), (72) and (73), we have 

𝐴20 = 𝑓20𝜙1
2(0) + 𝑓02𝜙2

2(0) + 2𝑓11𝜙1(0)𝜙2(0),

𝐴02 = 𝑓20𝜙‾1
2(0) + 𝑓02𝜙‾2

2(0) + 2𝑓11𝜙‾1(0)𝜙‾2(0),

𝐴11 = 2𝑓20𝜙1(0)𝜙‾1(0) + 2𝑓02𝜙2(0)𝜙‾2(0) + 2𝑓11 (𝜙1(0)𝜙‾2(0) + 𝜙‾1(0)𝜙2(0)) .

 

Furthermore, by combining with Equations (44), (71) and (72), we have 

𝐴30 = 𝑓30𝜙1
3(0) + 𝑓03𝜙2

3(0) + 3𝑓21𝜙1
2(0)𝜙2(0) + 3𝑓12𝜙1(0)𝜙2

2(0),

𝐴03 = 𝑓30𝜙‾1
3(0) + 𝑓03𝜙‾2

3(0) + 3𝑓21𝜙‾1
2(0)𝜙‾2(0) + 3𝑓12𝜙‾1(0)𝜙‾2

2(0),

𝐴21 = 3𝑓30𝜙1
2(0)𝜙‾1(0) + 3𝑓03𝜙2

2(0)𝜙‾2(0) + 3𝑓21(𝜙1
2(0)𝜙‾2(0) + 2𝜙1(0)𝜙‾1(0)𝜙2(0))

+3𝑓12(2𝜙1(0)𝜙2(0)𝜙‾2(0) + 𝜙‾1(0)𝜙2
2(0)),

𝐴12 = 3𝑓30𝜙1(0)𝜙‾1
2(0) + 3𝑓03𝜙2(0)𝜙‾2

2(0) + 3𝑓21(2𝜙1(0)𝜙‾1(0)𝜙‾2(0) + 𝜙‾1
2(0)𝜙2(0))

+3𝑓12(𝜙1(0)𝜙‾2
2(0) + 2𝜙‾1(0)𝜙2(0)𝜙‾2(0)).

 

Moreover, from Equation (69), we have 

𝐹2(𝜑(𝜃) + 𝑤, 𝜇) = 𝐹2(𝜑(𝜃) + 𝑤, 0) = 2 ∑  

𝑗1+𝑗2=2

 
1

𝑗1! 𝑗2!
𝑓𝑗1𝑗2(𝜑1(0) + 𝑤1(0))

𝑗1(𝜑2(0) + 𝑤2(0))
𝑗2

= 𝑓20(𝜑1(0) + 𝑤1(0))
2 + 𝑓02(𝜑2(0) + 𝑤2(0))

2 + 2𝑓11(𝜑1(0) + 𝑤1(0))(𝜑2(0) + 𝑤2(0)).

 (74) 

Notice that 
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𝜑(𝜃) + 𝑤 = Φ(𝜃)𝑧𝑥 +𝑤 = 𝜙(𝜃)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙
‾(𝜃)𝑧2𝛾𝑛𝑐(𝑥) + 𝑤

= (
𝜙1(𝜃)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙

‾
1(𝜃)𝑧2𝛾𝑛𝑐(𝑥) + 𝑤1

𝜙2(𝜃)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙
‾
2(𝜃)𝑧2𝛾𝑛𝑐(𝑥) + 𝑤2

)

= (
𝜑1(𝜃) + 𝑤1
𝜑2(𝜃) + 𝑤2

)

 (75) 

and 

𝐹2(Φ(𝜃)𝑧𝑥 +𝑤, 𝜇) = 𝐹2(Φ(𝜃)𝑧𝑥 +𝑤, 0)

= ∑  

𝑞1+𝑞2=2

 𝐴𝑞1𝑞2𝛾𝑛𝑐
𝑞1+𝑞2(𝑥)𝑧1

𝑞1𝑧2
𝑞2 + 𝑆2(Φ(𝜃)𝑧𝑥, 𝑤) + 𝑂(|𝑤|

2), (76) 

then by combining with Equations (74)–(76), we have 

𝑆2(Φ(𝜃)𝑧𝑥 , 𝑤)

= 2𝑓20(𝜙1(0)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙
‾
1(0)𝑧2𝛾𝑛𝑐(𝑥))𝑤1(0)

+2𝑓02(𝜙2(0)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙
‾
2(0)𝑧2𝛾𝑛𝑐(𝑥))𝑤2(0)

+2𝑓11 ((𝜙1(0)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙
‾
1(0)𝑧2𝛾𝑛𝑐(𝑥))𝑤2(0) + (𝜙2(0)𝑧1𝛾𝑛𝑐(𝑥) + 𝜙

‾
2(0)𝑧2𝛾𝑛𝑐(𝑥))𝑤1(0)) .

 

4. Application to Holling-Tanner model with spatial memory and predator-

taxis 

In this section, we apply our newly developed algorithm in Section 2 to the Holling-Tanner model with 

spatial memory and predator-taxis, i.e., for the system (3), we let 

𝑓(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = 𝑢(𝑥, 𝑡)(1 − 𝛽𝑢(𝑥, 𝑡)) −
𝑚𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)

1 + 𝑢(𝑥, 𝑡)
,

𝑔(𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = 𝑠𝑣(𝑥, 𝑡) (1 −
𝑣(𝑥, 𝑡)

𝑢(𝑥, 𝑡)
) ,

 (77) 

where 𝛽 > 0,𝑚 > 0 and 𝑠 > 0. Thus, the system (3) becomes 

{
 
 

 
 
∂𝑢(𝑥, 𝑡)

∂𝑡
= 𝑑11𝑢𝑥𝑥(𝑥, 𝑡) + 𝜉(𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡))𝑥 + 𝑢

