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Background: Colorectal cancer, an invasive tumor originating in the mucosal lining of the large intestine and rectum, represents
a prevalent form of gastrointestinal malignancy. Although extensive investigations have been conducted on colorectal cancer, the
precise molecular mechanisms underlying this neoplasm remain uncharacterized. Alterations in the genetic material have been
linked to colorectal cancer progression. To analyze the prognosis of individuals with colorectal cancer, it is crucial to identify new
biomarkers. Using integrated bioinformatics analysis, this study successfully identified and confirmed the fundamental gene
linked to colorectal cancer.
Methods: Bioinformatics software tools were employed to assess the mRNA expression level of Erythroferrone (ERFE) by ana-
lyzing the Cancer Genome Atlas (TCGA) dataset, which included 647 tumor samples and 51 control samples. In order to verify
the findings, a comparison was conducted with data available on the Gene Expression Omnibus (GEO). In order to determine
the clinical significance and expression level of ERFE, a bioinformatics investigation was carried out using logistic regression
analysis. To assess survival rates in both high- and low-expression ERFE groups, univariate and multivariate Cox proportional
hazards model (Cox) regression analyses were conducted. To validate the expression of ERFE at both the gene and protein levels
in colorectal cancer (CRC) cells (HCT116 and Lovo) and normal epithelial cells, reverse transcription quantitative polymerase
chain reaction and western blot experiments were performed. The knock-down efficiency of ERFE in HCT116 and LoVo cell
lines was assessed using western blot experiments. The effect of ERFE gene function was compared and analyzed through vari-
ous assays such as cell counting kit-8 (CCK-8), Transwell, and scratch tests before and after ERFE knock-down in HCT116 and
LoVo cell lines.
Results: An analysis of data obtained from TCGA and GEO databases unveiled a remarkable increase in the expression of ERFE
mRNA in CRC tissue compared to both normal and paracancerous tissues (p < 0.001). Furthermore, it was discovered that the
overexpression of ERFE was linked to an unfavorable prognosis and had the potential to act as an independent prognostic indi-
cator for predicting overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) among colorectal
cancer patients. Additionally, a positive correlation was found between heightened ERFE expression, infiltration of numerous
immune cells, and levels of immune checkpoint molecules. Experimental evaluations, including the CCK-8 assay, scratch assay,
and transwell assay, provided compelling evidence demonstrating a significant reduction in the proliferative, migratory, and
invasive capabilities of colorectal cancer cells upon knocking down ERFE.
Conclusions: In summary, ERFE, functioning as a pro-oncogene in CRC, is linked to the initiation and advancement of cancer,
and can serve as a standalone marker for unfavorable prognosis among CRC patients.
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Introduction

Colorectal cancer is shortened to CRC, is a highly
prevalent form of cancer worldwide, ranking as the third
most common type. Each year, over 1.4 million people
are diagnosed with CRC, and the number of deaths ex-
ceeds 700,000 [1]. In the United States (US), CRC is the
third leading cause of cancer-related mortality for both men
and women, surpassing the incidence rates in other nations.
Projections indicate a startling 60% surge in CRC cases by
2030 [2,3]. The initial line of treatment for CRC, includ-
ing chemotherapy and radiotherapy, often leads to dose-
limiting side effects and the emergence of drug-resistant
cancer cells. Consequently, it is imperative to develop ad-
ditional targeted therapies to enhance patient prognosis and
elevate their quality of life [4]. Despite the prevalence of
CRC, there exist only a limited number of molecular tech-
niques exclusively designed for its detection. The role of
molecular biomarkers is becoming an increasingly impor-
tant one in diagnosing, treating, as well as predicting the
prognosis of a disease. The low availability of biomark-
ers for CRC is a cause for concern. Hence, molecular
biomarkers with a non-invasive nature and high sensitivity
and specificity to CRC need to be fabricated [5].

