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Abstract: This study explores modern techniques to enhance cataract detection accuracy, 

including ensemble learning, hybrid feature extraction, and a Modified Random Forest 

classifier. Traditional methods face limitations in feature extraction and classification, which 

are addressed through a hybrid approach combining LBP, GLCM, and CNN. LBP detects 

early-stage cataracts, GLCM captures spatial relationships, and CNN extracts deep structural 

features, improving image representation. The proposed Modified Random Forest (MRF) 

classifier integrates feature weighting and optimized decision thresholds, reducing noise and 

enhancing classification accuracy. Feature selection with Recursive Feature Elimination (RFE) 

and Principal Component Analysis (PCA) minimizes overfitting and computational cost. 

Ensemble learning methods such as Bagging, Boosting, and Stacking further improve model 

robustness, with Stacking achieving 93% accuracy and high ROC-AUC for early-stage 

detection. However, computational complexity remains a challenge, particularly for 

deployment in clinical settings. KNN and SVM models underperform without feature selection, 

highlighting the need for careful preprocessing. Despite these challenges, the proposed 

techniques significantly improve cataract detection, ensuring better generalization across 

datasets. 

Keywords: cataract detection, ensemble learning, hybrid feature extraction, modified random 

forest, bagging, boosting, stacking, classification accuracy, ROC-AUC, medical imaging 

1. Introduction 

Cataracts cause the lens of the eye to gradually fog, which is a major global health 
concern. This is particularly true in countries with limited access to healthcare services 
that are middle and lower-income. The World Health Organization estimates that 
cataracts afflict millions of individuals globally and account for around 51% of all 
incidents of blindness. Because resources may be scarce in these locations, the impact 
is particularly severe, underscoring the urgent need for better diagnostic and 
intervention methods. Early detection and prompt treatment are critical to preventing 
irreversible vision loss and improving the quality of life for those affected by visual 
impairments. Therefore, it is essential to treat this common cause of visual impairment 
by coordinated initiatives to increase awareness, enhance accessibility to eye care 
services, and promote international cooperation. A common eye condition called 
cataracts is characterized by clouding of the camera lens, which makes it difficult for 
light to flow through and impairs vision [1].  

Eye scans are processed digitally to determine whether cataracts are present and 
how severe they are. Two different techniques are used to handle a dataset that includes 
images of eyes with different degrees of cataract [2]. Semantic segmentation for the 
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identification and location of surgical equipment and anatomical components is a basic 
component of such capabilities [3]. The segmentation models’ overall performance 
was enhanced using the AWTFE technique, which efficiently finds features pertinent 
to the pupil region [4].  

The fluctuation range of accuracies is becoming steadier, and the DCNN 
classification accuracies are getting better. The approach achieved the maximum 
accuracy of 93.52% in cataract identification and 86.69% in grading tasks [5]. The 
following clearly explains the main contributions of this work: 

The proposed MRF model combining LBP, GLCM, and CNN improves image 
representation by capturing texture, spatial relationships, and deep structural features 
for better cataract detection. 

Enhances classification accuracy by integrating feature weighting and optimized 
decision thresholds, reducing noise, and improving sensitivity. 

Techniques like Bagging, Boosting, and Stacking improve model performance, 
with Stacking achieving 93% accuracy and high ROC-AUC for early-stage cataract 
detection. 

RFE and PCA help minimize overfitting and computational cost, but deploying 
complex models in clinical settings remains a challenge, emphasizing the need for 
efficient preprocessing. 

The remaining portion of this document is summarized as follows: In Sections 1 
and 2, the introduction and relevant literature were found; Section 3 goes into 
additional detail about the proposed methodology, Section 4 presents the experimental 
results, and Section 5 looks at the conclusions and possible directions for further study. 

2. Related works 

Cruz et al [6] have proposed, age and illness are two factors that can cause the 
ocular nucleus to become opaque, a condition known as a cataract. Computational 
intelligence methods are essential for helping medical pre-diagnosis specialists 
automatically categorize and grade illnesses. Conventional image processing 
algorithms are used to process and extract pertinent features. Manuel et al. [7] have 
recommended, to collect 1000 Kaggle retinal images, which will then be split equally 
between two groups: those with and without cataracts. A variety of neural networks, 
such as ResNet18, ResNet34, InceptionResNetV2, and InceptionV4, are then used to 
accurately classify the images.  

