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Abstract: This study explores modern techniques to enhance cataract detection accuracy,
including ensemble learning, hybrid feature extraction, and a Modified Random Forest
classifier. Traditional methods face limitations in feature extraction and classification, which
are addressed through a hybrid approach combining LBP, GLCM, and CNN. LBP detects
early-stage cataracts, GLCM captures spatial relationships, and CNN extracts deep structural
features, improving image representation. The proposed Modified Random Forest (MRF)
classifier integrates feature weighting and optimized decision thresholds, reducing noise and
enhancing classification accuracy. Feature selection with Recursive Feature Elimination (RFE)
and Principal Component Analysis (PCA) minimizes overfitting and computational cost.
Ensemble learning methods such as Bagging, Boosting, and Stacking further improve model
robustness, with Stacking achieving 93% accuracy and high ROC-AUC for early-stage
detection. However, computational complexity remains a challenge, particularly for
deployment in clinical settings. KNN and SVM models underperform without feature selection,
highlighting the need for careful preprocessing. Despite these challenges, the proposed
techniques significantly improve cataract detection, ensuring better generalization across
datasets.

Keywords: cataract detection, ensemble learning, hybrid feature extraction, modified random
forest, bagging, boosting, stacking, classification accuracy, ROC-AUC, medical imaging

1. Introduction

Cataracts cause the lens of the eye to gradually fog, which is a major global health
concern. This is particularly true in countries with limited access to healthcare services
that are middle and lower-income. The World Health Organization estimates that
cataracts afflict millions of individuals globally and account for around 51% of all
incidents of blindness. Because resources may be scarce in these locations, the impact
is particularly severe, underscoring the urgent need for better diagnostic and
intervention methods. Early detection and prompt treatment are critical to preventing
irreversible vision loss and improving the quality of life for those affected by visual
impairments. Therefore, it is essential to treat this common cause of visual impairment
by coordinated initiatives to increase awareness, enhance accessibility to eye care
services, and promote international cooperation. A common eye condition called
cataracts is characterized by clouding of the camera lens, which makes it difficult for
light to flow through and impairs vision [1].

Eye scans are processed digitally to determine whether cataracts are present and
how severe they are. Two different techniques are used to handle a dataset that includes
images of eyes with different degrees of cataract [2]. Semantic segmentation for the
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identification and location of surgical equipment and anatomical components is a basic
component of such capabilities [3]. The segmentation models’ overall performance
was enhanced using the AWTFE technique, which efficiently finds features pertinent
to the pupil region [4].

The fluctuation range of accuracies is becoming steadier, and the DCNN
classification accuracies are getting better. The approach achieved the maximum
accuracy of 93.52% in cataract identification and 86.69% in grading tasks [5]. The
following clearly explains the main contributions of this work:

The proposed MRF model combining LBP, GLCM, and CNN improves image
representation by capturing texture, spatial relationships, and deep structural features
for better cataract detection.

Enhances classification accuracy by integrating feature weighting and optimized
decision thresholds, reducing noise, and improving sensitivity.

Techniques like Bagging, Boosting, and Stacking improve model performance,
with Stacking achieving 93% accuracy and high ROC-AUC for early-stage cataract
detection.

RFE and PCA help minimize overfitting and computational cost, but deploying
complex models in clinical settings remains a challenge, emphasizing the need for
efficient preprocessing.

The remaining portion of this document is summarized as follows: In Sections 1
and 2, the introduction and relevant literature were found; Section 3 goes into
additional detail about the proposed methodology, Section 4 presents the experimental
results, and Section 5 looks at the conclusions and possible directions for further study.

2. Related works

Cruz et al [6] have proposed, age and illness are two factors that can cause the
ocular nucleus to become opaque, a condition known as a cataract. Computational
intelligence methods are essential for helping medical pre-diagnosis specialists
automatically categorize and grade illnesses. Conventional image processing
algorithms are used to process and extract pertinent features. Manuel et al. [7] have
recommended, to collect 1000 Kaggle retinal images, which will then be split equally
between two groups: those with and without cataracts. A variety of neural networks,
such as ResNet18, ResNet34, InceptionResNetV2, and InceptionV4, are then used to
accurately classify the images.