Erythrocytes manufacture a hormone known as Ery-
throferrone (ERFE) in response to hypoxia, hemorrhage, or
other pre-erythrocytic stimuli. The erythroid cells in the
bonemarrow and spleen tissues releaseERFE through stim-
ulation by erythropoietin (EPO). In the liver cells, ERFE
performs as an inhibitory agent in the transcription machin-
ery of hepcidin, an important hormone that controls the reg-
ulation of iron levels in the body. To date, most studies re-
lated to ERFE have concentrated on the physiological role
of ERFE in regulating iron homeostasis and its role in the
pathogenesis of iron-related disorders [6]. Persistent se-
cretion by erythroid cells causes high levels of ERFE to
attenuate the hepcidin’s response to the iron load, leading
to iron overload in the system, as evidenced by the high
iron concentrations and storage in the plasma and liver tis-
sue, respectively [7]. Epidemiological data suggest that
iron levels are associated with CRC risk. Red meat con-
tains high amounts of heme iron. Individuals who consume
higher amounts of red meat and those with iron overload
have an increased risk of CRC [8,9]. Although the associ-
ation of ERFE with blood disorders has been extensively
studied, the significance of ERFE in the prognostic or ther-
apeutic aspects of CRC remains less studied. The differ-
ential expression of ERFE in pan-cancer was observed in
the results of this study, revealing its crucial role in pro-
moting CRC development. In addition, the predictive and
immune-related roles of ERFE in CRC were investigated
using publicly available databases. These analyses were
primarily based on bioinformatics analysis of the Cancer
Genome Atlas (TCGA), an extensive project in cancer ge-
nomics that covers more than 20,000 primary cancer tis-

sues, along with their corresponding healthy tissues, across
33 different cancer categories at a molecular level. The cre-
ation of this cancer genomics program and the growing ac-
cessibility of high-throughput sequencing data indicate that
cancer-related genomic datasets are being shared more fre-
quently nowadays [10,11]. Thanks to the advancements in
bioinformatics, we now have a powerful tool at our disposal
that greatly aids in understanding the underlying causes and
pathogenesis of colon cancer. Moreover, this technology
enables us to identify previously undiscovered biomarkers
that hold significant prognostic value.

Material and Methods

Data Download
The TCGA0-Colon adenocarcinoma/Rectum adeno-

carcinoma (COADREAD) (https://portal.gdc.cancer.gov/)
project contains RNA sequencing (RNA-seq) data and clin-
ical information for 51 paracancerous and 647 tumor tis-
sues. The TCGA’s COADREAD was utilized to obtain the
data of the unpaired samples (cancerous samples), and the
data of the corresponding normal tissue was accessed at the
Genotype-Tissue Expression (GTEx) (https://gtexportal.o
rg/home/datasets). The gene expression information of un-
paired samples (pan-cancer) contained normal tissue, para-
cancerous tissue, and tumor data of pan-cancer. The paired
samples were derived fromRNA-seq data from TCGA. Ad-
ditionally, RNA-seq information and clinical data were ac-
cessed at the University Of Cingifornia Sisha Cruz (UCSC)
Xena link (http://www.genome.ucsc.edu/index.html). The
dataset numbered Gene Expression Omnibus Series (GSE)
4107 was downloaded from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo). The
GeneChip U133-Plus 2.0 array (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GPL570) was used to analyze
the RNA information extracted from mucosal tissue of the
colon of healthy controls (10 samples) and CRC patients
(12 samples), as well as blood samples from the dataset
numbered GSE164191 of 59 CRC patients and 62 healthy
controls. Subsequently, the whole blood gene expres-
sion profiling was performed using Affymetrix microar-
ray hybridization. First, CRC queues with survival time
and survival status: GSE72969, GSE87211, GSE17536
were downloaded to verify the prognostic performance
of the ERFE gene. Then, immunotherapeutic-related co-
hort GSE179351 was downloaded. There were three
groups of CRC patients in this cohort, which were before-
treatment, Immune Checkpoints Blockade (ICB) treatment
(ICB-treatment), and Immune Checkpoints Blockade treat-
ment combined with radiation treatment (ICB + radiation).

