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Abstract: Cerebral Microbleeds (CMBs) are among the significant contributors to mortality 

worldwide and require accurate diagnosis for effective medical intervention. Owing to their 

wide variability in size, shape, and intensity, manual identification and classification of CMBs 

in brain imaging remain a complex and error-prone task. This study proposes an automated 

classification framework for brain MRI-filtered images, categorizing them as either normal or 

abnormal. The suggested methodology combines a tailored Convolutional Neural Network 

founded on the ResNet50 architecture, employing a blend of image processing and deep 

learning strategies. First, a number of preprocessing processes were implemented to increase 

the MRI pictures quality. One of these steps was the fusion of multi-focus images, which helped 

to make details more visible. These enhanced images were then processed through a 13-layer 

CNN architecture specifically designed for effective CMB classification. The strength of the 

proposed CNN-ResNet50 model was confirmed through validation with two independent 

datasets. Experiment one used a 10-fold cross-validation procedure, while experiment two split 

the dataset in half, with 80% used for training and 20% for testing. The model achieved a train-

test split accuracy of 98.77% and a cross-validation accuracy of 98.33% while classifying 

Dataset 1. An accuracy of 92.22% and an accuracy of 93.33% were attained by the model in 

the two experimental setups for Dataset 2. All investigations used real-world MRI scans. This 

data set originated from Neyyoor, India’s CSI Medical Mission Hospital’s International Cancer 

Center (ICC). The efficacy of the suggested CNN-ResNet50 model was evaluated in 

comparison to established deep learning models, such as AlexNet and the original ResNet50. 

Experimental data indicate that our proposed method surpasses both comparative models 

regarding classification accuracy. 
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1. Introduction 

Small haemorrhages near blood vessels are known as cerebral microbleeds. They 
are now understood to be crucial diagnostic biomarkers for a variety of cerebral 
vascular illnesses and cognitive disorders The risk of most unexpected deaths is 
increased by CMB. A number of internationally analysed logbooks show that CMB is 
the leading cause of death in society. Prior diagnosis enables it to be de-escalated so 
that the oncologists can prescribe the appropriate treatment within a set timeframe. 
MRI scan images are chosen for use in this paper on cerebral micro bleeding. The most 
sensitive and unique recognition modality that provides cross-sectional images for 
specific portions of scanned objects is a CAT or MRI scan. The goal of this research 
is to set up a system that uses MRI pictures as inputs and produces the desired results. 
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Motivation for this study 

Many scientists working in the medical field is adapting contemporary methods 
for disease prediction. These methods constantly help professionals recognize 
ailments, implement preventative measures, and streamline treatment planning. The 
study of CMB diagnosis through MRI of the brain, employing image processing 
technology, stands out as both a crucial and demanding field of inquiry. However, a 
significant proportion of people, regardless of age, experience different types of brain 
haemorrhage. These bleedings can be classified as benign or malignant, with the 
former being treatable surgically and the latter fatal. The early detection or prediction 
of CMB will result in the preservation of numerous human lives. 

A later stage diagnosis of CMB will put the patient into a comatose or coma, 
which can occasionally result in death. This encourages researchers to locate and 
forecast CMB regions in the suspected regions with the first symptoms, and to 
determine the nature of CMB using MRI scans of the brain. The best technique for 
predicting the precise location of an area in the brain using an MRI brain picture is 
determined, along with image processing and segmentation algorithms. The symptoms 
of headache, changes in vision, trouble speaking or interpreting speech, as well as 
other complications, are typically used to diagnose CMB while evaluating consecutive 
scan images. 

With the rapid advancement of modern technology, medical imaging applications 
are evolving continuously to enhance disease diagnosis, analysis, and prevention. As 
a recent engineering graduate, I am driven to pursue this research with the goal of 
addressing key challenges that can support the medical community in developing 
effective strategies for disease prevention. This investigation centers on a significant 
domain within the field of medicine, utilizing image segmentation and classification 
methods to identify cerebral microbleeds (CMBs). 

2. Literature review 

The study on image processing methods and the diagnosis of brain haemorrhage 
that has been done by various researchers is included in this section. The poll also 
includes medical information that was used by researchers in their research articles, 
such as information about various brain disorders or bleeding in various body regions. 
The application of segmentation, classification, and clustering algorithms for 
diagnosing medical issues across a variety of domains was also thoroughly covered. 
The demographic and clinical characteristics of patients with cerebral microbleeds are 
presented in Table 1. 

Remove unnecessary noise from the backdrop of the photographs to improve 
their quality. There are several techniques for preprocessing photos, and each 
technique has benefits and drawbacks of its own. Some of the components of 
preprocessing include contrast enhancement, border detection, and the elimination of 
undesirable noise pixels. Noises in images are eliminated without sacrificing any 
information in order to aid in the further detection or identification of diseases or 
affected areas. In this research work, a number of filtering strategies were thoroughly 
examined in terms of their benefits and drawbacks [1]. They also provided a quick 
overview of the MRI’s properties and noises. During the image acquisition process, 
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noise distorts the images, lowering their quality. Rician noise with spatially 
homogeneous noise distribution is the focus of the majority of denoising techniques, 
[2]. 

