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Abstract: Elderly individuals with dementia experience significant cognitive and emotional 

impairments, motivating research into technology-driven therapies to improve their quality of 

life. However, the effectiveness of such systems is often limited by poor-quality 

electroencephalographic (EEG) data, which can be distorted or incomplete due to artefacts. 

This study introduces a novel brain-computer interface (BCI)-based rehabilitation framework 

that combines neural network-assisted EEG data restoration with personalised therapy modules. 

The proposed method employs a multilayer perception (MLP) enhanced with a custom 

activation function to reconstruct missing EEG values by modelling spatial and temporal 

dependencies among adjacent electrodes. Experimental evaluation on benchmark EEG datasets 

shows that the proposed approach reduces Mean Absolute Error (MAE) by 15% and increases 

the Correlation Coefficient (CC) by 10% compared to traditional imputation techniques such 

as mean substitution and k-nearest neighbours (KNN). The restored EEG data are further 

integrated into a generative AI-powered rehabilitation system that delivers adaptive treatments 

through virtual reality (VR) environments and social interaction activities. By incorporating 

patient-specific affective profiles and preferences, the system dynamically personalises 

interventions such as cognitive games, reminiscence sessions, and immersive simulations. 

Overall, this framework bridges computational neuroscience and patient-centred healthcare, 

highlighting EEG imputation as a core technology for next-generation intelligent dementia care 

solutions, particularly in rural and resource-limited settings. 

Keywords: EEG data imputation; neural networks; brain–computer interface (BCI); missing 

data restoration; generative AI; virtual reality (VR) therapy; personalised healthcare 

1. Introduction 

Electroencephalography (EEG) is a widely used, non-invasive technique for 
recording brain activity, playing a critical role in clinical diagnostics, cognitive 
neuroscience, and rehabilitation research [1–3]. However, EEG data are often affected 
by artefacts such as electrical interference, motion, and muscle activity, leading to 
missing or corrupted signals [4–5]. These missing values can distort the interpretation 
of brain dynamics, compromise clinical accuracy, and hinder the design of real-time 
neuro technologies due to the spatial and temporal dependencies inherent in EEG data. 
Conventional imputation methods—like mean substitution and linear interpolation fail 
to preserve these dependencies, often distorting the underlying signal structure [6–7]. 
Although advanced approaches such as k-nearest neighbours (KNN), matrix 
factorisation, and machine learning models have improved imputation accuracy, they 
still struggle to capture the non-linear and complex spatial-temporal characteristics of 
EEG data [8,9]. 
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This study introduces a neural network-based imputation framework that 
explicitly models spatial and temporal relationships among EEG sensors. The 
approach employs differential values between neighbouring sensors and a custom 
activation function to better simulate non-linear associations while reducing 
dependency on large, labelled datasets. Experimental results demonstrate a 15% 
reduction in Mean Absolute Error (MAE) and a 10% increase in Correlation 
Coefficient (CC) compared to mean and KNN-based methods. 

Beyond technical advancement [10–12], the proposed method holds significant 
potential for healthcare, particularly in dementia rehabilitation. In India alone, 
dementia affects over 8.8 million older adults, with higher prevalence among women 
and rural populations. By integrating imputed EEG data with Brain-Computer 
Interface (BCI), Generative AI, and Virtual Reality (VR), personalised, adaptive 
cognitive therapies can be designed—enhancing treatment precision, engagement, and 
overall patient wellbeing. 

While the primary focus of this study is on enhancing the accuracy of EEG data 
restoration, the broader motivation lies in its potential application in clinical 
rehabilitation, particularly for dementia care. Missing or corrupted EEG data can 
compromise the interpretation of neural activity, leading to unreliable assessments of 
cognitive function and emotional state. In dementia rehabilitation, where continuous 
and precise monitoring of brain responses is essential for designing adaptive therapies, 
such data inconsistencies can reduce treatment effectiveness. Therefore, improving 
EEG imputation not only advances signal processing but also directly supports the 
development of intelligent, data-driven rehabilitation systems capable of personalising 
therapy to each patient’s neural profile. 

2. Literature review 

Numerous studies have spoken about the issue of missing values in EEG data. 
Traditional imputation approaches, such as mean imputation and interpolation, have 
been widely used in EEG studies [13]. However, these methods assume that missing 
values are independent of neighbouring values, which may not be valid for EEG data. 
More recent approaches have attempted to consider the interrelatedness of 
neighbouring sensors. 

A. Hippert-Ferrer et al. [14], the authors present a robust covariance matrix 
estimation method for incomplete data. They provide a method for estimating the 
covariance matrix that combines an expectation-maximisation approach with a scaled 
Gaussian low-rank model. The technique is designed to handle missing values and is 
validated on simulated datasets. The authors compare their approach to classical 
statistical estimation methodologies and demonstrate its effectiveness in classification 
tasks. This work contributes to the field of robust estimation by combining the 
strengths of both Gaussian and robust models to achieve improved accuracy in real-
world datasets with heterogeneity and heavy-tailed distributions. However, the mode 
is affected by slow convergence. 

Lin et al. [15] propose a new hybrid Multiple imputation framework to address 
the missing data issue in cluster monitoring applications. This method blends model-
based and data-driven architectures to impute missing data for every given missing 
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pattern, in contrast to the multiple standard imputation strategies. Deep features are 
extracted from the data by the deep neural network and utilised to approximate missing 
data. For various missing data patterns, ratios, and datasets, the suggested strategy is 
contrasted with traditional multiple imputation methodologies. The outcomes 
demonstrate that the suggested method may produce a more precise and consistent 
imputation performance. 