Differential Expression Analysis
Perform log2 conversion of Transcripts Per Million

(TPM) format RNA seq data. R package all downloaded
from https://www.bioconductor.org/ website. First of all,
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ggplot2 3.3.3 (https://www.bioconductor.org/help/search/i
ndex.html?search-bar=ggplot2/) is used for statistical anal-
ysis and visualization of differentially expressed genes.

Receiver Operating Characteristic Curves and
Survival Analysis

To visualize the information, we utilized the R pack-
age (version 3.6.3) (https://mirrors.tuna.tsinghua.edu.cn/C
RAN/) and the survminer package (version 0.4.9) (https:
//cran.r-project.org/). Furthermore, we performed statisti-
cal analysis on the survival data using the survival package
(version 3.2.10) (https://mirrors.tuna.tsinghua.edu.cn/CRA
N/) (install.packages (“survival”)) to generate plots depict-
ing progression-free interval (PFI), overall survival (OS),
and disease-specific survival (DSS) related to ERFE. To
classify the cohort into groups based on expression levels,
we employed the expression median as the chosen thresh-
old. To assess the relationship between clinical information
and ERFE expression, logistic regression analysis was con-
ducted. We utilized both univariate and multivariate Cox
proportional hazards model (Cox) analyses to identify inde-
pendent prognostic variables. In order to evaluate the pre-
dictive prognostic value of ERFE in CRC patients, we ana-
lyzed the data and visualized the Receiver Operating Char-
acteristic (ROC) curves. This analysis was carried out using
the pROC package (version 1.17.0.1) (https://mirrors.tuna
.tsinghua.edu.cn/CRAN/) (install.packages (“pROC”)) and
“ggplot2” package (version 3.3.3) (https://www.biocondu
ctor.org/help/search/index.html?search-bar=ggplot2/). By
using the median expression level of the ERFE gene, we
divided CRC patients into high and low expression groups.
Initially, Kaplan-Meier (KM) survival analysis was con-
ducted in three validation cohorts using the survival pack-
age, and the resulting survival curves were plotted ac-
cordingly. Subsequently, survivalROC analysis was per-
formed to assess 1, 3, and 5-year survival rates using
the survivalROC package (version 1.0.3.1) (https://mirrors.
tuna.tsinghua.edu.cn/CRAN/) (install.packages (“survival-
ROC”)). Finally, the results were presented in line plots.

GeneMANIA Database
Protein-Protein Interaction (PPI) network analysis

was performed through GeneMANIA (http://genemania.or
g/), and the proteins in the network were subjected to func-
tional annotation.

Functional Enrichment Analysis
To thoroughly examine and describe diverse gene

functionalities, encompassing biological processes (BP),
cellular components (CC) and molecular functions (MF),
an extensive investigation was carried out using Gene On-
tology (GO) for functional enrichment analysis. Subse-
quently, intricate interactions and network relationships
at the molecular level were observed through the uti-
lization of Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis. In order to es-
tablish connections, a two-by-two correlation analysis of
ERFE gene expression levels and other molecular con-
stituents was performed using the STAT package (ver-
sion 3.6.3) (https://mirrors.tuna.tsinghua.edu.cn/CRAN/)
(install.packages (“STAT”)). For screening purposes, a
threshold of pSpearman <0.05 was employed, resulting
in the selection of the top 200 genes based on coSpear-
man values in descending order. Additionally, to facil-
itate ID conversion, the “org.Hs.eg.db” package (version
3.10.0) (https://www.bioconductor.org/help/search/index.h
tml?search-bar=org.Hs.eg.db/) in R was utilized. Enrich-
ment analysis was conducted using the “clusterProfiler”
package (version 3.14.3) (https://www.bioconductor.org/h
elp/search/index.html?search-bar=clusterProfiler/), while
the filtering and visualization of BP, CC, MF, and KEGG
pathways that met the adjusted p-value < 0.1 and q-
value < 0.2 criteria were accomplished using ggplot2 (ver-
sion 3.3.3) (https://www.bioconductor.org/help/search/ind
ex.html?search-bar=ggplot2/).