Zhang et al. [8] have suggested, RCRNet outperforms and is more efficient than 
the most sophisticated channel attention-based networks, as demonstrated by two 
publicly available medical datasets and the AS-OCT-NC2 dataset. Cheng et al. [9] 
have discussed, the images are then recovered using the novel SGRIF model based on 
attenuation and scattering. Navatha et al. [10] have introduced, an automated cataract 
detection technique that uses the Adam optimizer-optimized VGG-19 convolutional 
neural network (CNN) model. Using images from digital cameras.  

Shi et al. [11] have reported, a surgeons can identify risk factors for pupillary 
instability before surgical issues arise by using automated pupil segmentation from 
surgical recordings. Vadduri et al. [12] have proposed, using cutting-edge deep 
learning techniques, the Deep Attention U-Net for Cataract Diagnosis (DAUCD) 
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model enhances the segmentation and classification of cataract in retinal 
pictures.Xiong et al. [13] have proposed, the pre-trained ResNet is used to extract high-
level features, while a GLCM is used to extract texture data. The two feature types are 
then blended through a dimension expansion procedure where texture feature vectors 
are added to the tail of high-level feature vectors. 

Zhang, et al. [14] have suggested, to separate cataract identification and grading 
tasks yielded 93.52% and 86.69%, respectively. The performance of the DCNN 
classifier is shown in this research to be superior to the state-of-the-art. Imran et al. 
[15] have reported, the pre-trained residual network (ResNet) is utilized to extract 
high-level features, while a GLCM is used to extract texture data. 

3. Proposed system 

 The procedures for cataract grading will be covered in this section. The 
proposed framework for cataract levelling is shown in Figure 1. 

 
Figure 1. Block diagram proposal for cataract categorization. 

 The figure illustrates a machine learning-based image classification pipeline. It 
begins with an input image, which undergoes Image Acquisition & Preprocessing to 
enhance its quality and remove noise. The processed image then proceeds to Hybrid 
Feature Extraction, where different techniques are used to extract meaningful features 
for further analysis. Next, Feature Selection methods such as RFE and PCA are applied 
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to reduce dimensionality and retain the most relevant features. The refined features are 
then fed into the Classification stage, where a MRF classifier is employed to categorize 
the image. Ensemble learning methods such as Bagging, Boosting, and Stacking 
further improve model robustness. Finally, the model’s performance is evaluated using 
Accuracy and ROC-AUC analysis, which assess the classification effectiveness and 
reliability. 

3.1. Image pre-processing 

 Pre-processing prepares the images for analysis, which makes it crucial for 
cataract identification. Min-Max Normalization, Median Filtering, and Contrast 
Limited Adaptive Histogram Equalization (CLAHE) were the three main techniques 
that used for this. The included 410 images, 196 of which had cataract damage and 
214 of which were normal. These approaches equalize brightness levels, remove noise, 
and improve contrast [16]. This facilitates classifiers by purifying the input data, which 
makes it simpler to identify even the slightest variations between eyes in good health 
and those with cataracts. It is crucial to have clean, well-prepared data because it 
improves feature extraction and makes the classifiers’ work easier. 

3.1.1 Image normalization 

This guarantees that, regardless of the initial method of capture, the traits we wish 
to examine are present in every image. Min-Max Normalization is calculated using the 
following formula: 

 𝑥ᇱ = 𝑥 −
୫୧୬(௫)

୫ୟ୶(௫)ି୫୧୬ (௫)
 (1)

where, X is the original pixel value, X’ is the normalized pixel value, Max(x) and 
min(x) are the image’s minimum and maximum pixel values, respectively. 

3.2. Texture-based feature extraction 

Statistical texture analysis is a widely used image processing-based method for 
analyzing medical imaging textures, such as cataracts. This is because relevant 
information about our textured tissues is provided by tissue features [17]. Both LBP 
and GLCM, two widely used statistical techniques for texture analysis, are discussed 
in this chapter. In order to accurately detect cataracts, these techniques are crucial for 
capturing the differences in texture and spatial correlations in images. 

3.2.1. Local binary pattern (LBP) 

 An LBP is one method of representing textural features in images, as seen in 
Figure 2. With this method, a specific pixel is effectively represented by thresholding 
with its neighbors inside a neighborhood known as Lattice points. 