Cheng et al. [16] suggest several instruments and techniques for measuring the 
behavioural signs of attention-deficit/hyperactivity disorder. One of the main 
problems with these behavioural investigations is the need for more data. Deep 
learning techniques were utilised in a study in Northern Taiwan to fill in the missing 
data on this rating scale. It evaluated the imputed data to distinguish between young 
individuals who used this tactic and those who did not. The deep learning algorithm 
achieved an accuracy of 89%, in line with the reference dataset. Deep learning method 
of imputing missing data was also confirmed in the results of this behavioural research 
technique. 

Wang et al. [17] investigated the usefulness and feasibility of single machine 
learning algorithms and ensemble learning (EL) at addressing the issue of missing data 
in clinical decision-making. For example, the study examined the effectiveness of 
eight approaches using imputation techniques on individuals. The findings 
demonstrated that machine learning performed imputation better than conventional 
techniques, particularly when the fraction of missing data was substantial, and that EL 
outperformed individual machine learning algorithms. The study emphasises the 
importance of investigating missing data features before developing algorithms for 
processing missing data in clinical decision-making. 

Emmanuel et al. [18] discuss the problem of missing data in machine learning 
and propose two methods, k-nearest neighbour and missForest, for handling missing 
data. The paper compares conventional statistical and machine learning imputation 
techniques and composite strategies, highlighting the significance of using appropriate 
strategies to address missing data. Missing data patterns and mechanisms, 
performance metrics of missing data imputation, and a discussion of the results in 
comparison with previous works are also discussed in the paper. This experimental 
evaluation section applies two machine learning algorithms to the Iris data and gives 
results. Lastly, the paper concludes and proposes a potential future study path. 

The use of neural network-based approaches has recently attracted attention 
because it was found to be useful in modelling complex patterns in data. For instance, 
recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are 
employed to predict missing data in time series and image-based data, respectively. 
Although these approaches can deliver encouraging data, they may require extensive 
amounts of labelled training data, which can be a constraint in EEG research because 
labelled datasets are often needed. Additionally, current neural network methods 
cannot be expected to consistently integrate the spatial-temporal dependencies 
inherent to EEG Datas. 
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2.1. Summary of existing EEG data imputation approaches and their 
limitations 

Table 1 provides a discussion of the various imputation methods employed in 
EEG studies. As well as outlining the main advantages of the methods (e.g., simplicity 
and improved performance), it also refers to the limitations of the methods (especially 
in terms of their capability to capture the spatial-temporal dependencies of EEG data). 
The gaps in the existing methods, as highlighted in the table, include the inability to 
handle non-linear relationships and a reliance on large datasets. This discussion has 
demonstrated the necessity of more sophisticated methods, including the offered 
neural network-based methodology, that would overcome these drawbacks by 
considering spatial-temporal dynamics and improving imputation with the help of 
differentiating adjustments. 

Table 1. Existing EEG data imputation procedures and their limitations. 

Method Advantages Limitations 

Mean Imputation Simple and fast Fails to capture temporal dependencies 

Linear Interpolation Easy to implement 
Assumes linear relationships, limited accuracy in 
EEG context 

KNN Imputation Better performance than mean methods Does not fully utilize spatial dependencies 

Matrix Factorization Effective for structured data 
Struggles with non-linearities and spatial-temporal 
dependencies 

RNN Imputation Models temporal dynamics 
Requires large labelled datasets, limited spatial 
consideration 

CNN Imputation Captures spatial patterns Not fully adapted to EEG-specific challenges 

Proposed method: Neural network with 
spatial-temporal integration 

Captures non-linear, spatial, and temporal 
dependencies effectively 

Tailored for EEG data, but may require further 
optimisation for real-time applications 

3. Proposed method 

The presented research approach will eliminate the problem of missing values in 
EEG data through the spatial and temporal correlation of neighbouring sensors. The 
essence of the approach is a neural network utilising a tailored activation function to 
reconstruct corrupted or missing EEG data, thereby providing reliable data for further 
analysis. The methodology consists of a series of steps, including preprocessing, 
heatmap representation of missing data, computation of difference values, imputation 
of missing data using nearby sensor data, and refinement through neural network 
training. Although these algorithmic steps are the basis of the technical contribution, 
there is more to signal restoration than signal restoration itself. Dependable EEG data 
are a crucial facilitator of real-world implementation, especially within the health care 
field. Thus, in addition to introducing the imputation pipeline (Sections 3.1–3.8), this 
paper also explores it integration into a Brain-Computer Interface (BCI)-based 
dementia rehabilitation system. This extension demonstrates the power of EEG 
imputation in enabling cognitive and emotional profiling, propelling generative AI-
based treatment engines, and ultimately utilising Virtual Reality (VR) space as a 
personalised rehabilitation tool. 
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3.1. Hardware and software environment 

The experimental setup consisted of both hardware and software components, 
designed to ensure accurate EEG data acquisition and efficient model execution. EEG 
data were collected using the Emotiv Epoc + headset, a 14-channel wireless device 
operating at a sampling rate of 128 Hz. The device features saline-based sensors 
positioned according to the international 10–20 electrode placement system, allowing 
reliable capture of cortical activity during motor imagery and cognitive tasks. The 
Emotiv Control Panel and Emotiv PRO software were employed for data recording 
and initial inspection of signal quality. 

All computational experiments were performed on a high-performance 
workstation equipped with an Intel Core i7-12700H processor (2.3 GHz), 16 GB of 
DDR5 RAM, and an NVIDIA GeForce RTX 3060 GPU (6 GB). This hardware 
configuration enabled efficient training and processing of large-scale EEG data using 
neural networks. 

The software environment included Python 3.10 running on Windows 11 Pro (64-
bit). Key libraries utilised were TensorFlow 2.12, Keras, NumPy, Pandas, and 
Matplotlib for neural network implementation, data manipulation, and visualisation. 
EEG preprocessing and filtering were performed using MNE-Python, while evaluation 
metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and 
Correlation Coefficient (CC), were computed using Scikit-learn. 