Immune Cell Infiltration
Based on mRNA expression profile data, the single-

sample gene set enrichment analysis (ssGSEA) algorithm
was utilized to compute enrichment scores for 24 immune
cells in the tumor microenvironment (TME). This algo-
rithm was employed to assess the levels of infiltration by
24 immune cells in CRC samples from the TCGA database.
Furthermore, the Estimation algorithm estimated the im-
mune infiltration score, stromal score, and estimated score
in the TME using mRNA expression. Higher scores im-
plied greater presence of stromal components and immune
infiltration in the internal environment. In addition, the cor-
relation of expression trends between ERFE genes and im-
mune cell markers was visualized by a heat map utilizing
the R package “ggplot2” 3.3.3.

Susceptibility to Immunotherapy
RNA-seq data (level 3) and relevant clinical data

for colorectal cancer (CRC) were gathered from the
ICGC website (https://docs.icgc-argo.org/docs/data-acces
s/icgc-25k-data). The subsequent eight genes, namely
CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,
TIGIT, and SIGLEC15, are linked to immune check-
points. Consequently, an analysis was performed to ex-
amine the expression of these genes concerning immuno-
logical checkpoints. To achieve this, a uniformly normal-
ized dataset was acquired from the UCSC website (https:
//xenabrowser.net/). The expression profile of ERFE genes
from COADREAD samples was then extracted, with em-
phasis on samples originating from Primary Blood-Derived
Cancer-Peripheral Blood and Primary Tumors. Further-
more, the Simple Nucleotide Variation dataset (level 4) of
TCGA-COADREAD, processed using MuTect2 software,
was accessed from the GDC website (https://portal.gdc.can
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cer.gov/). The Tumor Mutation Burden (TMB) score was
calculated using the “tmb” function found in the R pack-
age maftools (version 2.8.05) (https://www.bioconductor
.org/help/search/index.html?search-bar=+maftools/) for a
more robust analysis. To enhance the analysis further,
the TMB, microsatellite instability (MSI) scores, neoanti-
gen (NEO) data, and gene expression data from previous
COADREAD studies were integrated. To compare TMB,
MSI, and NEO scores, the ERFE gene expression data
was divided in accordance with the median value into high
and low groups, and R package ggplot2 3.3.3 was utilized
for its visualization. To check for plagiarism in the pa-
pers, the Genomics of Drug Sensitivity in Cancer (GDSC)
website (https://www.cancerrxgene.org/) was utilized for
each TCGA-COADREAD sample. The prediction of
chemotherapy response to 5-Fluorouracil (5-FU) was con-
ducted using the pRRophetic R package (version 0.5) (http
s://mirrors.tuna.tsinghua.edu.cn/CRAN/) (install.packages
(“pRRophetic”)). The ridge regression method was em-
ployed to estimate the sample’s half-maximum inhibitory
concentration (IC50), with all parameters set at their de-
fault values (e.g., batch effect: COMBAT; tissue type:
ALL). Duplicate gene expression was represented by cal-
culating the mean. Initially, the pheatmap package was
used to perform hierarchical clustering of ERFE and ICB-
related genes in the GSE179351 cohort, which is associated
with immunotherapy. The expression levels were standard-
ized using the z-score method and presented visually as a
heatmap. Next, the Pearson method was utilized to calcu-
late the transcriptional-level correlation between ERFE and
ICB-related genes at various treatment stages. The results
were then visualized using scatter plots.