Zhang et al. [8] have suggested, RCRNet outperforms and is more efficient than
the most sophisticated channel attention-based networks, as demonstrated by two
publicly available medical datasets and the AS-OCT-NC2 dataset. Cheng et al. [9]
have discussed, the images are then recovered using the novel SGRIF model based on
attenuation and scattering. Navatha et al. [10] have introduced, an automated cataract
detection technique that uses the Adam optimizer-optimized VGG-19 convolutional
neural network (CNN) model. Using images from digital cameras.

Shi et al. [11] have reported, a surgeons can identify risk factors for pupillary
instability before surgical issues arise by using automated pupil segmentation from
surgical recordings. Vadduri et al. [12] have proposed, using cutting-edge deep
learning techniques, the Deep Attention U-Net for Cataract Diagnosis (DAUCD)
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model enhances the segmentation and classification of cataract in retinal
pictures.Xiong et al. [ 13] have proposed, the pre-trained ResNet is used to extract high-
level features, while a GLCM is used to extract texture data. The two feature types are
then blended through a dimension expansion procedure where texture feature vectors
are added to the tail of high-level feature vectors.

Zhang, et al. [14] have suggested, to separate cataract identification and grading
tasks yielded 93.52% and 86.69%, respectively. The performance of the DCNN
classifier is shown in this research to be superior to the state-of-the-art. Imran et al.
[15] have reported, the pre-trained residual network (ResNet) is utilized to extract
high-level features, while a GLCM is used to extract texture data.

3. Proposed system

The procedures for cataract grading will be covered in this section. The
proposed framework for cataract levelling is shown in Figure 1.

Figure 1. Block diagram proposal for cataract categorization.

The figure illustrates a machine learning-based image classification pipeline. It
begins with an input image, which undergoes Image Acquisition & Preprocessing to
enhance its quality and remove noise. The processed image then proceeds to Hybrid
Feature Extraction, where different techniques are used to extract meaningful features
for further analysis. Next, Feature Selection methods such as RFE and PCA are applied
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to reduce dimensionality and retain the most relevant features. The refined features are
then fed into the Classification stage, where a MRF classifier is employed to categorize
the image. Ensemble learning methods such as Bagging, Boosting, and Stacking
further improve model robustness. Finally, the model’s performance is evaluated using
Accuracy and ROC-AUC analysis, which assess the classification effectiveness and
reliability.

3.1. Image pre-processing

Pre-processing prepares the images for analysis, which makes it crucial for
cataract identification. Min-Max Normalization, Median Filtering, and Contrast
Limited Adaptive Histogram Equalization (CLAHE) were the three main techniques
that used for this. The included 410 images, 196 of which had cataract damage and
214 of which were normal. These approaches equalize brightness levels, remove noise,
and improve contrast [16]. This facilitates classifiers by purifying the input data, which
makes it simpler to identify even the slightest variations between eyes in good health
and those with cataracts. It is crucial to have clean, well-prepared data because it
improves feature extraction and makes the classifiers’ work easier.

3.1.1 Image normalization

This guarantees that, regardless of the initial method of capture, the traits we wish
to examine are present in every image. Min-Max Normalization is calculated using the
following formula:

, min(x)

X =Xx——— = (1)

- max(x)—min (x)

where, X is the original pixel value, X* is the normalized pixel value, Max(x) and
min(x) are the image’s minimum and maximum pixel values, respectively.

3.2. Texture-based feature extraction

Statistical texture analysis is a widely used image processing-based method for
analyzing medical imaging textures, such as cataracts. This is because relevant
information about our textured tissues is provided by tissue features [17]. Both LBP
and GLCM, two widely used statistical techniques for texture analysis, are discussed
in this chapter. In order to accurately detect cataracts, these techniques are crucial for
capturing the differences in texture and spatial correlations in images.