(𝑥, 𝑡)(1 − 𝛽𝑢(𝑥, 𝑡))  −  
𝑚𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)

1 + 𝑢(𝑥, 𝑡)
, 𝑥 ∈ (0, ℓ𝜋), 𝑡 > 0,

∂𝑣(𝑥, 𝑡)

∂𝑡
= 𝑑22𝑣𝑥𝑥(𝑥, 𝑡) − 𝑑21(𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡 − 𝜏))𝑥 + 𝑠𝑣

(𝑥, 𝑡) (1 −
𝑣(𝑥, 𝑡)

𝑢(𝑥, 𝑡)
) , 𝑥 ∈ (0, ℓ𝜋), 𝑡 > 0,

𝑢𝑥(0, 𝑡) = 𝑢𝑥(ℓ𝜋, 𝑡) = 𝑣𝑥(0, 𝑡) = 𝑣𝑥(ℓ𝜋, 𝑡) = 0, 𝑡 > 0.

 (78) 

The Holling-tanner model is one of the typical predator-prey models. For the ordinary differential 

equation (78) with 𝑑11 = 𝜉 = 𝑑21 = 𝑑22 = 0, it has been completely analyzed in study[32]. For the diffusive 

model (78) with 𝜉 = 𝑑21 = 0 , the global stability of the positive constant steady state was proved in 

studies[33,34], and the Hopf bifurcation and Turing instability have been studied in study[35]. 

4.1. Stability and Hopf bifurcation analysis 

The system (78) has the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗), where 

𝑢∗ = 𝑣∗ =
1

2𝛽
(√𝑅2 + 4𝛽 − 𝑅) (79) 

with 𝑅 = 𝛽 +𝑚 − 1. By combining with 𝐸∗(𝑢∗, 𝑣∗), (7) and (77), we have 

𝑎11 = 1 − 2𝛽𝑢∗ −
𝑚𝑢∗

(1 + 𝑢∗)
2
, 𝑎12 = −

𝑚𝑢∗
1 + 𝑢∗

< 0,

𝑎21 = 𝑠 > 0, 𝑎22 = −𝑠 < 0.
 (80) 

Moreover, by combining with Equations (6), (8), (9) and (80), the characteristic equation of system (78) 

can be written as 
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Γ𝑛(𝜆) = det (ℳ𝑛(𝜆)) = 𝜆
2 − 𝑇𝑛𝜆 + 𝐽𝑛(𝜏) = 0, (81) 

where 

𝑇𝑛 = Tr(𝐴) − Tr(𝐷1)
𝑛2

ℓ2
,

𝐽𝑛(𝜏) = (𝑑11𝑑22 + 𝑑21𝜉𝑢∗𝑣∗e
−𝜆𝜏)

𝑛4

ℓ4
− (𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ + 𝑑21𝑣∗𝑎12e

−𝜆𝜏)
𝑛2

ℓ2
+ Det(𝐴) .

 (82) 

Notice that the mathematical expression in Equation (82) the same as in Equation (10). Furthermore, 

when 𝜏 = 0, the characteristic Equation (81) becomes 

𝜆2 − 𝑇𝑛𝜆 + 𝐽𝑛(0) = 0, (83) 

where 

𝐽𝑛(0) = (𝑑11𝑑22 + 𝑑21𝜉𝑢∗𝑣∗)
𝑛4

ℓ4
− (𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ + 𝑑21𝑣∗𝑎12)

𝑛2

ℓ2
+ Det(𝐴). (84) 

A set of sufficient and necessary condition that all roots of Equation (83) have negative real parts is 

𝑇𝑛 < 0, 𝐽𝑛(0) > 0, which is always holds provided that 𝑎11 < 0, i.e., 

(𝐶0): 1 − 2𝛽𝑢∗ −
𝑚𝑢∗

(1 + 𝑢∗)
2
< 0. 

This implies that when 𝜏 = 0 and the condition (𝐶0) holds, the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) 

is asymptotically stable for 𝑑11 ≥ 0, 𝜉 ≥ 0, 𝑑21 ≥ 0 and 𝑑22 ≥ 0. Meanwhile, if we let 𝑑21 = 0, then by 

Equation (84), we denote 

𝐽𝑛:= 𝑑11𝑑22
𝑛4

ℓ4
− (𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗)

𝑛2

ℓ2
+ Det(𝐴). 

It is easy to verify that 𝑇𝑛 < 0 and 𝐽𝑛 > 0 provided that the condition (𝐶0) holds. This implies that when 

𝜏 = 0, 𝑑21 = 0 and the condition (𝐶0) holds, the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) is asymptotically 

stable for 𝑑11 ≥ 0, 𝜉 ≥ 0 and 𝑑22 ≥ 0. Furthermore, since Γ𝑛(0) = 𝐽𝑛(0) > 0 under the condition (𝐶0), this 

implies that 𝜆 = 0 is not a root of Equation (81). Furthermore, let 𝜆 = i𝜔𝑛(𝜔𝑛 > 0) be a root of (81). By 

substituting it along with expressions in Equation (82) into Equation (81), and separating the real part from 

the imaginary part, we have 

{
 
 

 
 𝜔𝑛

2 − 𝐽𝑛 = (𝑑21𝜉𝑢∗𝑣∗
𝑛4

ℓ4
− 𝑑21𝑣∗𝑎12

𝑛2

ℓ2
) cos (𝜔𝑛𝜏),

−𝑇𝑛𝜔𝑛 = (𝑑21𝜉𝑢∗𝑣∗
𝑛4

ℓ4
− 𝑑21𝑣∗𝑎12

𝑛2

ℓ2
) sin (𝜔𝑛𝜏),

 (85) 

which yields 

𝜔𝑛
4 + 𝑃𝑛𝜔𝑛

2 + 𝑄𝑛 = 0, (86) 

where 

𝑃𝑛 = 𝑇𝑛
2 − 2𝐽𝑛 = (𝑑11

2 + 𝑑22
2 )