This integrated hardware–software configuration ensured reproducible, stable, 
and high-fidelity experimentation throughout the study. 

3.2. Pipeline for EEG data imputation 

Data Pre-Processing: The EEG data should be cleaned and prepared for analysis 
at this point. It may involve removing noise, outliers, and unnecessary data. 

Create heat maps: Heat maps are created to visualise the missing data in the EEG 
dataset, as well as to identify the relationships between adjacent data points. 

Determine missing values: The EEG data is determined to have missing values 
in which case the heat maps are generated. 

Calculate difference values: The difference values are computed against all the 
missing data values in the dataset using a custom activation function. 

Impute missing values with adjacent data and corresponding difference values: 
The imputation algorithm fills the data voids using neighbouring data points and their 
corresponding difference values. 

The neural network is trained on the imputed data. The imputed data is then 
passed through a neural network, utilising a multi-layer perceptron (MLP) architecture 
to train the network [19]. 

Predict missing values in new data using a trained neural network: A trained 
neural network is then applied to the new data to predict missing values based on the 
correlations identified between the input and output data. 

Figure 1 illustrates how missing data can be imputed in EEG data, and the trained 
neural network can be used to predict missing values in new data. Cleaning and 
preparing the dataset [20] is the first step in the analysis process, where noise, outliers, 
and irrelevant data points are removed. The missing data and relationship amongst 
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adjacent data points are then represented as heat maps. Missing values of the dataset 
are detected with the help of these heat maps. The custom activation operation is then 
used to calculate the corresponding values of the differences for each missing value in 
the dataset. The process of imputation then takes the neighbouring data points and 
their respective values of the difference to complete the missing values. Then, the MLP 
architecture neural network is trained on the imputed data. Finally, a trained neural 
network provides predictions of the missing values in new data based on the 
connections that the network has learned between the input and the output data. The 
pipeline utilises deep learning to predict missing values of new data and offers a 
holistic approach to imputing missing values in EEG datasets. 

 
Figure 1. Pipeline for EEG data imputation. 

3.3. Neural network architecture for imputing missing values in EEG 
data 

The input layer of a neural network is illustrated in Figure 2, which accepts the 
three values x1, x2, and x3. The first hidden layer, comprising three neurons labelled 
z1, z2, and z3, receives these values next. After receiving the input data, each neuron 
in the hidden layer adds a set of weights acquired during training. The model becomes 
non-linear when the weighted sum of the inputs is run through an activation function. 
The bespoke activation function previously described in the study was employed in 
this instance. 

After passing through the activation function, the output values of the first hidden 
layer are routed to the second hidden layer, which also consists of three neurons 
labelled z4, z5, and z6. Like the first hidden layer, the second hidden layer operates by 
having each neuron receive the first hidden layer’s output values, apply a set of learned 
weights, and then pass the weighted sum through the activation function. 
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Figure 2. Neural network architecture. 

The single neuron designated y, which makes up the output layer’s last 
component, receives the output values from the second hidden layer, adds the last set 
of learnt weights, and outputs a single value. The output value utilised for imputation 
is the expected missing value. 

The neural network learns to anticipate missing values based on the input and 
related difference values calculated by the custom activation function. To minimise 
the discrepancy between the expected and real missing values, the neural network 
weights are modified during training. 

This function is used in the neural network to introduce non-linearity in the model. 
The custom activation function used in this work is designed to consider the 
neighbouring data points of a missing value and compute the corresponding difference 
values. 

3.4. The custom activation function used in this work is defined as follows 

Let xi, xj be the neighbouring data points of a missing value xk. 
Then, the related difference value dv for xk is calculated as: 

 𝑑𝑣 =
௫೔ି௫ೕ

ଶ
 (1)

The custom activation function f is then defined as: 

 𝑓(𝑥௞) = 𝑥௞ + 𝑑𝑣 (2)

This function introduces non-linearity into the neural network model by 
incorporating the related difference value, dv, into the calculation of the missing value, 
xk. By doing so, the process considers the neighbouring data points of xk and their 
relationship to xk to impute the missing value more accurately. 

3.5. Neural network architecture 

The neural network design employed in this study is a multi-layer perceptron 
(MLP) with multiple hidden layers, as shown in Figure 2. The EEG data points are 
entered into the input layer, and the output layer predicts the missing values. The 
model gains nonlinearity from the hidden layers, which also aid in learning intricate 
input-to-output interactions. 

The neural network was trained using a multi-layer perceptron (MLP) 
architecture with two hidden layers, each containing 8 neurons, the configuration that 
yielded the best results in the sensitivity analysis. To ensure efficient learning and 
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stable convergence, the Adam optimiser was employed with a learning rate of 0.001, 
selected after empirical testing of multiple values in the range of 0.0001–0.01. The 
batch size was set to 32, balancing computational efficiency and model generalisation, 
while the number of training epochs was fixed at 150 to achieve consistent 
convergence without overfitting. 

The Rectified Linear Unit (ReLU) was used as the activation function in the 
hidden layers, and the proposed custom activation function was applied in the output 
layer to refine the imputation outputs within the expected data range. Model training 
and validation were conducted using an 80:20 split of the dataset, with Mean Absolute 
Error (MAE) as the primary loss function. Early stopping was implemented to prevent 
overfitting by monitoring validation loss across epochs. This configuration achieved 
optimal performance in terms of both convergence speed and imputation accuracy 
across multiple EEG datasets. 

Let x represent the form of the input matrix (m, n), where m denotes the sample 
count and n is the feature count. 

Let y be the output matrix of shape (m, n), where yi is the missing value of xi. 
Let k be the number of neurons in each hidden layer, and h be the total number 

of hidden layers. Let us denote the activation function used in the hidden layers as 𝑓. 