3.2.1. Local binary pattern (LBP)

An LBP is one method of representing textural features in images, as seen in
Figure 2. With this method, a specific pixel is effectively represented by thresholding
with its neighbors inside a neighborhood known as Lattice points.

LBP uses the gray level of the central pixel, which is determined by the following
equation, to determine a threshold value for each nearby pixel:

LBPyp(x,y) = X4=5S(g — 1) - 2° (2)
where
o (Lifle 2
S(la lC) - {O, lf la < lC (3)
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Orniginal image

where, [ is the gray value of the central pixel, /, (for a = 0,1, 2..., A—1) denotes the
neighboring pixels located along a circle of diameter C/2 (where C/2>1), with the
number of neighbors denoted as A (where 4 > 1), The term 2° represents the binomial
factor assigned for each value of la.
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Figure 2. Local binary pattern.

3.2.2. GLCM (gray level co-occurrence matrix)

The GLCM is a statistical tool that illustrates the relationships between various
image pixels. Its primary purpose is to ascertain the frequency with which specific
greyscale combinations (pixel brightness values) occur in photographs, a task that is
frequently encountered in image processing and computer vision. The entries
P(i,j,d,0) in the matrix indicate the likelihood that a pixel with value ii will be
adjacent to a pixel with value j at distance dd and orientation 8. A solid foundation for
computing a variety of texture properties is provided by the GLCM’s ability to capture
such spatial relations. One well-liked technique for texture analysis in medical
imaging, such as cataract identification, is GLCM, one of the earliest types [18].
GLCM offers a number of textural characteristics that can be crucial in distinguishing
between normal and cataract-affected lenses.

3.2.3. CNN

CNNs are able to capture high-level abstract features that are difficult to detect
using conventional techniques, like overall opacities or massive structural
deformations.

3.3. Modified random forest classifier

The cataract image can be retrieved with unique characteristics thanks to hybrid
feature extraction, which integrates CNNs, GLCM, and LBP:

LBP: Because local binary patterns are utilized to record local texture patterns,
they are useful for identifying subtle changes that occur at the edges of smooth areas
in the early stages of cataract development.

GLCM: By recording the differences in pixel intensities inside an image with
respect to their closest neighbors, it aids in the classification of lens cloudiness and
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opacity.

CNN: Because high-level abstract features that are difficult to identify using
conventional techniques, including overall opacities or significant structural
deformations, are captured by CNNss.

While Random Forests (RF) are a classic classifier, Modified Random Forests
(MRF) are a method that has been tuned to operate better with biomedical datasets like
cataract images. The classifier function is mostly reliant on what has been specified
by enhancing its focus, which means that highly discriminative CNN and LBP features
are likely targets in a weighted feature selection context (MRF provides greater
weights to more informative) [19]. Feature splitting is the process of selecting features
(by default, they are chosen at random) using node-based theory and Gini impurity
calculations, which aid in creating optimal decision boundaries. Decision thresholds
that are dynamically modified throughout the tree build sequence improve class
separation, particularly in extremely unbalanced data sets and subtypes. The following
formula determines each feature ff’s feature significance weighting:

S 10}

_1
"r="m @

where, W;represents the weight assigned to feature ff, 7 is the total number of trees in
the forest, / (f, ) is an indicator function that returns 1 if feature f'is used in tree ¢, and
0 otherwise. Gini Impurity for Feature Splitting Equation:

{c3
O=1-) @) 5)
{c=1}

where, G(¢) is the Gini impurity at node tt, p.(¢) represents the proportion of samples
belonging to class ¢ at node 7. The modified Random Forest algorithm is described in
Algorithm 1.