𝑛4

ℓ4
− 2(𝑑11𝑎11 + 𝑑22𝑎22 + 𝑎21𝜉𝑢∗)

𝑛2

ℓ2
+ 𝑎11

2 + 𝑎22
2 + 2𝑎12𝑎21, 

and 

𝑄𝑛 = (𝐽𝑛 + (𝑑21𝜉𝑢∗𝑣∗
𝑛4

ℓ4
− 𝑑21𝑣∗𝑎12

𝑛2

ℓ2
))(𝐽𝑛 − (𝑑21𝜉𝑢∗𝑣∗

𝑛4

ℓ4
− 𝑑21𝑣∗𝑎12

𝑛2

ℓ2
)). (87) 

Notice that for Equation (86), it is easy to see that if 

either 𝑃𝑛 > 0 and 𝑄𝑛 > 0 or 𝑃𝑛
2 − 4𝑄𝑛 < 0, 

then Equation (86) has no positive root. Suppose that 

𝑄𝑛 > 0, 𝑃𝑛 < 0 and 𝑃𝑛
2 − 4𝑄𝑛 > 0, 

then Equation (86) has two positive roots. In addition, if 

either  𝑄𝑛 < 0 or 𝑄𝑛 = 0, 𝑃𝑛 < 0 or 𝑃𝑛 < 0 and 𝑃𝑛
2 − 4𝑄𝑛 = 0, 
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then Equation (86) has only one positive root. 

Case 4.1. It is easy to see that if the conditions (𝐶0) and 

(𝐶1): 𝑃𝑛 > 0 and 𝑄𝑛 > 0 or 𝑃𝑛
2 − 4𝑄𝑛 < 0 

hold, then Equation (86) has no positive roots. Hence, by combining with the Assumption 1, we know that 

all roots of Equation (81) have negative real parts when 𝜏 ∈ [0,+∞) under the conditions (𝐶0) and (𝐶1). 

If we set the parameters as follows 

ℓ = 2, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, 𝑛 = 2, 

then by using the MATLAB software for auxiliary calculation, we can check that the conditions (𝐶0) and 

(𝐶1) are satisfied. Then the function images of 𝑓(𝜔2) = 𝜔2
4 + 𝑃2𝜔2

2 + 𝑄2  and 𝑓(𝜔2) = 0  are plotted in 

Figure 1 which verifies the conclusion of Case 4.1. 

In the following, we mainly consider the case of 𝑄𝑛 < 0, that is Equation (86) has only one positive 

root 𝜔𝑛. In the following, we will discuss the case which is used to guarantee 𝑄𝑛 < 0 under the condition 

(𝐶0). When 𝜏 > 0, according to Equations (81) and (87), we can define 𝑄𝑛 = Γ𝑛(0)�̃�𝑛 with 

Γ𝑛(0) = 𝐽𝑛(0) = (𝑑11𝑑22 + 𝑑21𝜉𝑢∗𝑣∗)
𝑛4

ℓ4
− (𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ + 𝑑21𝑣∗𝑎12)

𝑛2

ℓ2
+ Det (𝐴) 

and 

�̃�𝑛 = (𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗)
𝑛4

ℓ4
− (𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12)

𝑛2

ℓ2
+ Det(𝐴), (88) 

and then by a simple analysis, we have Γ𝑛(0) = 𝐽𝑛(0) > 0  for any 𝑛 ∈ ℕ0 . Therefore, the sign of 𝑄𝑛 

coincides with that of �̃�𝑛, and in order to guaranteeing 𝑄𝑛 < 0, we only need to study the case of �̃�𝑛 < 0. 

 
Figure 1. For the parameters ℓ = 2, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, 𝑛 = 2, the function images of 

𝑓(𝜔2) = 𝜔2
4 + 𝑃2𝜔2

2 + 𝑄2 and 𝑓(𝜔2) = 0. 

Case 4.2. If (𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗) > 0 and the conditions (𝐶0), 

(𝐶2): Det (𝐴) > 0, 𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12 > 0,

(𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12)
2 − 4(𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗)Det (𝐴) > 0

 

hold, then from (88), �̃�𝑛 = 0 has two positive roots. Without loss of generality, we assume that the two 

positive roots of �̃�𝑛 = 0 are �̃�1 = 𝑛1
2/ℓ2 and �̃�2 = 𝑛2

2/ℓ2 with 

�̃�1,2 =
�̃�1 ∓√�̃�3

2�̃�2
, (89) 



Mathematics and Systems Science | doi: 10.54517/mss.v1i1.2289 

20 

where 

�̃�1 = 𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12, �̃�2 = 𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗,

�̃�3 = �̃�1
2 − 4�̃�2 Det(𝐴) .

 (90) 

Since �̃�1 = 𝑛1
2/ℓ2 and �̃�2 = 𝑛2

2/ℓ2, then 𝑛1 = ℓ√�̃�1 and 𝑛2 = ℓ√�̃�2. By using a geometric argument, 

we can conclude that 

𝑄𝑛 = Γ𝑛(0)�̃�𝑛 {
< 0, 𝑛1 < 𝑛 < 𝑛2,
≥ 0, 𝑛 ≤ 𝑛1  or  𝑛 ≥ 𝑛2,

 

where 𝑛 ∈ ℕ. Therefore, Equation (86) has one positive root 𝜔𝑛 for 𝑛1 < 𝑛 < 𝑛2 with 𝑛 ∈ ℕ, where 

𝜔𝑛 =
√−𝑃𝑛 +√𝑃𝑛

2 − 4𝑄𝑛
2

. (91) 

Furthermore, by combining with the second mathematical expression in Equation (85), and by noticing 

that 𝑎12 < 0, 𝑇𝑛 < 0 under the condition (𝐶0), then we have sin (𝜔𝑛𝜏) > 0. Thus, by the first mathematical 

expression in Equation (85), we can set 

𝜏𝑛,𝑗 =
1

𝜔𝑛
(arccos (

𝜔𝑛
2 − 𝐽𝑛

𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2)
) + 2𝑗𝜋) , 𝑛 ∈ ℕ, 𝑗 ∈ ℕ0. (92) 

Next, we continue to verify the transversality conditions for the Case 4.2. 