LBP uses the gray level of the central pixel, which is determined by the following 
equation, to determine a threshold value for each nearby pixel: 

 𝐿𝐵𝑃஺,஻(𝑥, 𝑦) = ∑ 𝑆(𝑙௔ − 𝑙௖) ⋅ 2௔஺ିଵ
௔ୀ଴  (2)

where 

 𝑆(𝑙௔ − 𝑙௖) = ൜
1, 𝑖𝑓 𝑙௔  ≥ 𝑙௖

0, 𝑖𝑓 𝑙௔ < 𝑙௖
 (3)
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where, lc is the gray value of the central pixel, la (for a = 0,1, 2…, A−1) denotes the 
neighboring pixels located along a circle of diameter C/2 (where C/2>1), with the 
number of neighbors denoted as A (where A > 1), The term 2a represents the binomial 
factor assigned for each value of la. 

 
Figure 2. Local binary pattern. 

3.2.2. GLCM (gray level co-occurrence matrix) 

 The GLCM is a statistical tool that illustrates the relationships between various 
image pixels. Its primary purpose is to ascertain the frequency with which specific 
greyscale combinations (pixel brightness values) occur in photographs, a task that is 
frequently encountered in image processing and computer vision. The entries 

P(𝑖, 𝑗, 𝑑, 𝜃)  in the matrix indicate the likelihood that a pixel with value ii will be 

adjacent to a pixel with value j at distance dd and orientation 𝜃. A solid foundation for 
computing a variety of texture properties is provided by the GLCM’s ability to capture 
such spatial relations. One well-liked technique for texture analysis in medical 
imaging, such as cataract identification, is GLCM, one of the earliest types [18]. 
GLCM offers a number of textural characteristics that can be crucial in distinguishing 
between normal and cataract-affected lenses. 

3.2.3. CNN 

 CNNs are able to capture high-level abstract features that are difficult to detect 
using conventional techniques, like overall opacities or massive structural 
deformations. 

3.3. Modified random forest classifier 

The cataract image can be retrieved with unique characteristics thanks to hybrid 
feature extraction, which integrates CNNs, GLCM, and LBP: 

LBP: Because local binary patterns are utilized to record local texture patterns, 
they are useful for identifying subtle changes that occur at the edges of smooth areas 
in the early stages of cataract development. 

GLCM: By recording the differences in pixel intensities inside an image with 
respect to their closest neighbors, it aids in the classification of lens cloudiness and 
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opacity. 
CNN: Because high-level abstract features that are difficult to identify using 

conventional techniques, including overall opacities or significant structural 
deformations, are captured by CNNs. 

While Random Forests (RF) are a classic classifier, Modified Random Forests 
(MRF) are a method that has been tuned to operate better with biomedical datasets like 
cataract images. The classifier function is mostly reliant on what has been specified 
by enhancing its focus, which means that highly discriminative CNN and LBP features 
are likely targets in a weighted feature selection context (MRF provides greater 
weights to more informative) [19]. Feature splitting is the process of selecting features 
(by default, they are chosen at random) using node-based theory and Gini impurity 
calculations, which aid in creating optimal decision boundaries. Decision thresholds 
that are dynamically modified throughout the tree build sequence improve class 
separation, particularly in extremely unbalanced data sets and subtypes. The following 
formula determines each feature ff’s feature significance weighting: 

 𝑊௙ =
ቄ∑ ூ(௙,௧)

{೅}
{೟సభ} ቅ

{்}
 (4)

where, Wf represents the weight assigned to feature ff, T is the total number of trees in 
the forest, I (f, t) is an indicator function that returns 1 if feature f is used in tree t, and 
0 otherwise. Gini Impurity for Feature Splitting Equation: 

(𝑡) = 1 − ෍ (𝑝஼(𝑡))ଶ

{஼}

{௖ୀଵ}

 (5)

where, G(t) is the Gini impurity at node tt, pc(t) represents the proportion of samples 
belonging to class c at node t. The modified Random Forest algorithm is described in 
Algorithm 1. 