Table 1. Characteristics of cerebral micro bleeding affected patients. 

Characteristics  Total patients (%) 

Sex 
Male 
Female 

60.71 
40.15 

Normal condition 
Ischemic condition 
Hemorrhage condition 

 
442.02 
33.69 
24.30 

Ischemic condition Age (Years) 
Male 
Female 

Median 61 (22–87) 
Median 55 (31–69) 

Hemorrhage condition Age (Years) 
Male 
Female 

Median 39 (27–90) 
Median 45 (10–75) 

This program included a number of different preprocessing methods used to find 
the part of the brain that was bleeding in MRI images. The most important filters that 
should be used on MRI brain images are noise reduction and smoothing. For this 
particular database, the results were best for the filter that Perona and Malik had 
created [3]. Segmentation, Classification, and image extraction are all steps that 
benefit from well-chosen filters during preprocessing. 

This algorithm is evaluated in comparison to existing ones based on its 
performance metrics. In this context, fuzzy C-means play a vital role. A two-step 
filtering process was employed in this method. The initial phase employed non-local 
Principal Component Analysis (PCA) to eliminate noise from the image, while the 
subsequent phase utilized a non-local mean filter to guide the filtered image. This 
approach, which is based on the locally imposed bias, fixes images impacted by spatial 
Rican noise and internally evaluates the total amount of noise in the image [4]. 

Secondary cerebral microhaemorrhage is typically associated with malignancy 
and can disseminate to other bodily systems. Each scenario presents the potential for 
severe and catastrophic outcomes. Using PSO, FCM, EMO, and LSM, we were able 
to successfully segment digital MRI images for worrisome brain haemorrhage [5]. 

Concepts of swarm intelligence have garnered significant attention, especially in 
the realm of PSO. Segmenting MRI images poses a variety of complex challenges. 
They used PSO and mixed algorithms based on the idea of swarm intelligence in many 
different areas of their work to show how algorithms can be used in many different 
situations. 

The intensity in homogeneities method of fuzzy logic is used to segment MRI 
brain data images. The acquisition sequence inhomogeneities imperfection makes a 
significant contribution to the CMB MRI brain imaging data. The novel algorithm that 
is being suggested is based on a changed goal function of the FCM algorithm. This 
changes the values of the voxels by looking at their nearby neighbors. Magnetic 
resonance imaging (MRI) picture segmentation is a primary use case for this 
technology because of the substantial impact that salt and pepper noise distortions 
have on these images. The proposed method’s effectiveness and efficiency are 
illustrated through an evaluation of the algorithm on synthetic data as well as MRI 
brain images [6]. 
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They go more in-depth with the FCM clustering method in their research. The 
partition matrix and random initialization are two FCM drawbacks that lead to more 
erratic clustering outcomes [7]. Although Subtractive Clustering (SC), a different 
approach, was taken into consideration, it was not known how many clusters there 
were. To address the limitations of FCM and SC, the authors proposed Subtractive 
Fuzzy C Means (SFCM), an innovative hybrid technique that integrates FCM and SC. 
The experimental findings indicate that the SFCM approach provides notably better 
clustering results compared to the indices of the FCM algorithm [8]. 

The ABC-FCM algorithm, which combines the FCM and ABC algorithms, is a 
clustering technique [9]. This innovative method was developed mainly to tackle the 
limitations associated with the initialization sensitivity of the conventional FCM 
algorithm, as well as issues related to local optima and cluster centroids [10]. The 
newly created method took advantage of ABC’s capabilities in cluster centres and used 
these centres as input for the FCM algorithm to enhance the segmentation of MRI 
brain pictures. Real MRI pictures as well as synthetic brain data are used as input, and 
the effectiveness of the recently established approach was evaluated [11]. 

The EMO algorithm’s random local search improves and raises the accuracy of 
the problem solution [12]. In order to solve the population shrinking strategy problem, 
this research provided a new approach for local search that used and put into practise 
the pattern search method. The proposed approach was used to solve a few issues, and 
the outcomes were contrasted with those of the original EMO algorithm. 

Few academics have used the EML algorithm to address the Combinatorial 
Optimization Problem (COP). In order to create a novel hybrid algorithm for 
determining the best/optimal schedule for the problem, this work aimed to merge the 
genetic operators with the random key concepts. Upon comparison of the hybrid 
algorithm’s results with those of the standard GA and EMO algorithms, it was evident 
that the hybrid algorithm yielded superior values [13]. 

Using image processing techniques, the system that was made worked as a multi-
stage diagnostic tool that successfully categorized and identified brain hemorrhage 
[14]. Combining and changing T1-weighted and T2-weighted magnetic resonance 
imaging (MRI) images was suggested as a way to get better results. The bleeding zone 
is extracted from these upgraded MRI images utilizing the watershed segmentation 
technique and the hybrid skull stripping segmentation process. The bleeding region of 
the brain can be efficiently segmented using the enhanced watershed segmentation 
method [15]. 