Lemma 1. Suppose that (𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗) > 0, the conditions (𝐶0), (𝐶2) hold, and 𝑛1 < 𝑛 < 𝑛2  with 

𝑛 ∈ ℕ, then we have 

dRe (λ(τ))

dτ
|
τ=τn,j

> 0, 

where 𝑅𝑒 (𝜆(𝜏)) represents the real part of 𝜆(𝜏). 

Proof. By differentiating the two sides of 

Γ𝑛(𝜆) = det (ℳ𝑛(𝜆)) = 𝜆
2 − 𝑇𝑛𝜆 + 𝐽𝑛(𝜏) = 0 

with respect to 𝜏, where 𝑇𝑛 and 𝐽𝑛(𝜏) are defined by Equation (82), we have 

(
d𝜆(𝜏)

d𝜏
)
−1

=
(2𝜆 − 𝑇𝑛)e

𝜆𝜏

−𝜆𝑑21𝑣∗𝑎12(𝑛
2/ℓ2) + 𝜆𝑑21𝜉𝑢∗𝑣∗(𝑛

4/ℓ4)
−
𝜏

𝜆
. □ (93) 

Therefore, by Equation (93), we have 

Re (
d𝜆(𝜏)

d𝜏
|
𝜏=𝜏𝑛,𝑗

)

−1

= Re (
(2i𝜔𝑛 − 𝑇𝑛)e

i𝜔𝑛𝜏𝑛,𝑗

−i𝜔𝑛𝑑21𝑣∗𝑎12(𝑛
2/ℓ2) + i𝜔𝑛𝑑21𝜉𝑢∗𝑣∗(𝑛

4/ℓ4)
)

=
2cos (𝜔𝑛𝜏𝑛,𝑗)

𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2)
−

𝑇𝑛sin (𝜔𝑛𝜏𝑛,𝑗)

𝜔𝑛(𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2))
.

 
(94) 

Furthermore, according to Equation (85), we have 

sin (𝜔𝑛𝜏𝑛,𝑗) =
−𝑇𝑛𝜔𝑛

𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2)
,

cos (𝜔𝑛𝜏𝑛,𝑗) =
𝜔𝑛
2 − 𝐽𝑛

𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2)
.

 (95) 

Moreover, by combining with Equations (94), (95) and 

𝜔𝑛 =
√−𝑃𝑛 +√𝑃𝑛

2 − 4𝑄𝑛
2

> 0, 𝑄𝑛 < 0, 𝑎12 < 0, 

we have 

http://proof.by/
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Re (
d𝜆(𝜏)

d𝜏
|
𝜏=𝜏𝑛,𝑗

)

−1

=
2cos (𝜔𝑛𝜏𝑛,𝑗)

𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2)
−

𝑇𝑛sin (𝜔𝑛𝜏𝑛,𝑗)

𝜔𝑛(𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2))

=
2𝜔𝑛

3 +𝜔𝑛(𝑇𝑛
2 − 2𝐽𝑛)

𝜔𝑛(𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2))
2

=
√𝑃𝑛

2 − 4𝑄𝑛

(𝑑21𝜉𝑢∗𝑣∗(𝑛
4/ℓ4) − 𝑑21𝑣∗𝑎12(𝑛

2/ℓ2))
2 > 0.

 

This, together with the fact that 

sign (
dRe (𝜆(𝜏))

d𝜏
|
𝜏=𝜏𝑛,𝑗

) = sign (Re (
d𝜆(𝜏)

d𝜏
|
𝜏=𝜏𝑛,𝑗

)

−1

) 

completes the proof, where sign(.) represents the sign function. 

Moreover, according to the above analysis, we have the following results. 

Lemma 2. Assume that the condition (𝐶0) is satisfied, then 

(i) if the condition (𝐶1) holds, then the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) of system (78) is locally 

asymptotically stable for all 𝜏 ≥ 0;  

(ii) if (𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗) > 0, and the condition (𝐶2) holds, by denoting 𝜏∗ = 𝑚𝑖𝑛{𝜏𝑛,0: 𝑛1 < 𝑛 < 𝑛2, 𝑛 ∈

ℕ}, then the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) of system (78) is locally asymptotically stable for 0 ≤

𝜏 < 𝜏∗ and unstable for 𝜏 > 𝜏∗. Furthermore, system (78) undergoes mode-n Hopf bifurcations at 𝜏 = 𝜏𝑛,𝑗 

for 𝑛 ∈ ℕ and 𝑗 ∈ ℕ0. 

4.2. Numerical simulations 

In this section, we verify the analytical results given in the previous sections by some numerical 

simulations and investigate the direction and stability of Hopf bifurcation. We use the following initial 

conditions for the system (78), i.e., 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥), 𝑣(𝑥, 𝑡) = 𝑣0(𝑥), 𝑡 ∈ [−𝜏, 0]. 

4.2.1. Mode-1 Hopf bifurcation 

If we set the parameters as follows 

ℓ = 2, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, 

then we can easily obtain that 

𝑎11 = 1 − 2𝛽𝑢∗ −
𝑚𝑢∗

(1 + 𝑢∗)
2
= −0.5355 < 0, 𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗ = 3.84 > 0,

Det (𝐴) = 𝑎11𝑎22 − 𝑎12𝑎21 = 0.6627 > 0, 𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12 = 4.1814 > 0,

(𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12)
2 − 4(𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗)Det (𝐴) = 7.3041 > 0.