Construction of the Risk Prediction Model
The risk prediction model was developed based on

TCGA data. We developed a nomogram incorporating gene
expression and clinical information to predict 1-, 3-, and 5-
years OS for people suffering from CRC. For risk assess-
ment, the status of each clinical factor and the expression
level of ERFE were first determined. Then, the associated
survival rates over 1, 3, and 5 years were obtained by a
straight line drawn on the risk axis. Subsequently, the fit
between the actual and model-predicted survival rates un-
der different scenarios was visualized in a calibration plot
to determine the model’s predictive accuracy. In the end,
the validation of the model’s predictive capability involved
the illustration of ERFE risk factors based on the risk score.
This was accomplished by plotting time-dependent ROC
curves for 1-, 3-, and 5-year durations.

Cell Line Screening
The mRNA expression levels of ERFE genes in var-

ious CRC cell lines were investigated utilizing the web-
site Cancer Cell Line Encyclopedia (CCLE) (https://sites.
broadinstitute.org/ccle) (Supplementary Fig. 1). Two cell

lines showing increased ERFE values were chosen for this
study HCT116 (FH0027, Fuheng Bio, Shanghai, China)
and LoVo cells (FH0023, Fuheng Bio, Shanghai, China).
In addition, the control cells used in this experiment were
human FHC cells (FH1283, Fuheng Bio, Shanghai, China).
Cells used in this study was authenticated by STR and no
cross-contamination between cells was identified through
mycoplasma testing.

RNA Extraction and Quantitative Reverse
Transcription-Polymerase Chain Reaction

The two selected untreated cell lines (HCT116 and
LoVo) were transfected with the empty plasmid normal
control (NC) and siRNA-ERFE (si-ERFE). Afterward, the
RNA level of these cells was analyzed using Quantitative
real time polymerase chain reaction (qRT-PCR) with the
internal reference glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH). The experimental protocol provided by the
manufacturer’s instructions was followed for using the kit.
The qRT-PCR parameters used were as follows: 2 µL of
RNA (template), 12.5 µL of SYBR® PrimeScript master
mix (2x, RR036A, Takara, Tokyo, Japan), 0.5 µL of for-
ward primer (20 µM), 0.5 µL of reverse primer (20 µM),
11.5 µL of ddH2O, and a total volume of 25 µL. GAPDH
served as the internal control. The qRT-PCR was con-
ducted with the following parameters: 45 °C for 15 min,
95 °C for 5 min, 95 °C for 20 s, 60 °C for 20 s, and 72
°C for 30 s (40 cycles in total). The following primers were
used: upstreamCCGGAGCCAGGGTTGATTC and down-
stream GCACTCCATGAGAACATGAAGAG for human
ERFE, and upstream ACAAGCCTCAAGATCATCAGC
and downstream GCCATCAGCCAAGTTTCC for human
GAPDH. Data analysis was performed using the 2−∆∆Ct

method.

Small Interfering RNA Transfection
Guangzhou RiboBio Co., Ltd. (Guangzhou, China)

designed and produced the small interfering RNA (siRNA)
to target ERFE. Following the manufacturer’s protocol,
Lipofectamine 2000 (cat. no. 11668027, Thermo Fisher
Scientific, Waltham, MA, USA) was utilized for trans-
fection of cells. The siRNA sequences were as fol-
lows: si-ERFE: GGAGCACAGAUCUAGACAATT, si-
NC: UUCUCCGAACGUGUCACGUTT. The transfection
efficiency of gene silencing was verified by western blot
assays.