The extracted haemorrhage was categorized using SVM to determine if it was 
benign or cancerous. The created method retrieved the intensity-based features and 
texture-based features, which were then compared to the actual data. It was fascinating 
to observe that, on average, the findings produced by the designed system 
outperformed the ground truth data [16]. Along with the created system, a comparison 
analysis of two more hybrid classification techniques, such as Morphology + SVM 
and Watershed + SVM, was carried out. With an accuracy of 94%, the system designed 
for classifying brain haemorrhage outperformed the other two classification 
approaches in terms of efficiency [17–19]. 

Researchers looked at the image segmentation and preprocessing methods they 
utilized, as well as the medical data they used [20]. The researchers’ assessment of 



 Journal of Biological Regulators and Homeostatic Agents 2025, 39(4), 8249. 

5 

several segmentation algorithms and preprocessing techniques was also covered in this 
part, along with a brief overview of their benefits and drawbacks [21]. The affected 
region is analysed with various types of image segmentation algorithms in the 
section’s further discussion of image segmentation algorithms for brain bleeding MRI 
images. Researchers also looked at the inventive hybrid models they came up with in 
their thesis for splitting MRI brain imagery into parts. The writers looked into how 
deep convolutional neural networks can be used to analyze brain pictures [22]. Here, 
we merely skim the surface of deep convolutional neural networks. nonetheless, it did 
not mention whether the segmentation. 

There are two ways to group brain cancer together [9,17]. Most cases of lung 
cancer are non-small cell lung cancer (NSCLC), which makes up 80% to 90% of cases, 
and small cell lung cancer (SCLC), which makes up about 10% to 15% of cases. 
Computer Aided Detection Systems (CAD) are a hotspot for research in medical 
imaging and diagnostic radiology [8,11,13]. An important part of computer-assisted 
diagnosis is the ability to categorize picture aspects as normal or abnormal, which 
allows for the processing of images to detect and eliminate abnormalities [14,18]. A 
CAD system aids in reducing the incidence of erroneous diagnoses [3,21]. The 
efficacy of a CAD system is assessed based on accuracy, sensitivity, specificity in 
diagnosis, speed, and complexity level. 

The categorization of brain cancer employs computer-assisted diagnostics via 
artificial neural networks [1,18]. Area, perimeter, and shape are three fundamental 
attributes considered in classification. Approximately 90% of the data is categorized 
in the most severe manner. There are a number of proposed categorization approaches 
that make use of content-based image retrieval (CBIR) [10,16,20]. A novel system [2] 
has been designed for the purpose of acquiring open-source lung nodule images. The 
method extracts images of each individual nodule from the LIDC collection, thereafter 
determining the Gabor filters, Markov random field properties, and Haralick co-
occurrence of the nodule. The distance metrics employed for retrieval are Euclidean, 
Manhattan, and Chebyshev. The retrieval rate maximum achieved is 88%. 

Here is the outline of the paper: Section 2 provides a synopsis of relevant prior 
work, and Section 3 describes the methodology for categorization that is being 
considered. Section 4 details the specifics of MRI image datasets, the utilization of 
nuanced elements, and exploratory findings. Section 5 and 6 of the comprehensive 
study present a discourse on the exploratory findings. 

3. Proposed system 

Figure 1 illustrates the proposed paradigm for the detection of Cerebral 
Microbleed. The procedure commences with input MRI pictures, which undergo 
preprocessing via an anisotropic filter to enhance image quality. The Anisotropic 
Diffusion Filter (ADF) is employed to reduce noise while maintaining edge integrity. 
Subsequently, regions of interest are delineated by deep learning-based bounding box 
segmentation. This segmentation facilitates the accurate localization of brain 
microbleeds on MRI imaging. Following DLBB-based segmentation, the segmented 
CMB image underwent classification. CMB-ResNet 50 CNN was proposed for the 
categorization of CMB images to ascertain their status as CMB or non-CMB. 
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Figure 1. Proposed framework for the detection of cerebral micro bleeding. 

3.1. Anisotropic diffusion filter (ADF) 

The nonlinear anisotropic filter sorts all the pixel values in the window before 
replacing processing pixels with their median values. The median is determined for 
each pixel in the image filter mask. The median matrix of size N × M is used to replace 
the surrounding region of all picture pixels, which are represented by each individual 
pixel [23]. The new pixel value is more trustworthy and in line with the overall value 
of the surrounding pixels since it is derived from the median value, which is obtained 
from nearby pixels. As a result, it displays edge blurring, preserves high frequency 
information, and preserves image features. The image’s median filter’s effect grows 
as the window size does, and it reduces noise more successfully. In order to create the 
data, AF more correctly eliminates salt and pepper noises. The equation described in 
1 can be used to compute median filtering 

𝑓(𝑥, 𝑦) =  HAF(௦,௧) ∈ 𝑆௫௬{𝑔(𝑠, 𝑡)} (1) 

The sub-image window’s coordinates are s × y, the newly computed pixel value 
is f (x, y), and the window dimensions are N × M. The first steps in preparing MRI 
brain images are correction and conversion. Next, the picture is transformed into a 
three-dimensional matrix so that analysis of size, color, and image type may be 
performed. Implement AF on the MRI image utilizing Equation (2). 