3.5.1. The forward propagation algorithm can be represented as follows 

Initialize weights and biases for all layers randomly. 
For each sample xi in X:  
Propagate input xi through the network: 
i. Calculate the weighted sum of inputs and biases for the first hidden layer: 

𝑧ଵ = 𝑤ଵ𝑥௜ + 𝑏ଵ (3)

ii. Apply the weighted sum to the activation function f: 

 ℎଵ = 𝑓(𝑧ଵ) (4)

iii. Determine the input and bias weighted sum for the second hidden layer:  

 𝑧ଶ = 𝑤ଶℎଵ + 𝑏ଶ (5)

iv. Apply the activation function f to the weighted sum: 

 ℎଶ = 𝑓(𝑧ଶ) (6)

v. Repeat the above steps for h hidden layers. 
vi. Calculate the weighted sum of inputs and biases for the output layer:  

 𝑧଴ = 𝑤଴ℎு + 𝑏଴ (7)

vii. Apply the weighted sum to the activation function f0: 

 𝑦௜ = 𝑓଴(𝑧଴) (8)

Compute the loss function between predicted values yi and actual values Yi. 
Use the backpropagation algorithm to update weights and biases to minimise the 

loss function. 
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3.5.2. A mathematical formulation of the proposed imputation algorithm for 
EEG Data with missing values 

Let D = [di, j] be the EEG dataset with missing values, where i = 1, 2, ..., n and j 
= 1, 2, ..., m are the indices of the rows and columns, respectively. The missing values 
are denoted by di, j = NaN. 

Preprocessing: 
Let D’ be the preprocessed dataset with unwanted or corrupted data points 

removed. 
Heatmap generation: 
Let Δi, j be the difference value between adjacent values in D for all missing values 

(i,j). 
Δi, j = di+1, j − di, j if di+1, j and di, j are both not NaN 
Δi, j = di, j +1 − di, j if di, j+1 and di, j are both not NaN 
Let H be the heatmap displaying Δi, j for all missing values (i, j). 
Imputation algorithm: 
For each missing value (i, j) with corresponding difference value Δi, j: 
Let Ni, j be the average value of the neighbouring data points: 
Let Ni, j = 0 
Let n be the number of neighbouring data points 
For each neighbouring data point (k, l) around (i, j) with a non-NaN value: 
Ni, j += dk, l 
n += 1 
Ni, j /= n 
Let Vi, j be the imputed value: 
Vi, j = Ni, j + Δi, j 
Let D’ be the dataset with Vi, j imputed for all missing values (i, j) with 

corresponding difference values Δi, j. 
Train a neural network on D’’ to predict missing values based on Δi, j. 
Post-processing: 
Let D’ be the cleaned dataset with any remaining errors removed. 
Performance evaluation: 
Evaluate the effectiveness of the proposed imputation algorithm on D’ using 

various metrics such as RMSE and MAE. 
The mathematical formulation of the proposed imputation algorithm for EEG 

data with missing values involves several steps. First, the algorithm takes in the EEG 
dataset as input and preprocesses the data by removing unwanted or corrupted data 
points. Then, a heat map is generated to visualise the missing data and identify its 
locations. 

Overall, the mathematical formulation of the proposed imputation algorithm is a 
comprehensive and rigorous approach to handling missing data in EEG datasets. It 
demonstrates improved accuracy compared to traditional methods that do not consider 
the interrelatedness of neighbouring sensors. 
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3.5.3. Illustration of the proposed imputation algorithm on EEG data with 
missing values 

 
Figure 3. Illustration of the proposed imputation algorithm. 

Input Data: x = Ne[nan, 1, 3], y = [4, 2, 6], z = [2, 3, 7] 
Custom Activation Function: 

 Compute corresponding difference values for missing data:  
For missing data at (1, 1): 
r1 = (y2 − x2)= (2 − 1) = 1 
r2 = (y1 − z1) = (4 − 2) = 2 
r3 = (y3 − x3) = (6 − 3) = 3 
r4 = (z3 − y3) = (7 − 6) = 1 

 Compute the average of r1 to r4: (1+2+3+1)/4 = 1.75 
 Repeat for all missing data points in the input data 

Imputation: 
 Use the computed corresponding difference values and the average of 

neighbouring data points to impute missing data: 
For missing data at (1, 1): 
Average of neighbouring data points: (2+3+6+7)/4 = 4.5 
Imputed value: 4.5−1.75 = 2.75 

 Repeat for all missing data points in the input data 
Neural Network: 

 Figure 3 shows training the neural network on the input data with imputed 
missing values and related difference values as inputs and actual missing values 
as outputs 

 Forecast the missing values in the initial input data using the trained neural 
network. 
Here is a representation of the backpropagation algorithm: 

1) Set the output layer’s error term to its initial value:  
Δo = (yi − Yi) * fo’(zo) 

2) For each hidden layer H in reverse order:  
 Compute the error term:  
ΔH = (WH + 1.T ΔH + 1) * f’(zH). 

3) Determine the weights’ and biases’ gradient:  
 Compute the gradient of the output layer:  
ΔWo = hH.T Δo, Δbo = Δo 
 Compute the angle of each hidden layer:  
ΔWH = hH − 1.T ΔH, ΔbH = ΔH 
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4) Revise the weights and biases:  
 Update the output layer weights and biases:  
Wo = Wo − learning_rate * ΔWo, bo = bo − learning_rate * Δbo. 
 Update the hidden layer weights and biases:  
WH = WH − learning_rate * ΔWH, bH = bH − learning_rate * ΔbH. 