Western Blot
The empty plasmid NC and si-ERFE were used to

transfect the two selected untreated cell lines (HCT116, and
LoVo). Subsequently, western blot (WB) assays were per-
formed on these cells at the protein level. The internal ref-
erence used for this study was the β-Tubulin. We employed
WB techniques following standard procedures to extract
and analyze the total proteins. Gel electrophoresis tech-
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nique, specifically utilizing a 12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, was applied to separate
the proteins. Subsequently, the proteins were transferred
onto a nitrocellulose membrane (cat. no. HATF00010,
Millipore, Billerica, MA, USA). The Tris buffered saline
Tween (TBST) solution containing 5% skim milk was used
to seal the nitrocellulose membrane (cat. no. 28360,
Thermo Fisher Scientific, Inc., Waltham, MA, USA) for a
duration of 2 hours. Subsequently, the monoclonal primary
antibody was introduced to the nitrocellulose membranes.
Following this, the nitrocellulose membranes were placed
in a refrigerator at 4 °C overnight. The specific antibod-
ies utilized were anti-ERFE (Polyclonal; cat. no. YN3093;
1:1000; ImmunoWay Biotechnology; Plano, TX, USA) and
anti-β-Tubulin (Monoclonal; cat. no. YM3030; 1:2000;
ImmunoWay Biotechnolog, Plano, TX, USA). Each mem-
brane was then exposed to either peroxidase-conjugated
goat anti-rabbit Immunoglobin G (IgG) (cat. no. ZB-
2301; 1:10,000; ZSGB-BIO; Beijing; China) or peroxidase-
conjugated goat anti-mouse IgG (cat. no. ZB-2305; ZSGB-
BIO; Beijing; China), depending on the specific secondary
antibody. This incubation process lasted for one and a
half hours at room temperature. Upon immersion of the
nitrocellulose membranes in an enhanced chemilumines-
cence reagent, specific bands corresponding to the target
proteins became visible within one to three minutes in a
dark room. The protein signals were detected using a Bio-
Rad gel imaging system (GelDoc Go 12009077, Bio-Rad
Laboratories, Inc., Hercules, CA, USA) equipped with en-
hanced chemiluminescence detection technology. Image
Lab 2.0.1 software (Bio-Rad Laboratories) (https://www.bi
o-rad.com) was utilized to analyze the generated blots.

Cell Viability
The presence of viable cells was determined by assess-

ing cell proliferation using cell counting kit-8 (CCK-8) (cat.
no. HY-K0301, MedChemExpress, Monmouth Junction,
NJ, USA). Two cell lines, namely HCT116 and LoVo cells,
were seeded in 96-well plates at a density of 1500 cells per
well. To investigate the effect of interference, si-ERFE and
NC were added for different durations (0, 24, 48, and 72
hours). Following the designated time intervals, the super-
natant was discarded, and the mixture was incubated at 37
°C for 4 hours. Subsequently, 100 µL of Dulbecco’s Mod-
ified Eagle’s Medium (DMEM) (cat. no. D5796, Thermo
Fisher Scientific, Inc., Waltham, MA, USA) containing 10
µL of CCK-8 was added to the mixture. The absorbance at
450 nm was then measured.

Scratch Assay
The scratch assay samples were prepared using the fol-

lowing procedure. To achieve an 80% single-cell layer, 5
× 104 cells were seeded per well in a 6-well plate. Af-
ter reaching the desired cell density, a scratch was made
in the single-cell layer using a 100 µL plastic pipette tip.

Subsequently, the well plates were incubated at 37 °C with
5% carbon dioxide and left to incubate. At both 0 and 48
hours, the morphology of the scratch was captured using a
microscope (DP73; Olympus Corporation, Tokyo, Japan)
and photographed.