𝑓(𝑥, 𝑦) =  AF(௦,௧) ∈ 𝑆௫௬{𝑔(𝑠, 𝑡)} (2) 

With N x M window dimensions and s x y sub-image window coordinates, the 
computed pixel value is denoted as f (x, y). Keep all relevant details, such as execution 
time, memory size, and pixel variance, together with the final photos for future 
investigation. 
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ADF improves MRI preprocessing by lowering noise while maintaining crucial 
structural elements, like edges and minute anatomical characteristics that are essential 
for CMB detection [24]. ADF selectively smoothes uniform regions while preserving 
high-frequency information, in contrast to conventional smoothing techniques that 
blur edges. Its median-based methodology also successfully reduces salt-and-pepper 
noise. In comparison to previous preprocessing methods, this harmony between noise 
reduction and feature preservation enhances the quality of input images, enabling the 
CNN-ResNet50 model to extract more trustworthy features and eventually reach 
greater classification accuracy. 

3.2. Deep learning bounding box segmentation 

The goal of segmentations is to define or recognize various tissues by 
differentiating the intensity values of the pixels that make up the image. When working 
with a 2D slice or voxel, it is processed as a 2D image, whereas in the case of 3D 
volume data, it utilizes the essential MRI values. For various medical analyses, 
including surgical planning, clinical diagnosis, locating areas of pathology, and 
analyzing anatomical features, segmenting an MRI brain image is a crucial first step. 
Due to disturbances and overlapping ranges of intensity values, segmenting the brain 
is a difficult operation. In the preparation phase, the implementation of the Deep 
Learning the Bounding Box (DLBB) method initiates by determining the quantity of 
clusters to be utilized. First, the cluster centers are established, followed by the 
computation of the partition matrix elements. Based on these values, the cluster center 
is then updated. Steps involving the calculation of the partition matrix and the cluster 
center are repeated iteratively until the termination condition is satisfied. 

The DLBB algorithm’s principal objective, when applied to these input MRI 
brain pictures, is to extract the intensity values that correspond to the CMB affected 
region. It iteratively chooses pixel values at random in accordance with the DLBB 
algorithm’s definitions and functions DLBB’s objective function and membership 
function, represented by the U matrix, form its foundation. Only the integers 0 and 1 
are used by the hard c-means membership function, however each cluster’s 
membership data points are kept between 0 and 1. Key parameters are in the DLBB 
algorithm’s objective function output arguments. Each row of the Center parameter’s 
matrix of final cluster centers represents the image’s pixel cluster centers. There is one 
more fuzzy division matrix, which is called U. which represents the output image’s 
segmented regions [25]. Finally, the Obj-fuc parameter records the objective function 
values produced during each picture pixel iteration, revealing clustering convergence 
and performance. 

The Image set X, is taken as 

𝑋 = (𝑋௜)௜ୀଵ 
ே  (3)

In the DLBB segmentation process, the initial membership matrix, denoted as 
nU0, is initialized randomly. During each iteration, the algorithm updates the 
membership values, which lie between 0 and 1, representing the degree of association 
of each data point with the respective clusters. Unlike hard c-means clustering, which 
assigns membership values strictly as 0 or 1 (indicating exclusive membership to one 
cluster), the DLBB algorithm allows for soft clustering, in this context, each data point 
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may have a degree of association with several clusters, influenced by its proximity and 
similarity to them. 

𝐽ଵ(𝑢, 𝑣) = ෍ ෍ 𝑢௜௝
௠ฮ𝑋௝ − 𝑉௜ฮ

ଶ
௡

௝ୀଵ

௖

௜ୀଵ

 (4) 

The equation requires the membership matrix U, cluster center matrix V, N pixel 
points, C clusters, jth measured pixel point X, and cluster center i. Implement the 
equation 

𝐽ଵ(𝑢, 𝑣) = ෍ ෍ 𝑢௜௝
௠ฮ𝑋௝ − 𝑉௞ฮ

ଶ
௡

௝ୀଵ

௖

௜ୀଵ

 (5) 

u represents the membership value of j X in relation to the cluster i. 

𝑢௜௝ =
1

∑ (ฮ𝑋௝ − 𝑉௜ฮ/ฮ𝑋௝ − 𝑉௞ฮ)ଶ/(௠ିଵ)௖
௞ୀଵ

 (6) 

When the image is set to clusters, each pixel point is taken in account and 
involved in the cluster process. n is the numbers of clusters with default starting value 
which is greater than one. This flexibility enhances the accuracy and adaptability of 
segmentation, particularly in complex medical images used for cerebral microbleed 
detection. 