3.6. Imputation algorithm 

The imputation algorithm used in this work involves three steps. First, the 
corresponding difference values of a missing value are computed using the custom 
activation function. Secondly, the missing value is imputed by calculating the average 
value of the nearby data points. To forecast missing values based on the calculated 
corresponding difference values, the neural network is then trained on the dataset. 
1) Compute the corresponding difference values for each missing value using the 

custom activation function: 
 Let xi be the missing value, and xj be its neighbouring data points. 
 Compute the corresponding difference values dk for each neighbouring data 

point xj as follows: 
dk = f(xj − xi), where f is the custom activation function. 
 The corresponding difference value dk represents the relationship between 

the missing xi and its neighbouring data points xj. 
2) Determine the average value of the nearby data points: 

 Let xj be the neighbouring data points of a missing value xi. 
 Determine the average value of the nearby data points.  
ai = (1/N) * ∑(xj), where N denotes the quantity of nearby data points. 

3) Impute the missing value: 
 Let xi be the missing value with related difference values dk and average 

value ai. 
 Compute the imputed value yi as follows: 
yi = ai + w * ∑(dk), where w is a weighting parameter and ∑(dk) is the sum of 

corresponding difference values. 
 The missing value xi is filled up using the imputed value yi. 

4) Train the neural network on the imputed dataset: 
 Use the imputed dataset with missing values replaced by their imputed 

values. 
 Using the imputed dataset, train the multi-layer perceptron (MLP) neural 

network to anticipate missing values based on associated difference values 
that have been calculated. 

3.6.1. The method consists of three steps 

Step 1: Difference values (dv) are calculated. This study uses the following 
algorithm to get the difference values between the nearby sensors for each missing 
value 

𝑣 = ∑൫𝑣௜ − 𝑣௝൯  (9)
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where value (vi) stands for the reading from the close-by sensor (i), and value (vj) 
stands for the reading from the close-by sensor (j). It calculates the average difference 
value (dv) by adding the difference values for all nearby sensors. 

Step 2: For imputation, this study uses an average value. Next, impute the missing 
value using the average value of the nearby sensors. Specifically, It calculates the 
average value of the surrounding sensors as: 

𝑣 = ∑(𝑣௜)/n (10)

where vi is the value of the surrounding sensor i, and n is the total number of 
surrounding sensors. This method fills the missing value with the calculated average 
value (av). 

Step 3: Neural network-based imputation. This study uses a neural network to 
refine the imputed value. The neural network takes as input the original data matrix, 
where missing values have been imputed with the average value in Step 2. This study 
uses a custom activation function in the output layer of the neural network to ensure 
that the imputed value is within the range of the original data. 

3.6.2. Custom activation function 

The definition of our unique activation function is: 

f (x) = (1 + e−x)−1 (11)

The activation function ensures that the neural network’s output falls within the 
original data range. Specifically, the output value is mapped to a value between 0 and 
1, which is then scaled to the original data range using the maximum and minimum 
values of the original data. 

3.6.3. Neural Network Architecture (NNA) 

Our NNA consists of two ultimately linked layers with 64 and 32 hidden units. 
In the hidden layers of this work, the activation function is the Rectified Linear Unit 
(ReLU). The output layer uses the custom activation function mentioned above. 

3.7. Importance of heatmap in imputing missing values in EEG data 

As part of their methodology for imputing missing values from the dataset [21], 
this study used a heatmap to illustrate the differences between neighbouring EEG data 
values. The researchers may find trends in the missing data and use them to guide their 
imputation method by using a custom function to compute these differences and 
constructing a heat map to visualise them in Figure 4. Comparing this strategy to more 
conventional ones that do not consider the link between nearby sensors shows 
enhanced accuracy. The heatmap is, therefore, essential for researchers using EEG 
data. It can support the identification of missing values and guide imputation 
techniques that result in more precise subsequent analysis. 
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Figure 4. A heatmap visualises the differences between adjacent EEG data points. 

3.8. Integration of EEG imputation into dementia rehabilitation 
framework 

Although the above subsections outline the technical architecture of the neural 
network-based EEG imputation technique, its real impact is felt when applied in the 
context of healthcare. Another application of this study is the design of a smart 
assistant to support dementia rehabilitation. The robustly restored EEG data in this 
framework, according to our method, are the foundation of personalised therapy 
generation. Figure 5 shows the integration of EEG imputation with BCI-based 
dementia rehabilitation and VR-assisted therapy delivery. 

 
Figure 5. Illustrates this integration, highlighting how the EEG imputation module 
functions as a foundational enabler for dementia rehabilitation systems. 
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Step 1—EEG Acquisition: Brain-Computer Interface (BCI) headsets record a 
multi-channel EEG data from patients with dementia during a therapeutic session. 
Such raw signals typically have missing or corrupted values as a result of noise, motion 
artefacts or detached electrodes. 

Step 2—Signal Restoration: The proposed imputation approach (Sections 3.1–
3.5) restores the missing values by leveraging spatial and temporal correlations 
between neighbouring sensors. This method achieves high-quality EEG data for use 
in downstream analysis. 

Step 3—Cognitive and Emotional Profiling: Using the imputed EEG information, 
a BCI analysis module identifies the cognitive state (e.g., attention, relaxation) and 
emotional profile (e.g., stress, engagement). Adaptive rehabilitation is dependent on 
this dual profiling. 

Step 4—Generative AI Therapy Engine: The emotional profile and the profile of 
interest of the patient (acquired via questionnaires or previous interactions) are then 
used as prompts to a fine-tuned Generative AI model. The model produces 
individualised therapy materials, e.g. cognitive games, social interaction scripts, or 
reminiscence activities. 

Step 5—Rehabilitation Delivery through VR: The therapeutic content is 
presented in virtual reality (VR) spaces. Examples here might include recreations of 
familiar places (e.g., childhood home), interactive puzzles, or simulations of social 
conversations, which can decrease anxiety and increase interest. 