 

Therefore, the conditions (𝐶0)  and (𝐶2)  are satisfied under the above parameter settings. In the 

following, we mainly verify the conclusion in Lemma 2 (ii). Furthermore, by combining with Equation (79) 

and (80), we have 𝐸∗(𝑢∗, 𝑣∗) = (1.4142,1.4142), 

𝑎11 = −0.5355, 𝑎12 = −0.2929, 𝑎21 = 0.8, 𝑎22 = −0.8. 

By combining with Equations (89)–(92), we have 𝑛1 = 0.8776, 𝑛2 = 1.8935, and consider that 𝑛 ∈ ℕ, 

we have 𝜔𝑛𝑐 = 𝜔1 = 0.418 and 𝜏𝑐 = 𝜏1,0 = 6.1498. Moreover, by Lemma 2 (ii), we have the following 

proposition. 

Proposition 1. For system (78) with the parameters ℓ = 2, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 

0.5,𝑚 = 0.5, 𝑠 = 0.8, the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) of system (78) is asymptotically stable for 

0 ≤ 𝜏 < 𝜏1,0 = 6.1498 and unstable for 𝜏 > 𝜏1,0 = 6.1498. Furthermore, system (78) undergoes the mode-
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1 Hopf bifurcation at 𝜏 = 𝜏1,0 = 6.1498. 

For the parameters ℓ = 2, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, according to 

Proposition 1, we know that system (78) undergoes a Hopf bifurcation at 𝜏1,0 = 6.1498. Furthermore, the 

direction and stability of Hopf bifurcation can be determined by calculating 𝐾1𝐾2  and 𝐾2  using the 

procedures developed in Section 2. After a direct calculation using MATLAB software, we obtain 

𝐾1 = 0.016 > 0,𝐾2 = −0.9283 < 0,𝐾1𝐾2 = −0.0148 < 0, 

which implies that the Hopf bifurcation at 𝜏1,0 = 6.1498 is supercritical and stable. When 𝜏 = 3 < 𝜏1,0 =

6.1498, Figure 2a,b illustrates the evolution of the solution of system (78) starting from the initial values 

𝑢0(𝑥) = 1.4142− 0.1cos (𝑥/2)  and 𝑣0(𝑥) = 1.4142+ 0.1cos (𝑥/2) , finally converging to the positive 

constant steady state 𝐸∗(𝑢∗, 𝑣∗) . Furthermore, when 𝜏 = 8 > 𝜏1,0 = 6.1498 , Figure 3a–d illustrates the 

existence of the spatially inhomogeneous periodic solution with the initial values 𝑢0(𝑥) =  1.4142−

0.1cos (𝑥/2) and 𝑣0(𝑥) = 1.4142+ 0.1cos (𝑥/2). 

 
(a) 

 
(b) 

Figure 2. For the parameters ℓ = 2, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, when 𝜏 = 3 < 𝜏1,0 = 6.1498 , 

the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) = (1.4142,1.4142) is locally asymptotically stable. The initial values are 𝑢0(𝑥) =
1.4142 − 0.1cos (𝑥/2) and 𝑣0(𝑥) = 1.4142 + 0.1cos (𝑥/2). 

 
(a) 

 
(b) 

Figure 3. (Continued). 
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(c) 

 
(d) 

Figure 3. For the parameters ℓ = 2, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, when 𝜏 = 8 > 𝜏1,0 = 6.1498, 

there exists a stable spatially inhomogeneous periodic solution. (a) and (b) are the transient behaviours for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡), 
respectively, (c) and (d) are the long-term behaviours for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡), respectively. The initial values are 𝑢0(𝑥) = 1.4142 −
0.1cos (𝑥/2) and 𝑣0(𝑥) = 1.4142 + 0.1cos (𝑥/2). 

4.2.2. Mode-2 Hopf bifurcation 

If we set the parameters as follows 

ℓ = 3, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, 
then we can also easily obtain that 

𝑎11 = 1 − 2𝛽𝑢∗ −
𝑚𝑢∗

(1 + 𝑢∗)
2
= −0.5355 < 0, 𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗ = 3.84 > 0,

Det (𝐴) = 𝑎11𝑎22 − 𝑎12𝑎21 = 0.6627 > 0, 𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12 = 4.1814 > 0,

(𝑑11𝑎22 + 𝑑22𝑎11 − 𝑎21𝜉𝑢∗ − 𝑑21𝑣∗𝑎12)
2 − 4(𝑑11𝑑22 − 𝑑21𝜉𝑢∗𝑣∗)Det (𝐴) = 7.3041 > 0.

 

Therefore, the conditions (𝐶0)  and (𝐶2)  are satisfied under the above parameter settings. In the 

following, we mainly verify the conclusion in Lemma 2 (ii). According to (79) and (80), we have 

𝐸∗(𝑢∗, 𝑣∗) = (1.4142,1.4142),  

𝑎11 = −0.5355, 𝑎12 = −0.2929, 𝑎21 = 0.8, 𝑎22 = −0.8. 
By combining with Equations (89)–(92), we have 𝑛1 = 1.3164, 𝑛2 = 2.8403, and consider that 𝑛 ∈ ℕ, 

we have 𝜔𝑛𝑐 = 𝜔2 = 0.6870 and 𝜏𝑐 = 𝜏2,0 = 3.5361. Moreover, by Lemma 2 (ii), we have the following 

proposition. 