The DLBB segmentation approach described here is an adaptation of fuzzy 
clustering methods rather than a completely novel algorithm. Its foundation lies in the 
principles of fuzzy c-means clustering, where pixel intensities are assigned 
membership values between 0 and 1, allowing for soft clustering and better handling 
of overlapping intensity ranges common in medical images. However, the DLBB 
method extends this concept by incorporating a bounding-box–based framework 
tailored for medical image segmentation, specifically targeting cerebral microbleed 
regions. By iteratively updating cluster centers and membership values through the 
objective function and introducing bounding constraints to localize pathological 
regions [26], DLBB enhances the accuracy and convergence stability compared to 
conventional fuzzy clustering. Thus, while it builds upon established fuzzy clustering 
theory, its application in MRI-based CMB detection and the integration of bounding-
box constraints represent a specialized adaptation rather than a wholly new clustering 
paradigm. 

3.3. Image classification resnet50 network 

The classification model is fed the cerebral microbleed (CMB) pictures after the 
preprocessing step. A training set of CMB pictures is used as an example to run a 
ResNet-based Convolutional Neural Network (CNN) on the already-processed dataset. 
Once the model has been learned, the testing set is categorized. The grayscale MRI 
pictures of brain strokes are represented by resizing the input images to dimensions of 
512 × 512 × 1. There is a total of four layers in the suggested ResNet CNN design: 
two convolutional and two densely linked. The model’s small size and efficient 
network architecture allow it to detect CMBs with good classification accuracy using 
very little computational resources. 
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Layer of Convolutional Neural Network Classifier Convolutional layers preserve 
spatial structure, in contrast to more conventional fully connected neural network 
layers, which is a key distinction between the two. As an example, the 32 × 32 s× 3 
image keeps its unique 2D structure instead of being shrunk to a one-dimensional 
vector of 3072 objects. The convolutional channel not only safeguards basic properties 
but also transforms the input into an additional tensor called an actuation map. A low-
dimensional vector space rich with elements can be created using conventional fully 
associated systems by stacking convolutional layers, thus reducing the dimensionality 
of the spatial information. This allows for the re-convolution of maps without 
sacrificing auxiliary data. One such approach to dealing with areas with limited input 
volume is the CNN Classifier’s Pooling Layer. The pooling layer runs collections over 
areas instead of duplicating using channels with prepared loads. Aggregation usually 
takes place near the area limit, which is also the name of the maximal pooling layer. 
Here are a few key layers that ResNet CNN has utilized during its training and testing: 

Convolution: The image layer convolves a filter of identical depth to the image 
for each element, thereby extracting features from it. 

ReLU: After every convolutional layer, this layer is added to threshold all the 
input values. As shown below, any negative value in this layer is set to zero. 

𝑓(𝑥) = ቄ
𝑥 𝑥 ≥ 0
0 𝑥 < 0

 (7) 

Maximum Pooling: This layer selects the finest feature response from nearby 
neighborhoods through down-sampling. The result is featuring maps that are smaller. 
Improving translation invariance is another purpose for it. 

Dropout: avoids overfitting in networks by regularization. 
Fully Connected: This layer performs multiplication of the input by a weight 

matrix and adds a bias vector. The SoftMax layer normalizes the output within the 
range of [0, 1]. 

The equation is expressed in Cartesian coordinates as, in Equation (3), 

(𝑥 − 𝑎)ଶ + (𝑦 − 𝑏)ଶ = 𝑟ଶ (8) 

The most potent hidden layer in CMB-ResNet CNN enables the automatic 
detection and categorization of cancerous cells from extensive microscopic datasets. 
A picture’s fitness value can be calculated using Equation (4), 

𝑓 =
𝑊 − 𝐾 + 2𝑃

𝑆
+ 1 (9) 

W represents the input volume, K the kernel field, S the pixels, and P the image’s 
padded values. Equation gives P 

𝑃 = (𝐾 − 1)/2 (10)

ResNet50 was selected for this work because of its shown ability to balance depth, 
computational efficiency, and robust feature extraction, which makes it especially 
well-suited for applications involving medical picture analysis, like CMB 
categorization. ResNet50, in contrast to some more recent architectures, uses residual 
connections to address the vanishing gradient issue, enabling deeper networks without 
compromising training stability. This is essential for capturing the minute changes in 
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CMBs’ size, shape, and intensity that are shown in MRI images. Larger datasets and 
more processing power are frequently needed to get optimal performance, even when 
designs like EfficientNet, DenseNet, or Vision Transformers provide benefits like 
improved feature reuse, parameter efficiency, or attention-based global context 
modeling. ResNet50 offered a dependable and well-understood framework that could 
achieve high classification accuracy with reasonable training complexity, 
guaranteeing both robustness and reproducibility of results based on real-world MRI 
scans from a single medical center. 

4. Implementation details and performance measures 

We evaluated the proposed technique on our 64-bit workstation, featuring a 3.70 
GHz Intel(R) Xeon(R) CPU E5-1630 v4, 32 GB RAM, and a Quadro K1200 CUDA 
device, utilizing MATLAB 2018b.Two datasets were used for the testing. For 10-fold 
cross-validation, we conducted a different study in which we divided the image 
collection into 80% preparation and 20% testing. Then the applied image underwent 
pretreatment to generate higher-quality test images for classification. Next, the 
training dataset is used to develop the suggested 13-layer ResNet CNN demonstration; 
next, the testing dataset is used to generate the classification results. The following 
performance measures such as, genuine positive rate (TPR), incorrect positive rate 
(FPR), F-measure, and exactness (ACC) are the assessment measures to determine 
whether our technique was effective. These are determined by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11)

𝑇𝑃𝑇 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (12)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (13)

𝐹ெ௘௔௦௨௥௘ = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑇𝑃𝑅
 (14)

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (15)

where the values for false negative (FN), false positive (FP), true negative (TN), and 
true positive (TP) are corresponding. 