Step 6—Patient Feedback and Adaptation: The responses of patients (both 
behavioural and neural) are monitored in real-time. This feedback mechanism allows 
the imputation model to be retrained continuously and therapy recommendations to be 
refined, ensuring the maintenance of individualised therapy. 

4. Experimental results 

For this research paper, we utilised the publicly available EEG dataset from 
Physionet, a renowned repository for physiological signal data. EEG recordings made 
during motor movement and imaging tasks are included in the EEG Motor 
Movement/Imaging Dataset used in this study. The dataset includes 64 channels and 
a sampling rate of 160 Hz. Table 2 shows the description of the EEG dataset. 

Table 2. Description of the EEG dataset. 

Dataset name EEG motor movement/Imagery dataset 

Repository Physionet 

Channels 64 

Sampling Rate 160 Hz 

Recording Duration 114 seconds 

Tasks Left-hand motor imagery, Right-hand motor imagery,Rest 

Training Set 60 recordings from 52 subjects 

Testing Set 40 recordings from 36 subjects 

Missing Values 20% of data points randomly selected 

Annotations Start and end time of each task 
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The EEG dataset used in this research is the EEG Motor Movement/Imagery 
Dataset from the Physionet repository. With 60 recordings in the training set and 40 
in the testing set, the dataset contains recordings of motor imagery tasks from 52 
people. The dataset consists of 64 channels, a sample frequency of 160 Hz, and a 
recording time of 114 s per recording. The activities included in the dataset are rest, 
left-hand motor imagery, and right-hand motor imagery. This study randomly chose 
20% of the data points to represent missing values in the dataset. The dataset also 
includes annotations indicating the beginning and ending times of each job. 

The dataset is used to construct training and testing sets. The training set 
comprises 60 recordings from 52 individuals, whereas the testing set consists of 40 
recordings from 36 subjects. Each 114 s recording consists of three activities: left-
hand motor imagery, right-hand motor imagery, and a rest period. Every job’s start 
and finish timings are also annotated in the task’s dataset. 

Twenty per cent of the data points in the training and testing sets were arbitrarily 
chosen as missing values in our trials. The remaining 80% of the data points were 
utilised in this work to test and train the imputation techniques. Table 3 shows the 
sample of the EEG dataset in below. 

Table 3. A sample of the EEG dataset. 

Time (s) 0 1/160 2/160 113.98 

Channel 1 −17.53 −18.13 −18.32 −22.49 

Channel 2 23.47 23.89 24.02 25.34 

Channel 64 14.09 14.66 14.8 20.22 

The dataset contains many data points, and each has 64 channel values. The 
missing values were randomly selected from this dataset to simulate realistic scenarios 
of missing data in EEG recordings. 

These studies were conducted using an EEG dataset publicly available to assess 
the efficacy of our proposed strategy. The dataset consists of 20 subjects and includes 
64 EEG channels recorded during a motor imagery task. Then randomly selected 10% 
of the data points from each channel as missing values for our experiments. 

This study compared our method to two traditional methods for missing value 
imputation: mean imputation [22] and K-Nearest Neighbour imputation (KNN) [23]. 
The mean value of the non-missing data in the same channel is used to fill in missing 
values by mean imputation. The average value of the K closest non-missing values in 
the same channel is used in KNN imputation to fill in missing data. This paper 
compares our approach with two established techniques for imputing missing values: 
mean imputation [24] and K-Nearest Neighbour imputation (KNN). Mean imputation 
replaces missing data in the same channel with the mean value of the non-missing 
variables. KNN imputation fills in missing data by averaging the K nearest non-
missing values in the same channel.  
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4.1. Mean absolute error (MAE) 

The Mean Absolute Error measures the average size of errors between the 
anticipated and actual values. It is the mean of the absolute deviations between the 
values that were anticipated and those that were observed. 

𝐴𝐸 =
1

𝑛
෍|𝑦௜ − 𝑦పෝ|

௡

௜ୀଵ

 (12)

where 𝑦௜   is the actual value, n is the number of data points, and  𝑦పෞ is the forecast value. 

4.2. Mean squared error (MSE) 

The mean squared error measures the average of the squared discrepancies 
between the expected and actual values. Compared to MAE, it is more sensitive to 
outliers. 

𝑆𝐸 =
1

𝑛
෍(𝑦௜ − 𝑦పෝ)ଶ

௡

௜ୀଵ

 (13)

where n is the number of data points, 𝑦௜ is the actual value, and  𝑦పෞ is the predicted 
value. 

4.3. Correlation coefficient (CC) 

The correlation coefficient quantifies the linear relationship between two 
variables. It ranges from −1 to 1, where −1 denotes a perfect linear negative 
relationship, 0 denotes no linear association, and 1 denotes a perfect linear positive 
relationship. 

 CC = 
∑ (௫೔ି௫̅)೙

೔సభ (௬೔ି௬ത)

ට∑ (௫೔ି௫̅)మ೙
೔సభ ට∑ (௬೔ି௬ത)మ೙

೔సభ

 (14)

where n is the number of data points, 𝑥௜and 𝑦௜ are the actual and predicted values, and 

𝑥̅ and 𝑦ത are the mean values of x and y, respectively. 
Table 4 presents the results of our experiments, in which this paper evaluated the 

performance of three methods using three metrics commonly employed to assess the 
performance of regression models: mean absolute error (MAE), mean squared error 
(MSE), and correlation coefficient (CC). A lower MAE and MSE indicate better 
model performance, while a higher CC value indicates a stronger linear relationship 
between the predicted and actual values. 

Table 4. Experimental results for missing value imputation. 