Proposition 2. For system (78) with the parameters ℓ = 3, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 

0.5,𝑚 = 0.5, 𝑠 = 0.8, the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) of system (78) is asymptotically stable for 

0 ≤ 𝜏 < 𝜏2,0 = 3.5361 and unstable for 𝜏 > 𝜏2,0 = 3.5361. Furthermore, system (78) undergoes the mode-

2 Hopf bifurcation at 𝜏 = 𝜏2,0 = 3.5361. 

For the parameters ℓ = 3, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, according to 

Proposition 2, we know that system (78) undergoes a Hopf bifurcation at 𝜏2,0 = 3.5361. Furthermore, the 

direction and stability of Hopf bifurcation can be determined by calculating 𝐾1𝐾2  and 𝐾2  using the 

procedures developed in Section 2. After a direct calculation using MATLAB software, we obtain 

𝐾1 = 0.0410 > 0,𝐾2 = −1.3669 < 0,𝐾1𝐾2 = −0.0561 < 0, 
which implies that the Hopf bifurcation at 𝜏2,0 = 3.5361 is supercritical and stable. When 𝜏 = 2 < 𝜏2,0 =

3.5361, Figure 4a and b illustrate the evolution of the solution of system (78) starting from the initial values 

𝑢0(𝑥) = 1.4142− 0.1cos (2𝑥/3)  and 𝑣0(𝑥) = 1.4142+ 0.1cos (2𝑥/3), finally converging to the positive 

constant steady state 𝐸∗(𝑢∗, 𝑣∗) . Furthermore, when 𝜏 = 6 > 𝜏2,0 = 3.5361 , Figure 5a–d illustrate the 
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existence of the spatially inhomogeneous periodic solution with the initial values 𝑢0(𝑥) =  1.4142−

0.1cos (2𝑥/3) and 𝑣0(𝑥) = 1.4142+ 0.1cos (2𝑥/3). 

 

 
(a) 

 
(b) 

Figure 4. For the parameters ℓ = 3, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, when 𝜏 = 2 < 𝜏2,0 = 3.5361 , 

the positive constant steady state 𝐸∗(𝑢∗, 𝑣∗) = (1.4142,1.4142) is locally asymptotically stable. The initial values are 𝑢0(𝑥) =
1.4142 − 0.1cos (2𝑥/3) and 𝑣0(𝑥) = 1.4142 + 0.1cos (2𝑥/3). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. For the parameters ℓ = 3, 𝑑11 = 2, 𝑑22 = 3, 𝑑21 = 18, 𝜉 = 0.06, 𝛽 = 0.5,𝑚 = 0.5, 𝑠 = 0.8, when 𝜏 = 6 > 𝜏2,0 = 3.5361, 

there exists a stable spatially inhomogeneous periodic solution. (a) and (b) are the transient behaviours for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡), 
respectively, (c) and (d) are the long-term behaviours for 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡), respectively. The initial values are 𝑢0(𝑥) = 1.4142−
0.1cos (2𝑥/3) and 𝑣0(𝑥) = 1.4142+ 0.1cos (2𝑥/3). 
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5. Conclusion and discussion 

In this paper, the diffusive predator-prey system with spatial memory and predator-taxis is proposed, 

and we derive an algorithm for calculating the normal form of Hopf bifurcation for this system. As a real 

application, we consider the Holling-Tanner model with spatial memory and predator-taxis. Then we study 

the dynamics of this system. Firstly, the inhomogeneous spatial patterns, i.e., two stable spatially 

inhomogeneous periodic solutions are found. Secondly, the supercritical and stable mode-1 and mode-2 Hopf 

bifurcation periodic solutions are found by using the newly developed algorithm. Furthermore, numerical 

simulations verify our theoretical analysis results and give us a more intuitive display. 

It is worth mentioning that in this paper, the delay only occurs in the diffusion term, not in the reaction 

form for our proposed diffusive predator-prey system with spatial memory and predator-taxis. However, the 

gestation, hunting, migration and maturation delays, etc., often occur in the reaction term for the general 

predator-prey models. By noticing this point, on the basis of system (3), the system 

{
 
 

 
 

∂𝑢(𝑥, 𝑡)

∂𝑡
= 𝑑11𝑢𝑥𝑥(𝑥, 𝑡) + 𝜉(𝑢(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡))𝑥 + 𝑓(𝑢

(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑢(𝑥, 𝑡 − 𝜎), 𝑣(𝑥, 𝑡 − 𝜎)),

𝑥 ∈ (0, ℓ𝜋), 𝑡 > 0,
∂𝑣(𝑥, 𝑡)

∂𝑡
= 𝑑22𝑣𝑥𝑥(𝑥, 𝑡) − 𝑑21(𝑣(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡 − 𝜏))𝑥 + 𝑔(𝑢

(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑢(𝑥, 𝑡 − 𝜎), 𝑣(𝑥, 𝑡 − 𝜎)),

𝑥 ∈ (0, ℓ𝜋), 𝑡 > 0,

 

which needs further research, where 𝜎 > 0 is the delay occurs in the reaction term. 
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Appendix 

Remark 1. Assume that at 𝜏 = 𝜏𝑐, the characteristic Equation (81) has a pair of purely imaginary roots 

±𝑖𝜔𝑛𝑐 with 𝜔𝑛𝑐 > 0 for 𝑛 = 𝑛𝑐 ∈ ℕ and all other eigenvalues have negative real parts. Let 𝜆(𝜏) = 𝛼1(𝜏) ±

𝑖𝛼2(𝜏)  be a pair of roots of the characteristic Equation (81) near 𝜏 = 𝜏𝑐  satisfying 𝛼1(𝜏𝑐) = 0  and 

𝛼2(𝜏𝑐) = 𝜔𝑛𝑐. In addition, the corresponding transversality condition holds. 

The normal form of Hopf bifurcation for system (78) can be calculated by using our newly developed 

algorithm in Section 2. Here, we give the detail calculation procedures of 𝐵1, 𝐵21, 𝐵22, 𝐵23 steps by steps. 