Epochs: The number of times the model runs across the whole training dataset is 
determined by the number of epochs. Underfitting, in which the model is unable to 
learn the intricate patterns that differentiate normal from aberrant MRI scans, can 
occur when too few epochs are selected. On the other hand, overfitting may result from 
using too many epochs, particularly considering the datasets’ moderate size. Epochs 
were empirically chosen for this investigation by tracking the convergence of training 
and validation losses to make sure the model learned enough without overfitting. 

Learning Rate: During training, the step size of weight updates is controlled by 
the learning rate. While a very low learning rate slows down convergence and 
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lengthens training time, a high rate may cause the model to overshoot ideal minima. 
To ensure that the model correctly caught minor features in CMBs, the study used a 
learning rate schedule or adjusted the learning rate through experimentation to balance 
fast convergence with stable training. 

Batch Size: The number of data processed before the model updates its weights 
depends on the batch size. Although they require additional training time, smaller 
batch sizes provide more detailed weight updates and can enhance generalization. 
Although larger batch sizes shorten training times, they may also make it harder for 
the model to generalize to new data. The batch size in this study was chosen to take 
into consideration the memory limitations of processing high-resolution MRI images 
while balancing computational efficiency and model generalization. 

5. Result and discussion 

A crucial and substantial obstacle in segmentation is the identification and 
detection of cerebral microbleeding. Rapid, accurate diagnosis of picture qualities for 
medical applications is challenging. The DLBB method is applicable for analyzing 
data from brain MRI scans to identify hemorrhage. Initialization occurs during 
preprocessing, further steps include segmentation, and lastly validation. The ResNet 
model was trained on the picture dataset for 30 epochs with a learning rate of 0.001, 
utilizing the SGDM technique for optimization. Employing the training model for 
image categorization on the test dataset. Our suggested AlexNet network uses 128 
samples per batch, while ResNet50 uses 12 samples per batch. Figure 2 illustrates 
representative brain MRI images showing cerebral micro bleeding patterns used in this 
study. 

 
Figure 2. Sample brain bleeding images. 

The CSI restorative Mission Clinic at the Worldwide Cancer Center (ICC) in 
Neyyoor, India, provided the images of brain bleeding used in this research. We 
gathered MRI scan images, images of healthy and unhealthy CMBs, and images from 
a standard MRI. All of the images in the collection are DICOM files generated by a 
64-Slice SOMATOM MRI Scanner. Image slices are 512 by 512 pixels, and voxels 
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are 0.412 by 0.412 by 5.1 millimeters. All cerebral stroke images are produced with 
the same scanning parameters—400 mAs exposure, 120 kV tube voltage, and 2.4 mm 
to 4.8 mm slice thickness. The 900 pictures represent 74 patients, with 300 MRI photos 
each group. The exclusion criteria excluded MRI scans with significant motion 
artifacts, insufficient data, or other neurological problems, while the inclusion criteria 
included scans with clear structural visibility and a verified diagnosis or suspicion of 
CMBs. By taking these precautions, the dataset was guaranteed to be methodologically 
sound and therapeutically appropriate for assessing the suggested deep learning 
models. The preprocessing pipeline and corresponding histogram analysis of MRI 
images are presented in Figure 3. 

   
Input Image Contrast Image Filtered Image Fusion Image 

(a) 

  
Input Image Contrast Image Filtered Image Fusion Image 
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(b) 
Figure 3. Image preprocessing pipeline and corresponding histogram analysis for brain MRI images: (a) preprocessing 
stages applied to a normal MRI image, including the input image, contrast-enhanced image, anisotropically filtered 
image, and fused image; (b) preprocessing stages applied to an abnormal MRI image with cerebral microbleeds, showing 
the same sequence of input, contrast enhancement, filtering, and image fusion. 

The dataset was divided at the patient level instead of the image level to prevent 
patient-level data leakage and guarantee the validity of the experimental results. This 
means that every MRI scan of a single patient was only ever included in the training 
or testing sets, never both. This tactic stopped the algorithm from inadvertently picking 
up patient-specific characteristics that might have inflated performance indicators. A 
10-fold cross-validation method was employed for Dataset 1, which was split up into 
ten patient-level folds. In each iteration, nine folds were utilized for training and one-
fold was used for testing. An 80:20 split was used in Dataset 2, where 20% of patients 
were assigned to the testing set and 80% to the training set. This made sure that the 
evaluation findings accurately represented the model’s capacity to generalize to 
patient data that had not yet been encountered. The experimental segmentation results 
for a benign cerebral microbleed case are illustrated in Figure 4. The experimental 
results for a malignant cerebral microbleed are shown in Figure 5. A comparative 
evaluation of different image preprocessing techniques based on PSNR, SSIM, and 
MSE metrics is presented in Table 2. 