Method MAE MSE CC 

Mean Imputation 0.4208 0.2474 0.8056 

KNN Imputation 0.3802 0.2048 0.8451 

Proposed Method 0.3211 0.1576 0.9024 
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Table 4 shows that our proposed method outperforms both mean and KNN 
imputations for all three metrics. The proposed method achieves lower MAE and MSE, 
and a higher CC, compared to traditional methods. 

Additionally, this paper visually examined the imputed data. Figure 6 displays 
an example of the imputed data for the three techniques on a single channel. As can 
be observed, when compared to the conventional approaches, our suggested method 
yields smoother and more believable imputations. 

Our experimental results demonstrate that our proposed approach for imputing 
missing values in EEG data outperforms traditional methods. 

 
Figure 6. Experimental results for missing value imputation. 

The original data is shown in black; the mean imputation data is shown in red, 
the KNN imputation data is shown in blue, and the imputed data using our suggested 
approach is shown in green in the image. As can be observed, the proposed method 
yields a smoother and more convincing imputation when compared to conventional 
approaches. 

Additionally, this paper evaluated the performance of the custom activation 
function used in our proposed method. This comparison examines our custom 
activation function against the rectified linear unit (ReLU) activation function, a 
widely used activation function in neural networks. Table 5 suggests the outcomes of 
our experiments. 

Table 5. Results of experiments comparing activation functions. 

Activation function MAE MSE CC 

ReLU 0.3472 0.1759 0.8863 

Proposed function 0.3211 0.1576 0.9024 

As shown in Figure 7, our custom activation function outperforms the ReLU 
activation function in terms of CC. Although the MAE and MSE are slightly lower for 
ReLU, the CC is a more important metric for EEG data as it indicates the correlation 
between the imputed and original data. 

Overall, our experimental findings demonstrate the efficacy of our proposed 
approach for imputing missing values in EEG data. Our method outperforms 
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traditional methods, and the custom activation function used in our process is also 
adequate for this task. 

To further validate the performance of our proposed method, this study conducted 
additional experiments on a larger dataset. The dataset consists of EEG recordings 
from 20 participants, each with 64 EEG channels. This study randomly selected 20% 
of the data as missing values for our experiments. 

 
Figure 7. Comparison of activation function. 

As shown in Table 6, the best-performing combination of hyperparameters is a 
neural network with two hidden layers, each containing 8 neurons. This configuration 
achieved the lowest MAE, MSE, and the highest CC values among all the variations 
tested. 

Table 6. Shows the results of our sensitivity analysis. (The best-performing 
combination of hyperparameters is highlighted in bold). 

No. of Hidden Layers No. of Neurons per Layer MAE MSE CC 

1 8 1.466 4.048 0.728 

1 16 1.285 3.272 0.770 

1 32 1.278 3.253 0.774 

2 8, 8 1.238 3.153 0.775 

2 16, 16 1.263 3.256 0.771 

2 32, 32 1.275 3.280 0.769 

3 8, 8, 8 1.392 3.672 0.733 

3 16, 16, 16 1.416 3.830 0.721 

3 32, 32, 32 1.408 3.790 0.724 

The sensitivity analysis presented in Figure 8 indicates that the hyperparameters 
of the neural network architecture impact the performance of our proposed strategy. 
Thus, optimising the hyperparameters is the key to getting the best imputation results. 

To further validate the effectiveness of our proposed method, this study 
conducted an additional experiment using a different EEG dataset with 30% missing 
values. The dataset contained 21 EEG channels with a sampling rate of 256 Hz. 
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This work contrasted our suggested strategy with three cutting-edge imputation 
techniques [25]: nuclear norm minimisation with matrix completion (MC-NNM), 
matrix completion with low-rank representation (MC-LRR), and matrix completion 
with weighted nuclear norm minimisation (MC-WNNM). 

 
Figure 8. Results of our sensitivity analysis. 

The comparison’s findings are displayed in Table 7. Regarding MAE and MSE, 
our suggested solution outperformed all three state-of-the-art approaches while 
achieving equivalent results in terms of CC.  

Table 7. Comparison of imputation methods on a different EEG dataset with 30% 
missing values. 

Imputation method MAE MSE CC 

MC-NNM 2.216 7.324 0.479 

MC-LRR 1.925 6.271 0.537 

MC-WNNM 1.828 5.893 0.571 

Proposed Method 1.579 4.643 0.628 

As shown in Figure 9, our proposed method achieved the lowest MAE and MSE 
values among all four methods, indicating its superior accuracy in imputing missing 
values in EEG data. Although our method did not achieve the highest CC value, it still 
achieved a relatively high CC value, demonstrating its capability to preserve the 
temporal correlation of EEG data. 

The performance comparison of the imputation models, as shown in Table 8 and 
Figure 9, highlights the efficiency of our proposed method in handling missing values 
in EEG data. The comparative metrics included Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and the Correlation Coefficient. These metrics thoroughly 
assess the correctness and dependability of each model’s imputation. 

Overall, the experimental findings support the viability of our suggested 
approach for filling in the missing values in EEG data. The proposed custom activation 
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function, neural network architecture, and the concepts of neighbour-based difference 
value and shrouding value enable our method to capture both local and global 
correlations of EEG data, producing more accurate imputations compared to 
traditional and revolutionary methods. 

 
Figure 9. Imputation performance. 

Table 8. Performance comparison of imputation models. 

Model MAE MSE Correlation Coefficient 

MLP (Multi-Layer 
Perceptron)  

0.15 0.03 0.85 

CNN and Bi-LSTM  0.12 0.025 0.87 

Hybrid Multiple Imputation  0.11 0.02 0.88 

Ensemble Learning  0.1 0.018 0.89 

Proposed Method 0.09 0.015 0.9 

5. Results and discussion 

The performance of the proposed neural network-based imputation technique 
was evaluated against traditional imputation techniques, including k-nearest 
Neighbours (KNN) imputation and mean imputation. The results demonstrate 
significant improvements in accuracy and efficiency, highlighting the advantages of 
the proposed approach. 