Algorithm 1: Pseudocode for modified random forest algorithm 

1: # Inputs: Cataract image dataset (X), Labels (Y) 
2: # Output: Trained Modified Random Forest Model (MRF) 
3: Initialize empty feature set F and empty forest MRF 
4: For each image in the dataset X: 
5:     Step 1: Extract LBP features 
6:     Step 2: Extract GLCM features 
7:     Step 3: Extract CNN features 
8:     Step 4: Concatenate LBP, GLCM, and CNN features into combined_features 
9: F.append (combined_features) 
10: For each tree in the forest: 
11:     Step 1: Select a weighted subset of features based on feature importance 
12:     Step 2: Construct the decision tree using optimized feature splits and thresholds 
13:     Step 3: Add the constructed tree to the forest MRF 
14: Return the final MRF model 

3.4. Ensemble learning: Bagging, boosting, and stacking 

Multiple separate models, or base learners, are combined in ensemble learning 
approaches to improve performance, generalization, and resilience [20]. According to 
these approaches, numerous inferior models are combined to address a single model’s 
shortcomings, such as overfitting and insufficient capacity. Hopefully, they can cover 
this by bringing in a large number of more capable students. Because medical picture 
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collections contain intricate patterns and imbalances, the ensemble approaches of 
bagging, boosting, and stacking is crucial. By combining the characteristics of many 
models, ensemble learning in cataract detection enables us to create more reliable and 
effective classifiers. 

By training several instances of the same base classifier on various subsamples 
of data, the ensemble technique known as “bagging” (Bootstrap Aggregating) seeks to 
lower the variance of a machine learning model. Creating subsets from the original 
dataset by sampling with replacement is known as bootstrapping in the context of this 
approach. In Figure 3 shows that the flowchart of ensemble approach for cataract 
classification. 

 
Figure 3. Flowchart of ensemble approach for cataract classification. 

 The “boosting” ensemble strategy reduces the model error by training a series 
of ineffectual learners, each of which tries to correct the previous one. On examples 
that are challenging to categorize, Bagging appears to train each model separately, 
enhancing rather than improving the performance of weak learners. 

 Stacking is an improved ensemble technique in which a meta-classifier is used 
to combine the predictions of many base classifiers that have been trained to get a 
single final result. In Stacking, predictions from many algorithms are combined with 
a final model trained to determine how it should be carried, as opposed to Bagging and 
Boosting, which fit the base classifiers separately or sequentially. 
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3.5. Performance evaluation 

 The models’ performance in terms of five key metrics—accuracy, precision, 
recall, F1 score, and ROC-AUC—are detailed in this section. For each of the three 
datasets, we evaluate the model independently. Evaluation Metrics: 

 Accuracy: Measures the overall correctness of the model. 
 Precision: Important in medical diagnostics to reduce false positives. 
 Recall: Ensures that all true positive cases are identified. 
 F1 Score: Combines precision and recall, useful in scenarios with imbalanced 

datasets. 
 ROC-AUC: Reflects the model’s discrimination ability across various 

thresholds. 

4. Experimental result and discussion 

 The performance of numerous machine learning models is thoroughly reviewed 
in this section with an emphasis on feature extraction techniques, classification 
strategies, and ensemble-based approaches. Employing three Cataract datasets, one 
can assess this analysis utilizing precision, recall, accuracy, F1 score, and ROC-AUC. 
The significance level of each feature that is taken from images and its contribution to 
model efficacy are displayed by Feature Importance Analysis, one of these studies. 

4.1. Dataset description 

 Three handwritten datasets that offer different difficulties for image 
identification and classification can be used to separate the data, giving a clear picture 
of the computing power of each model: These datasets are used to test the effectiveness 
of various feature extraction and classification techniques, with an emphasis on the 
models’ generalizability across various stages of cataract development shown in Table 
1. 

Table 1. Dataset description. 

Dataset Description Total images Cataract images Normal images 

Cataract Dataset 1 
Comprises both early and advanced phases of cataracts, 
offering a wide range of severity levels for reliable testing. 

2112 1038 1074 

Cataract Dataset 2 
They were designed to evaluate the models’ ability to 
differentiate between fully formed and immature cataracts, a 
feature that is useful for clinical staging. 

410 214 196 

Cataract Dataset 3 
mostly comprises of normal images with a small percentage 
of early-stage cataracts to test the accuracy of early 
diagnosis. 

400 100 300 

 4.2. Results for all datasets 

 Dataset 1: Stacking and Bagging emerged victorious, with Stacking leading in 
both acc (93%) and ROC-AUC (94%). This remarkable level of behavior was 
enhanced by the Base Layer in Stacking, which included classifiers like Random 
Forest and SVM [21]. The performance charts of the machine learning model on 
Dataset 1, which is a classification of simple cataracts from mild to severe cases, are 
shown Figure 4. 
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The line plot below displays the accuracy, precision, recall, F1 Score, and ROC-
AUC performance of several ML models on Dataset 1. As can be seen in the following 
graphic, stacking consistently appears to perform better than the others; when totaled, 
this indicates that stacking has the best accuracy (93%), recall (94%), and ROC-AUC 
score (94%). While still exhibiting excellent behavior, Bagging and Boosting lag 
behind Stacking in terms of recall and global accuracy. KNN and SVM perform badly 
when utilizing traditional methods, especially in recall, because low ROC-AUC values 
are likely to make it more difficult to identify subtle cataract characteristics. 