Step 1: 

𝐵1 = 2𝜓
𝑇(0) (𝐴𝜙(0) −

𝑛𝑐
2

ℓ2
(𝐷1𝜙(0) + 𝐷2𝜙(−1))) 

with 

𝐷1 = (
𝑑11 𝜉𝑢∗
0 𝑑22

) , 𝐷2 = (
0 0

−𝑑21𝑣∗ 0
) , 𝐴 = (

𝑎11 𝑎12
𝑎21 𝑎22

). 

Here, 

𝜙 = (

1
𝑎11 − i𝜔𝑛𝑐 − 𝑑11(𝑛𝑐

2/ℓ2)

𝜉𝑢∗(𝑛𝑐
2/ℓ2) − 𝑎12

) ,𝜓 = 𝜂 (

1
𝑎12 − 𝜉𝑢∗(𝑛𝑐

2/ℓ2)

i𝜔𝑛𝑐 + 𝑑22(𝑛𝑐
2/ℓ2) − 𝑎22

) 

with 

𝜂 =
i𝜔𝑛𝑐 + (𝑛𝑐/ℓ)

2𝑑22 − 𝑎22

2i𝜔𝑛𝑐 + (𝑛𝑐/ℓ)
2𝑑11 − 𝑎11 + (𝑛𝑐/ℓ)

2𝑑22 − 𝑎22 + 𝜏𝑐𝑎12𝑑21𝑣∗(𝑛𝑐/ℓ)
2e−i𝜔𝑐

. 

Step 2: 

𝐵21 =
3

2ℓ𝜋
𝜓𝑇𝐴21 

with 

𝐴21 = 3𝑓30𝜙1
2(0)𝜙‾1(0) + 3𝑓03𝜙2

2(0)𝜙‾2(0) + 3𝑓21(𝜙1
2(0)𝜙‾2(0) + 2𝜙1(0)𝜙‾1(0)𝜙2(0))

+3𝑓12(2𝜙1(0)𝜙2(0)𝜙‾2(0) + 𝜙‾1(0)𝜙2
2(0)).

 

Here, 

𝑓30
(1)
= −6𝜏𝑐𝑚(1 + 𝑢∗)

−4𝑣∗, 𝑓30
(2)
= 6𝜏𝑐𝑠𝑢∗

−4𝑣∗
2,

𝑓21
(1)
= 2𝜏𝑐𝑚(1 + 𝑢∗)

−3, 𝑓21
(2)
= −4𝜏𝑐𝑠𝑢∗

−3𝑣∗,

𝑓12
(1)
= 0, 𝑓12

(2)
= 2𝜏𝑐𝑠𝑢∗

−2,

𝑓03
(1)
= 0, 𝑓03

(2)
= 0.

 

Step 3: 

𝐵22 =
1

√ℓ𝜋
𝜓𝑇 (𝑆2(𝜙(𝜃), ℎ0,11(𝜃)) + 𝑆2(𝜙‾(𝜃), ℎ0,20(𝜃)))

+
1

√2ℓ𝜋
𝜓𝑇 (𝑆2(𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) + 𝑆2(𝜙

‾(𝜃), ℎ2𝑛𝑐,20(𝜃)))

 

with 
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𝑆2(𝜙(𝜃), ℎ0,11(𝜃)) = 2𝑓20𝜙1(0)ℎ0,11
(1)

(0) + 2𝑓02𝜙2(0)ℎ0,11
(2)

(0)

+2𝑓11 (𝜙1(0)ℎ0,11
(2)

(0) + 𝜙2(0)ℎ0,11
(1)

(0)) ,

𝑆2(𝜙‾(𝜃), ℎ0,20(𝜃)) = 2𝑓20𝜙‾1(0)ℎ0,20
(1)

(0) + 2𝑓02𝜙‾2(0)ℎ0,20
(2)

(0)

+2𝑓11 (𝜙‾1(0)ℎ0,20
(2)

(0) + 𝜙‾2(0)ℎ0,20
(1)

(0)) ,

𝑆2(𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) = 2𝑓20𝜙1(0)ℎ2𝑛𝑐,11
(1)

(0) + 2𝑓02𝜙2(0)ℎ2𝑛𝑐,11
(2)

(0)

+2𝑓11 (𝜙1(0)ℎ2𝑛𝑐,11
(2)

(0) + 𝜙2(0)ℎ2𝑛𝑐,11
(1)

(0)) ,

𝑆2(𝜙‾(𝜃), ℎ2𝑛𝑐,20(𝜃)) = 2𝑓20𝜙‾1(0)ℎ2𝑛𝑐,20
(1)

(0) + 2𝑓02𝜙‾2(0)ℎ2𝑛𝑐,20
(2)

(0)

+2𝑓11 (𝜙‾1(0)ℎ2𝑛𝑐,20
(2)

(0) + 𝜙‾2(0)ℎ2𝑛𝑐,20
(1)

(0)) .

 

Here, 

𝑓20
(1)
= −2𝜏𝑐𝛽 + 2𝜏𝑐𝑚(1 + 𝑢∗)

−3𝑣∗, 𝑓20
(2)
= −2𝜏𝑐𝑠𝑢∗

−3𝑣∗
2,

𝑓11
(1)
= −𝜏𝑐𝑚(1 + 𝑢∗)

−2, 𝑓11
(2)
= 2𝜏𝑐𝑠𝑢∗

−2𝑣∗,

𝑓02
(1)
= 0, 𝑓02

(2)
= −2𝜏𝑐𝑠𝑢∗

−1.