Algorithm 1: Pseudocode for modified random forest algorithm

: # Inputs: Cataract image dataset (X), Labels (Y)

: # Output: Trained Modified Random Forest Model (MRF)

: Initialize empty feature set F and empty forest MRF

: For each image in the dataset X:

Step 1: Extract LBP features

Step 2: Extract GLCM features

Step 3: Extract CNN features

Step 4: Concatenate LBP, GLCM, and CNN features into combined_features
: F.append (combined_features)

10: For each tree in the forest:

11:  Step 1: Select a weighted subset of features based on feature importance

12:  Step 2: Construct the decision tree using optimized feature splits and thresholds
13:  Step 3: Add the constructed tree to the forest MRF

14: Return the final MRF model

e A A Sl e

Ne)

3.4. Ensemble learning: Bagging, boosting, and stacking

Multiple separate models, or base learners, are combined in ensemble learning
approaches to improve performance, generalization, and resilience [20]. According to
these approaches, numerous inferior models are combined to address a single model’s
shortcomings, such as overfitting and insufficient capacity. Hopefully, they can cover
this by bringing in a large number of more capable students. Because medical picture
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collections contain intricate patterns and imbalances, the ensemble approaches of
bagging, boosting, and stacking is crucial. By combining the characteristics of many
models, ensemble learning in cataract detection enables us to create more reliable and
effective classifiers.

By training several instances of the same base classifier on various subsamples
of data, the ensemble technique known as “bagging” (Bootstrap Aggregating) seeks to
lower the variance of a machine learning model. Creating subsets from the original
dataset by sampling with replacement is known as bootstrapping in the context of this
approach. In Figure 3 shows that the flowchart of ensemble approach for cataract
classification.

Start with
Cataract Dataset

!

Select Ensemble
Approach

AV

. . Boosting usi Vi
Bagging using oEang eing

Random Forest AdaBoost or Stacking

Gradient Boosting

¥ 5
Create Bootstrapped Train Weak Learners Train Multiple
Dataszets Sequentially Basze Classifiers
Train Multiple Update Weights on Train Meta-Classifier
Decision Trees Misclassified Samples on Base Predictions
Majority Veoting Combine Learner Meta-Classifier Gives
for Final Prediction Predictions for Final Qutput Final Prediction

I

Compare Results of
Ensemnble Methods

/

Determine Best
Ensemble Methed

Figure 3. Flowchart of ensemble approach for cataract classification.

The “boosting” ensemble strategy reduces the model error by training a series
of ineffectual learners, each of which tries to correct the previous one. On examples
that are challenging to categorize, Bagging appears to train each model separately,
enhancing rather than improving the performance of weak learners.

Stacking is an improved ensemble technique in which a meta-classifier is used
to combine the predictions of many base classifiers that have been trained to get a
single final result. In Stacking, predictions from many algorithms are combined with
a final model trained to determine how it should be carried, as opposed to Bagging and
Boosting, which fit the base classifiers separately or sequentially.
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3.5. Performance evaluation

The models’ performance in terms of five key metrics—accuracy, precision,
recall, F1 score, and ROC-AUC—are detailed in this section. For each of the three
datasets, we evaluate the model independently. Evaluation Metrics:

Accuracy: Measures the overall correctness of the model.

Precision: Important in medical diagnostics to reduce false positives.

Recall: Ensures that all true positive cases are identified.

F1 Score: Combines precision and recall, useful in scenarios with imbalanced
datasets.

ROC-AUC: Reflects the model’s discrimination ability across various
thresholds.

4. Experimental result and discussion

The performance of numerous machine learning models is thoroughly reviewed
in this section with an emphasis on feature extraction techniques, classification
strategies, and ensemble-based approaches. Employing three Cataract datasets, one
can assess this analysis utilizing precision, recall, accuracy, F1 score, and ROC-AUC.
The significance level of each feature that is taken from images and its contribution to
model efficacy are displayed by Feature Importance Analysis, one of these studies.

4.1. Dataset description

Three handwritten datasets that offer different difficulties for image
identification and classification can be used to separate the data, giving a clear picture
of the computing power of each model: These datasets are used to test the effectiveness
of various feature extraction and classification techniques, with an emphasis on the

models’ generalizability across various stages of cataract development shown in Table
1.