5.1. Advantages of the proposed method 

1) Improved Imputation Accuracy: The planned method consistently outperforms 
traditional methods in terms of imputation accuracy. By incorporating spatial and 
temporal dependencies, the neural network can more accurately predict missing 
values in EEG data. This is evident from the significant reduction in Mean 
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Absolute Error (MAE) and an increase in the Correlation Coefficient (CC) 
compared to mean and KNN imputation techniques. 

2) Handling of Non-linear Relationships: The capacity of the suggested method to 
represent non-linear correlations within the EEG data is one of its key features. 
Traditional methods, such as mean imputation, assume linearity, which can lead 
to inaccurate imputations. The custom activation function in our neural network 
enables better modelling of the complex, non-linear interactions present in EEG 
data, leading to more reliable inferences. 

3) Preservation of Spatial and Temporal Dependencies: Unlike conventional 
methods that often treat data points independently, the proposed method 
leverages the spatial and temporal dependencies between neighbouring sensors. 
This is especially important in EEG data, where brain activity is interconnected 
across different regions. The method utilises differential values between adjacent 
sensors to ensure that the imputed values more accurately reflect the underlying 
brain activity. 

4) Refinement Through Differential Adjustments: The method’s ability to refine 
imputed values based on mean differential adjustments further enhances its 
accuracy. This additional step ensures that the imputed data aligns more closely 
with the overall structure of the EEG data, reducing the likelihood of introducing 
errors into subsequent analyses. 

5.2. Clinical impact of improved EEG imputation in dementia 
rehabilitation 

Enhanced EEG imputation plays a crucial role in improving the clinical 
effectiveness of dementia rehabilitation systems by ensuring the integrity and 
continuity of brain signal data. Accurate reconstruction of missing EEG segments 
allows for more reliable monitoring of cognitive and emotional states, which is 
essential for tailoring therapy to each patient’s unique neural and behavioural patterns. 
This increased data precision enables personalised rehabilitation, where therapeutic 
modules such as cognitive games, reminiscence sessions, or social engagement tasks 
can dynamically adapt to the patient’s current cognitive load and affective state. 

From a clinical perspective, consistent EEG data facilitate faster recovery 
trajectories by allowing real-time adjustments in therapy intensity, pacing, and content 
based on the patient’s neural responses. Moreover, automated feedback systems 
powered by imputed EEG data can alert clinicians to early signs of fatigue, 
disengagement, or improvement, optimising therapy scheduling and reducing 
redundant sessions. The technology also contributes to reducing caregiver workload, 
as automated, data-driven rehabilitation systems can continuously monitor patient 
progress without requiring constant manual supervision. Ultimately, robust EEG 
imputation strengthens the foundation of intelligent dementia care, promoting more 
responsive, personalised, and sustainable rehabilitation strategies that improve patient 
quality of life and reduce clinical strain in long-term care environments. 
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5.3. Limitations and future work 

While the proposed neural network-based EEG imputation method demonstrates 
significant improvements in accuracy and signal reliability, certain limitations must 
be acknowledged. The model’s performance depends on the availability of sufficient 
computational resources, as neural network training can be intensive, particularly 
when dealing with large-scale EEG datasets. Additionally, the approach was evaluated 
under controlled experimental conditions, which may not fully capture the variability 
and noise encountered in real-world clinical settings. The scalability of the model for 
continuous, multi-session EEG recordings, as well as its adaptability to diverse patient 
populations, remains an open challenge. 

Future research will focus on optimising the proposed framework for real-time 
applications within brain–computer interface (BCI) environments. This includes 
reducing model latency, improving energy efficiency for embedded or wearable 
hardware, and integrating adaptive learning mechanisms that update imputation 
parameters dynamically during ongoing therapy sessions. Moreover, future studies 
aim to validate the model’s clinical applicability through pilot trials in dementia 
rehabilitation, assessing its ability to enhance cognitive recovery, therapy 
responsiveness, and patient engagement in realistic healthcare contexts. 

Compared to traditional imputation techniques, the proposed method better 
handles missing values in EEG datasets. The improvements in MAE and CC metrics 
indicate that the method is more effective in preserving the integrity of EEG Data, 
which is crucial for accurate analysis. However, the advantages come with trade-offs 
in computational complexity and the need for careful tuning, which must be 
considered when applying the method to different datasets or in real-time applications. 

6. Conclusion 

This study presented a neural network-based approach for imputing missing 
values in electroencephalographic (EEG) data, addressing one of the key challenges 
in cognitive and clinical neuroscience. By incorporating spatial–temporal 
dependencies and a custom activation function within a multi-layer perceptron (MLP) 
architecture, the proposed model demonstrated a 15% reduction in Mean Absolute 
Error (MAE) and a 10% increase in Correlation Coefficient (CC) compared to 
conventional imputation methods such as mean and k-nearest neighbours (KNN). The 
experimental findings confirm the model’s ability to capture non-linear neural 
relationships and preserve the structural integrity of EEG data, thereby improving the 
quality of data available for downstream neurological analysis and applications. 

Clinically, the enhanced EEG imputation framework has strong implications for 
dementia rehabilitation and personalised neurotherapy. Reliable and continuous EEG 
reconstruction enables precise cognitive and emotional profiling, which forms the 
foundation for adaptive, brain–computer interface (BCI)-driven rehabilitation systems. 
This capability supports personalised therapy design, accelerates patient recovery, and 
reduces caregiver workload through intelligent automation and real-time feedback. 
Future work will focus on extending the proposed model for real-time clinical 
deployment, large-scale validation across diverse patient groups, and integration with 
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generative AI and virtual reality (VR)-based therapeutic systems to advance data-
driven, patient-centred dementia care. 
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