 

Furthermore, we have 

{
 

 ℎ0,20(𝜃) =
1

√ℓ𝜋
(ℳ̃0(2i𝜔𝑐))

−1
𝐴20e

2i𝜔𝑐𝜃,

ℎ0,11(𝜃) =
1

√ℓ𝜋
(ℳ̃0(0))

−1
𝐴11

 

and 

{
 

 ℎ2𝑛𝑐,20(𝜃) =
1

√2ℓ𝜋
(ℳ̃2𝑛𝑐

(2i𝜔𝑐))
−1
�̃�20e

2i𝜔𝑐𝜃,

ℎ2𝑛𝑐,11(𝜃) =
1

√2ℓ𝜋
(ℳ̃2𝑛𝑐(0))

−1
�̃�11

 

with 

ℳ̃𝑛(𝜆) = 𝜆𝐼2 + 𝜏𝑐(𝑛/ℓ)
2𝐷1 + 𝜏𝑐(𝑛/ℓ)

2e−𝜆𝐷2 − 𝜏𝑐𝐴. 
Here, 

𝐴20 = 𝑓20𝜙1
2(0) + 𝑓02𝜙2

2(0) + 2𝑓11𝜙1(0)𝜙2(0),

𝐴11 = 2𝑓20𝜙1(0)𝜙‾1(0) + 2𝑓02𝜙2(0)𝜙‾2(0) + 2𝑓11(𝜙1(0)𝜙‾2(0) + 𝜙‾1(0)𝜙2(0))
 

and 

{
�̃�20 = 𝐴20 − 2(𝑛𝑐/ℓ)

2𝐴20
𝑑 ,

�̃�11 = 𝐴11 − 2(𝑛𝑐/ℓ)
2𝐴11

𝑑
 

with 

{
 
 

 
 𝐴20

𝑑 = (
2𝜉𝜏𝑐𝜙1(0)𝜙2(0)

−2𝑑21𝜏𝑐𝜙1(−1)𝜙2(0)
) = 𝐴‾02

𝑑 ,

𝐴11
𝑑 = (

4𝜉𝜏𝑐Re {𝜙1(0)𝜙‾2(0)}

−4𝑑21𝜏𝑐Re {𝜙1(−1)𝜙‾2(0)}
) .

 

Step 4: 

𝐵23 = −
1

√ℓ𝜋
(𝑛𝑐/ℓ)

2𝜓𝑇 (𝑆2
(𝑑,1)

(𝜙(𝜃), ℎ0,11(𝜃)) + 𝑆2
(𝑑,1)

(𝜙‾(𝜃), ℎ0,20(𝜃)))

+
1

√2ℓ𝜋
𝜓𝑇 ∑  

𝑗=1,2,3

 𝑏2𝑛𝑐
(𝑗)
(𝑆2

(𝑑,𝑗)
(𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) + 𝑆2

(𝑑,𝑗)
(𝜙‾(𝜃), ℎ2𝑛𝑐,20(𝜃)))

 

with 
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𝑏2𝑛𝑐
(1)

= −
𝑛𝑐
2

ℓ2
, 𝑏2𝑛𝑐
(2)

=
2𝑛𝑐

2

ℓ2
, 𝑏2𝑛𝑐
(3)

= −
(2𝑛𝑐)

2

ℓ2
 

and 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 𝑆2

(𝑑,1)
(𝜙(𝜃), ℎ0,11(𝜃)) = 2(

𝜉𝜏𝑐𝜙2(0)ℎ0,11
(1) (0)

−𝑑21𝜏𝑐𝜙1(−1)ℎ0,11
(2) (0)

),                                                     

𝑆2
(𝑑,1) (𝜙‾(𝜃), ℎ0,20(𝜃)) = 2(

𝜉𝜏𝑐𝜙‾2(0)ℎ0,20
(1) (0)

−𝑑21𝜏𝑐𝜙‾1(−1)ℎ0,20
(2) (0)

),                                                     

𝑆2
(𝑑,1)

(𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) = 2(
𝜉𝜏𝑐𝜙2(0)ℎ2𝑛𝑐,11

(1) (0)

−𝑑21𝜏𝑐𝜙1(−1)ℎ2𝑛𝑐,11
(2) (0)

),                                              

𝑆2
(𝑑,2) (𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) = 2(

𝜉𝜏𝑐 (𝜙2(0)ℎ2𝑛𝑐,11
(1) (0) + 𝜙1(0)ℎ2𝑛𝑐,11

(2) (0))

−𝑑21𝜏𝑐 (𝜙2(0)ℎ2𝑛𝑐,11
(1) (−1) + 𝜙1(−1)ℎ2𝑛𝑐,11

(2) (0))
) ,

𝑆2
(𝑑,3)

(𝜙(𝜃), ℎ2𝑛𝑐,11(𝜃)) = 2(
𝜉𝜏𝑐𝜙1(0)ℎ2𝑛𝑐,11

(2) (0)

−𝑑21𝜏𝑐𝜙2(0)ℎ2𝑛𝑐,11
(1) (−1)

),                                              

𝑆2
(𝑑,1) (𝜙‾(𝜃), ℎ2𝑛𝑐,20(𝜃)) = 2(

𝜉𝜏𝑐𝜙‾2(0)ℎ2𝑛𝑐,20
(1) (0)

−𝑑21𝜏𝑐𝜙‾1(−1)ℎ2𝑛𝑐,20
(2) (0)

),                                              

𝑆2
(𝑑,2) (𝜙‾(𝜃), ℎ2𝑛𝑐,20(𝜃)) = 2(

𝜉𝜏𝑐 (𝜙‾2(0)ℎ2𝑛𝑐,20
(1) (0) + 𝜙‾1(0)ℎ2𝑛𝑐,20

(2) (0))

−𝑑21𝜏𝑐 (𝜙‾2(0)ℎ2𝑛𝑐,20
(1) (−1) + 𝜙‾1(−1)ℎ2𝑛𝑐,20

(2) (0))
) ,

𝑆2
(𝑑,3)

(𝜙‾(𝜃), ℎ2𝑛𝑐,20(𝜃)) = 2(
𝜉𝜏𝑐𝜙‾1(0)ℎ2𝑛𝑐,20

(2)
(0)

−𝑑21𝜏𝑐𝜙‾2(0)ℎ2𝑛𝑐,20
(1)

(−1)
).                                               

 