Table 1. Dataset description.

Dataset Description Total images  Cataract images Normal images

Comprises both early and advanced phases of cataracts,

Cataract Dataset | offering a wide range of severity levels for reliable testing.

2112 1038 1074
They were designed to evaluate the models’ ability to

Cataract Dataset 2 differentiate between fully formed and immature cataracts, a 410 214 196
feature that is useful for clinical staging.

mostly comprises of normal images with a small percentage
Cataract Dataset 3 of early-stage cataracts to test the accuracy of early 400 100 300
diagnosis.

4.2. Results for all datasets

Dataset 1: Stacking and Bagging emerged victorious, with Stacking leading in
both acc (93%) and ROC-AUC (94%). This remarkable level of behavior was
enhanced by the Base Layer in Stacking, which included classifiers like Random
Forest and SVM [21]. The performance charts of the machine learning model on
Dataset 1, which is a classification of simple cataracts from mild to severe cases, are
shown Figure 4.
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The line plot below displays the accuracy, precision, recall, F1 Score, and ROC-
AUC performance of several ML models on Dataset 1. As can be seen in the following
graphic, stacking consistently appears to perform better than the others; when totaled,
this indicates that stacking has the best accuracy (93%), recall (94%), and ROC-AUC
score (94%). While still exhibiting excellent behavior, Bagging and Boosting lag
behind Stacking in terms of recall and global accuracy. KNN and SVM perform badly
when utilizing traditional methods, especially in recall, because low ROC-AUC values
are likely to make it more difficult to identify subtle cataract characteristics.

Performance Metrics for Dataset 1
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Figure 4. Performance of various machine learning models on Dataset 1.

Dataset 2: Identifying immature and adult cataracts was difficult, and the
ensemble approach may have done the best in this regard, with Stacking obtaining an
F1-score of 91%. Distinguish between several types of cataracts in the next figures,
which display the performance of base models on Dataset 2 shown in Figure 5. This
dataset assesses the models’ ability to detect changes in cataracts at different stages.
This line plot illustrates how well the model performed across Dataset 2 in
differentiating between immature and mature cataracts.

Performance Metrics for Dataset 2
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Figure 5. Performance of various machine learning models on Dataset 1.
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The stacking model outperforms all other models in determining the stage at
which a cataract has grown, achieving the highest forecasts for accuracy (91%) and
recall (93%). The stacking ensemble produces the best F1 scores and precision,
followed by Modified Random Forest and Bagging, which perform almost as well but
fall short of stacking. This data set clearly shows the performance difference between
ensemble technique parameters (boosting, bagging, stacking) and standard models
(KNN and SVM).

Dataset 3: Stacking and Modified Random Forest are the best in terms of True
Positive/False Positive rates, as is typical. The inability of the models to detect early-
stage cataracts makes it clear that they have a lot more trouble with Dataset 3 shown
in Figure 6, which is full of normal photos, than the other two. The models trained
with Dataset 3, an out-of-distribution collection (the job emphasis is to diagnose early-
stage cataracts in practically normal photos), are displayed in a line plot. With an
accuracy of 92% and a ROCAUC of 91%, stacking performed the best, showing great
promise for identifying even minute cataract signs in a difficult sample. Although they
both perform rather well, bagging and boosting fall a little short of stacking.

Performance Metrics for Dataset 3
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Figure 6. Performance of various machine learning models on Dataset 1.

Traditional models like KNN and SVM perform poorly in differentiating
between normal and early-stage cataract images, as evidenced by lower recall and
ROC-AUC scores [22]. Table 2 shows the model results for each of the three datasets.
These measures are critical in understanding how well the algorithms detect cataracts
at different stages and generalize to unidentified data.

Table 2. Performance metrics across all datasets.