Table 2. Comparative evaluation of pre-processing techniques. 

Evaluation metric Unsharp masking Bilateral filtering Anisotropic diffusion 

PSNR (dB) 28.54 28.61 37.98 

SSIM 0.8462 0.8251 0.9258 

MSE 0.0048 0.0019 0.00058 

    
(a) (b) (c) (d) 
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(e) (f) (g) (h) 

Figure 4. Experimental result of benign cerebral micro bleeding image. (a) brain affected by CMB, (b) anisotropic 
filter image, (c) locating seed box image, (d) CMB region marked image, (e) segmented bleeding region image, (f) 
DLBB segmented image, (g) DLBB segmentation coloring Image, (h) area red marked image. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 5. Experimental result of malignant cerebral micro bleeding. (a) brain affected by CMB, (b) anisotropic filter 
image, (c) locating seed box image, (d) CMB region marked image, (e) segmented CMB region image, (f) DLBB 
segmented image, (g) DLBB segmentation coloring Image, (h) area red marked image. 

Table 3 shows how well four deep learning models—P-CNN, AlexNet, P-CNN-
WP, and ResNet50 performed on a dataset with an 80% training and 20% testing split. 
Each model’s precision, accuracy, F1-score, recall (TPR), and false positive rate (FPR) 
are presented. With an overall accuracy of 98.36%, a precision of 0.9993, a recall of 
0.9923, an F1-score of 0.98, and a low false positive rate of 0.01668, ResNet50 
outperformed the other models. With accuracies of 95.5% and 98.5%, respectively, 
the AlexNet and P-CNN-WP models again demonstrated strong performance; 
however, ResNet50 surpassed them in both recall and FPR, demonstrating a stronger 
capacity to accurately identify pictures while reducing misclassification. Deeper 
architectures, such as ResNet50, are more successful for this classification job, as 
evidenced by the baseline P-CNN model’s lowest precision and accuracy. 

The classification performance of the first picture dataset using four deep learning 
models (P-CNN, AlexNet, P-CNN-WP, and ResNet50) following 10 rounds of cross-
validation is summarized in the Table 4. Precision, recall (true positive rate), false 
positive rate (FPR), F1-score, and total accuracy are used to gauge each model’s 
efficacy. With a precision of 0.967, recall of 0.9825, FPR of 0.014, F1-score of 0.988, 
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and accuracy of 98.648%, ResNet50 outperformed the other models, demonstrating 
exceptional dependability in accurately identifying images. AlexNet and P-CNN 
performed marginally worse, with accuracies of 95.34% and 96.34%, respectively, 
whereas P-CNN-WP likewise performed well, reaching almost 98% accuracy. Overall, 
the findings imply that ResNet50 offers this dataset the best reliable and well-balanced 
classification performance. 

Table 3. Precision in picture classification using a 20% test set and an 80% training 
set. 

Model Precision Recall (TPR) False Positive Rate (FPR) F1-Score Accuracy (%) 

P-CNN 0.9014 0.8998 0.101 0.898 89.9 

AlexNet 0.9761 0.984 0.023 0.98 95.5 

P-CNN-WP 0.9843 0.965 0.027 0.98 98.5 

ResNet50 0.9993 0.9923 0.01668 0.98 98.36 

Table 4. The results of the first image dataset’s classification accuracy after ten 
rounds of cross-validation. 

Model Precision Recall (TPR) False Positive Rate (FPR) F1-Score Accuracy (%) 

P-CNN 0.954 0.951 0.042 0.952 96.34 

AlexNet 0.982 0.975 0.021 0.98 95.34 

P-CNN-WP 0.96 0.965 0.018 0.968 97.98 

ResNet50 0.967 0.9825 0.014 0.988 98.648 

Table 5 shows that compared to P-CNN’s 91.40% average classification 
accuracy, AlexNet’s is just 91.20%. In contrast, our ResNet50 achieves an accuracy 
of 92.80% when used for image classification; but, when we forego image preparation 
and refer to this approach as P_CNN_WP (meaning "without preprocessing"), the 
accuracy drops to 91.59%. But when compared to others, ResNet50 produces superior 
classification results. Analyzing the proposed method’s essential components on the 
MATLAB (R2018b) validation set. ER stands for the enhancing region. The entire 
region, according to WR. (Core for Brain Bleeding). To test the efficacy of dilated 
convolution, we conduct independent experiments with different values of the 
parameters: dilated parameter = 3, kernel size = 3, dilated parameter = 2, kernel size 
= 5, dilated parameter = 3, kernel size = 5, and finally, no dilated convolution at all. 
The segmentation performance under various convolutional and architectural settings 
is reported in Table 6. 

Table 5. Performance metrics of CNN-based models on dataset 2 (80% training,20% 
testing). 