 
Figure 4. Performance of various machine learning models on Dataset 1. 

 Dataset 2: Identifying immature and adult cataracts was difficult, and the 
ensemble approach may have done the best in this regard, with Stacking obtaining an 
F1-score of 91%. Distinguish between several types of cataracts in the next figures, 
which display the performance of base models on Dataset 2 shown in Figure 5. This 
dataset assesses the models’ ability to detect changes in cataracts at different stages. 
This line plot illustrates how well the model performed across Dataset 2 in 
differentiating between immature and mature cataracts. 

 
Figure 5. Performance of various machine learning models on Dataset 1. 
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 The stacking model outperforms all other models in determining the stage at 
which a cataract has grown, achieving the highest forecasts for accuracy (91%) and 
recall (93%). The stacking ensemble produces the best F1 scores and precision, 
followed by Modified Random Forest and Bagging, which perform almost as well but 
fall short of stacking. This data set clearly shows the performance difference between 
ensemble technique parameters (boosting, bagging, stacking) and standard models 
(KNN and SVM). 

 Dataset 3: Stacking and Modified Random Forest are the best in terms of True 
Positive/False Positive rates, as is typical. The inability of the models to detect early-
stage cataracts makes it clear that they have a lot more trouble with Dataset 3 shown 
in Figure 6, which is full of normal photos, than the other two. The models trained 
with Dataset 3, an out-of-distribution collection (the job emphasis is to diagnose early-
stage cataracts in practically normal photos), are displayed in a line plot. With an 
accuracy of 92% and a ROCAUC of 91%, stacking performed the best, showing great 
promise for identifying even minute cataract signs in a difficult sample. Although they 
both perform rather well, bagging and boosting fall a little short of stacking. 

 
Figure 6. Performance of various machine learning models on Dataset 1. 

 Traditional models like KNN and SVM perform poorly in differentiating 
between normal and early-stage cataract images, as evidenced by lower recall and 
ROC-AUC scores [22]. Table 2 shows the model results for each of the three datasets. 
These measures are critical in understanding how well the algorithms detect cataracts 
at different stages and generalize to unidentified data. 

Table 2. Performance metrics across all datasets. 

Model Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC-AUC (%) 

KNN 

Dataset 1 83 81 85 83 82 

Dataset 2 80 79 82 80 79 

Dataset 3 81 78 85 81 80 
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Table 2. (Continued). 

Model Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC-AUC (%) 

SVM 

Dataset 1 85 83 88 85 84 

Dataset 2 82 80 85 82 81 

Dataset 3 84 82 87 84 83 

Modified Random Forest 

Dataset 1 90 89 91 90 89 

Dataset 2 88 87 90 88 87 

Dataset 3 89 88 91 89 88 

Bagging 

Dataset 1 91 90 92 91 91 

Dataset 2 89 88 91 89 88 

Dataset 3 90 89 92 90 89 

Boosting 

Dataset 1 88 87 89 88 87 

Dataset 2 86 85 88 86 85 

Dataset 3 87 86 89 87 86 

Stacking 
Dataset 1 93 92 94 93 94 

Dataset 2 91 90 93 91 90 

5. Conclusion 

In order to increase the accuracy of cataract detection, this study investigated 
contemporary methods such as ensemble learning, hybrid feature extraction, and 
Modified Random Forest. The hybrid technique (LBP, GLCM, and CNN) improved 
picture representation, but the proposed Modified Random Forest, which includes 
feature weighting and adjusted decision thresholds, reduced noise and increased 
sensitivity. Ensemble approaches such as bagging, boosting, and stacking improved 
accuracy even more, with stacking attaining 93% for early-stage cataract 
identification. Feature selection and dimensionality reduction helped to reduce 
overfitting and computational costs, but applying high-computational models in 
clinical contexts remains challenging. Future study could look into AutoML for 
feature selection, deep learning upgrades, and model optimization for real-time 
applications through pruning and quantization. Overall, combining improved feature 
extraction, optimal classification, and dimensionality reduction greatly improves 
cataract detection, laying the groundwork for future medical image analysis 
breakthroughs. 
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