Model Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC-AUC (%)
Dataset 1 83 81 85 83 82

KNN Dataset 2 80 79 82 80 79
Dataset 3 81 78 85 81 80

10
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Table 2. (Continued).
Model Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC-AUC (%)
Dataset 1 85 83 88 85 84
SVM Dataset2 82 80 85 82 81
Dataset3 84 82 87 84 83
Dataset I 90 89 91 90 89
Modified Random Forest Dataset 2 88 87 90 88 87
Dataset 3 89 88 91 89 88
Dataset 1 91 90 92 91 91
Bagging Dataset 2 89 88 91 89 88
Dataset3 90 89 92 90 89
Dataset 1 88 87 89 88 87
Boosting Dataset 2 86 85 88 86 85
Dataset3 87 86 89 87 86
Dataset I 93 92 94 93 94
Stacking
Dataset2 91 90 93 91 90

5. Conclusion

In order to increase the accuracy of cataract detection, this study investigated
contemporary methods such as ensemble learning, hybrid feature extraction, and
Modified Random Forest. The hybrid technique (LBP, GLCM, and CNN) improved
picture representation, but the proposed Modified Random Forest, which includes
feature weighting and adjusted decision thresholds, reduced noise and increased
sensitivity. Ensemble approaches such as bagging, boosting, and stacking improved
accuracy even more, with stacking attaining 93% for early-stage cataract
identification. Feature selection and dimensionality reduction helped to reduce
overfitting and computational costs, but applying high-computational models in
clinical contexts remains challenging. Future study could look into AutoML for
feature selection, deep learning upgrades, and model optimization for real-time
applications through pruning and quantization. Overall, combining improved feature
extraction, optimal classification, and dimensionality reduction greatly improves
cataract detection, laying the groundwork for future medical image analysis
breakthroughs.

Author contributions: Conceptualization, EMA and SK; methodology, EMA;
software, SK; validation, EMA and SK; formal analysis, SK; investigation, SK;
resources, EMA; data curation, SK; writing—original draft preparation, EMA;
writing—review and editing, EMA; visualization, SK; supervision, SK; project
administration, EMA; funding acquisition, EMA. All authors have read and agreed to
the published version of the manuscript.

Funding: None.
Ethical approval: Not applicable.

Informed consent statement: Not applicable.

11



Journal of Biological Regulators and Homeostatic Agents 2026, 40(1), 8248.

Acknowledgments: The author would like to express their heartfelt gratitude to the
supervisor for his guidance and unwavering support during this research.

Conflict of interest: The authors declare no conflict of interest.

References

1. Ismail WN, Alsalamah HA. A novel CatractNetDetect deep learning model for effective cataract classification through data
fusion of fundus images. Discover Artificial Intelligence. 2024; 4(1): 54. doi: 10.1007/s44163-024-00155-y

2. Jindal I, Gupta P, Goyal A. Cataract detection using digital image processing. 2019 global conference for advancement in
technology (gcat). IEEE publishing; 2019. pp. 1-4. doi: 10.1109/gcat47503.2019.8978316

3. Grammatikopoulou M, Evangello F, Abdolrahim K, et al. CaDIS: Cataract dataset for surgical RGB-image segmentation.
Medical Image Analysis. 2021; 71 (2021): 102053. doi: 10.1016/j.media.2021.102053

4.  Giap BD, Srinivasan K, Mahmoud O, et al. Adaptive Tensor-Based Feature Extraction for Pupil Segmentation in Cataract
Surgery. IEEE Journal of Biomedical and Health Informatics. 2024; 28(3): 1599-1610. doi: 10.1109/jbhi.2023.3345837

5. Zhang, L, LiJ, Han H, et al. Automatic cataract detection and grading using deep convolutional neural network. In:
Proceeding of 2017 IEEE 14th international conference on networking, sensing and control (ICNSC); 2017. pp. 60-65.