Model Precision Recall (TPR) False Positive Rate (FPR) F1-Score Accuracy (%) 

P-CNN 0.865 0.872 0.065 0.868 87.25 

AlexNet 0.908 0.910 0.045 0.909 91.20 

P-CNN-
WP 

0.915 0.917 0.048 0.916 91.40 

ResNet50 0.928 0.926 0.037 0.927 92.80 
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Table 6. Convolution layer metrics. 

Method 
Dice Sensitivity Specificity 

ER WR BBC ER WR BBC ER WR BBC 

Proposed 
Brain TS 2019 0.7611  0.8899 0.7787 0.767 0.8831 0.7624 0.9951 0.9981 0.9968 

Brain TS 2018 0.7712 0.8998 0.7946 0.7687 0.9039 0.7509 0.9983 0.9948 0.9984 

Dilated 
convolution 

No dilated 
convolution 

0.7020 0.8802 0.7533 0.7369 0.9038 0.7444 0.9981 0.9923 0.9970 

Dilation-3 and 
kernel-3 

0.7619 0.8955 0.7787 0.7680 0.8858 0.7508 0.9982 0.9951 0.9973 

Dilation-4 and 
kernel-3 

0.7309 0.8589 0.7825 0.7589 0.8686 0.7693 0.9981 0.9927 0.9972 

Dilation-2 and 
kernel-5 

0.7577 0.8972 0.7895 0.7847 0.8861 0.7562 0.9979 0.9979 0.9977 

Pooling 
No pooling 0.5378 0.6682 0.5564 0.6216 0.5630 0.5973 0.9964 0.9964 0.9904 

Average pooling 0.7525 0.8945 0.7763 0.7521 0.8812 0.7440 0.9984 0.9954 0.9978 

Kernel size 
Kernel size of 5 0.6906 0.8881 0.7268 0.7478 0.8982 0.6912 0.9979 0.9937 0.998 

Kernel size of 7 0.6731 0.8923 0.70565 0.6683 0.8860 0.6887 0.9989 0.9952 0.9961 

Activation 
function 

ReLU 0.7266 0.8834 0.7602 0.7461 0.8572 0.7362 0.9983 0.9961 0.9973 

Leaky ReLU 0.7285 0.8869 0.7601 0.7444 0.9007 0.7466 0.9983 0.9935 0.9969 

No pre-
processing 

 0.6229 0.8247 0.5524 0.5927 0.8488 0.4743 0.9991 0.9911 0.9992 

Using one 
pathway 

 0.7288 0.8890 0.7401 0.7744 0.8876 0.6984 0.9978 0.995 0.9984 

The output class confusion matrix and its graphic representation. The green boxes 
represent the actual positive values in this matrix, while the red boxes represent the 
actual negative values. It is possible to find the most accurate feature amalgamations 
from the table. An improved accuracy of 98.57% is the end effect of this. The 
confusion matrix illustrating the classification outcomes of the CNN classifier is 
presented in Figure 6. 

 
Figure 6. Confusion matrix of CNN classifier. 
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The training time comparison of different CNN models on Dataset 1 is presented 
in Table 7. The corresponding training time results for Dataset 2 are summarized in 
Table 8. Compared to 1-fold training, 10-fold cross-validation takes ten times longer. 
Recommended methods ResNet50 and P_CNN train and categorize faster than 
competing methods due to fewer network layers. Since network layer count and input 
image size are directly related to training duration. 

Table 7. Training time comparison of CNN models on dataset 1(80% split and 1-
fold training). 

Model Training time (80% split) Training time (1-fold) 

P-CNN 1 min 42sec 2 min 17sec 

AlexNet 21 min 44 sec 25 min 25 sec 

P-CNN-WP 2 min 49 sec 4 min 01 sec 

ResNet50 2 min 45 sec 3 min 25sec 

Table 8. Time it took to train the classification model on 80% of the picture dataset 
and one-fold of it. 

Model Training time (80% split) Training time (1-fold) 

P-CNN 2 min 14 sec 3 min 28 sec 

AlexNet 26min 53 sec 30 min 53 sec 

P-CNN-WP 3 min 14 sec 4 min 32 sec 

ResNet50 3min 47 sec 3min 44 sec 

6. Conclusion 

We present a cutting-edge classification system that uses deep learning and image 
fusion techniques to effectively find cerebral microbleeds (CMBs). To increase image 
quality and localization of CMB regions, a quadtree-based anisotropic diffusion filter 
was used in the preprocessing step. Classification of magnetic resonance imaging 
(MRI) brain pictures into binary (normal/abnormal) and ternary 
(normal/benign/malignant) categories was accomplished using a customized CNN 
architecture that was based on ResNet50. The model’s efficacy was tested using an 
80/20 train-test split and 10-fold cross-validation. In both instances, the suggested 
approach achieved superior classification accuracies with less computing complexity 
than traditional deep learning models like AlexNet and standard ResNet50. The results 
show that CMB classification accuracy and reliability are both improved by using 
tailored preprocessing in conjunction with an optimized CNN framework. This system 
has the ability to revolutionize early diagnosis and treatment planning, and it might be 
implemented in real-time clinical settings. 
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