6. Cruz-Vegal, Hans I, Juan M, et al. Nuclear cataract database for biomedical and machine learning applications. IEEE
Access. 2023; 11(2023): 107754-107766. doi: 10.1109/ACCESS.2023.3312616

7.  Manuel FME, Saide SM, Ali FDMA, et al. Ocular Cataract Identification Using Deep Convolutional Neural Networks.
In:Proceeding of 2023 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication
Systems (icABCD); 2023. pp. 1-5.

8. Zhang X, Xiao Z, Yang B, et al. Regional context-based recalibration network for cataract recognition in AS-OCT. Pattern
Recognition. 2024; 147: 110069. doi: 10.1016/j.patcog.2023.110069

9. Chengl, Li Z, Gu Z, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis.
IEEE Transactions on Medical Imaging. 2018; 37(11): 2536-2546. doi: 10.1109/tmi.2018.2838550

10. Navatha N, Revanth A, Pramod C, et al. High-Accuracy Cataract Detection using Enhanced VGG-19 CNN and Adam
Optimizer[C]//2024 IEEE 6th International Conference on Cybernetics, Cognition and Machine Learning Applications
(ICCCMLA); 2024. pp. 117-122.

11. Shi X, Zhang D, Liang S, et al. Real-time corneal image segmentation for cataract surgery based on detection framework.
International Journal of Computer Assisted Radiology and Surgery. 2025; 1-10. doi: 10.1007/s11548-025-03506-x

12. Vadduri M. DAUCD: Deep attention U-Net for cataract detection leveraging CNN frameworks. International Journal of
Intelligent Engineering & Systems. 2025; 18(1): 184-197. doi: 10.22266/ijies2025.0229.15

13. Xiong Y, He Z, Niu K, et al. Automatic cataract classification based on multi-feature fusion and SVM. In: Proceeding of
2018 IEEE 4th International Conference on Computer and Communications (ICCC); 2018. pp. 1557-1561.

14. Zhang L, LiJ, Han H, et al. Automatic cataract detection and grading using deep convolutional neural network. In:
Proceeding of 2017 IEEE 14th international conference on networking, sensing and control (ICNSC); 2017. pp. 60—65.

15. Imran A, LiJ, Pei Y, et al. Cataract Detection and Grading with Retinal Images Using SOM-RBF Neural Network. In:
Proceeding of 2019 IEEE Symposium Series on Computational Intelligence (SSCI); 2019. pp. 2626-2632.

16. Manchalwar MD, Warhade KK. Histogram of Oriented Gradient based Automatic Detection of Eye Diseases. 2017
International Conference on Computing, Communication, Control and Automation (ICCUBEA); 2017. pp. 1-5.

17. Faizal S, Rajput CA, Tripathi R, et al. Automated cataract disease detection on anterior segment eye images using adaptive
thresholding and fine tuned inception-v3 model. Biomedical Signal Processing and Control. 2023; 82: 104550. doi:
10.1016/j.bspc.2022.104550

18. Laia F H, Buulolo P. Application of svm and lda models in eye image-based cataract detection system. Jurnal ICT:
Information and Communication Technologies, 2024, 15(2): 98—106.

19. Sevani N, Tampubolon H, Wijaya J, et al. A Study of Convolution Neural Network Based Cataract Detection with Image
Segmentation. In: Proceeding of 2022 IEEE International Conference on Communication, Networks and Satellite
(COMNETSAT); 2022. pp. 216-221.

20. Syarifah MA, Bustamam A, Tampubolon PP. Cataract classification based on fundus image using an optimized convolution
neural network with lookahead optimizer. In: Proceeding of AIP Conference Proceedings; 2020.

12



Journal of Biological Regulators and Homeostatic Agents 2026, 40(1), 8248.

21.

22.

Cao L, Li H, Zhang Y, et al. Hierarchical method for cataract grading based on retinal images using improved Haar wavelet.
Information Fusion. 2020; 53: 196-208. doi: 10.1016/j.inffus.2019.06.022

Gu H, Guo Y, Gu L, et al. Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs.
Scientific Reports. 2020; 10(1): 17851. doi: 10.1038/s41598-020-75027-3

13