Transwell Assay
Transwell chambers, purchased from BD Biosciences

(cat. no. 353097, Franklin Lakes, NJ, USA), were placed in
24-well plates. Dilution substrate gel (1:8, cat. no. 356234,
BD Biosciences, Franklin Lakes, NJ, USA) of 60 µL was
added and incubated for a duration of 4–5 hours. Follow-
ing the solidification of the gel in the upper incubator, any
remaining liquid was removed, and 100 µL of serum-free
DMEM was added. The sample was then incubated once
more and hydrated for 20minutes. To prepare a cell suspen-
sion, the cells were digested and resuspended in serum-free
DMEM, and a hemocytometer was used to count the cells.
The upper chamber was inoculated with the aforementioned
1× 104 cells, while the lower chamber was inoculated with
a mixture of 10% Fetal Bovine Serum (FBS) and DMEM,
which were then incubated at a temperature of 37 °C with
5% carbon dioxide. After 24 hours had elapsed, themedium
was aspirated from the plates, and a fixative agent consist-
ing of 4% paraformaldehyde (cat. no. BL539A, Biosharp
Co., Ltd., Hefei, China) was added for a duration of 15 min-
utes. The cells were stained with crystal violet dye (cat.
no. C0121-100 mL, Beyotime Institute of Biotechnology,
Shanghai, China) for 20 minutes, and any remaining solu-
tion was washed away using Phosphate Buffer Saline (PBS)
multiple times. A microscope was utilized to capture im-
ages of the cells.

Statistical Analysis
The analysis of gene differential expression between

two subgroups was conducted using the Wilcoxon rank-
sum test. Categorical data were examined using Fisher’s
test. Moreover, Spearman’s correlation analysis was em-
ployed for conducting correlation analyses. The assessment
of survival was performed through Kaplan-Meier survival
analysis and tested using the log-rank method. All statis-
tical analysis was conducted utilizing R 3.6.3, and statis-
tically significant differences were considered at a p value
less than 0.05 (**, p < 0.01; ***, p < 0.001).

Results

Differential Expression of ERFE between
Pan-Cancer and CRC

The mRNA expression profile of ERFE in para-
cancerous tissues showed a significant decrease in unpaired
samples compared to the CRC tumor group (p < 0.001,
Fig. 1A). Likewise, both normal and paracancerous tissues
exhibited a significant reduction in ERFE mRNA expres-
sion compared to the tumor group (p < 0.001, Fig. 1B).
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Analysis of paired samples indicated a notable decrease in
gene expression in the paracancerous group compared to the
CRC tumor group (p < 0.001, Fig. 1C). Pan-cancer analy-
sis illustrated distinct variations in ERFE mRNA expres-
sion among different tumor types, including Colon adeno-
carcinoma (COAD) and Rectum adenocarcinoma (READ),
as well as adjacent tissues (or GTEx). These findings sug-
gest that ERFE holds promise as a cancer marker (Fig. 1D–
G). Specifically, it can be seen that there are differences
of ERFE mRNA expression in Fig. 1D among BLCA,
BRCA, CESC, CHOL, COAD, ESCA, HNSC, KICH,
KIRC, KIRP, LIHC, LUAD, LUSC, OV, PCPG, READ,
STAD, THCA and UCEC. In Fig. 1E, ERFE mRNA is
differentially expressed in ACC, BLCA, BRCA, CESC,
CHOL, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP,
LAML, LIHC, LUAD, LUSC, OV, PAAD, PCPG, READ,
STAD, TGCT, THCA, UCEC and UCS. In Fig. 1F, ERFE is
differentially expressed in BLCA, BRCA, CHOL, COAD,
ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC,
READ, STAD, THCA and UCEC. ERFE is differen-
tially expressed in BLCA, BRCA, CHOL, COAD, ESCA,
HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, READ,
STAD, THCA and UCEC in G-diagram.

High ERFE Expression Indicates Poor Prognosis of
Patients with CRC

The assessment of the diagnostic significance of
ERFE gene expression in CRC was determined by analyz-
ing ROC curves. The resulting ROC curve Area Under
Curve (AUC) was 0.933, as depicted in Fig. 2A. Through
the examination of datasets GSE4107 and GSE164191, it
was observed that individuals diagnosed with CRC dis-
played significantly higher levels of ERFE mRNA ex-
pression compared to the general population, as shown in
Fig. 2B,C. The patients in these datasets were then cat-
egorized based on the median ERFE expression, result-
ing in the formation of low-expression and high-expression
groups. Furthermore, survival curves were generated us-
ing the Kaplan-Meier method to identify any variations
between these groups using the log-rank test. The find-
ings revealed a strong association between increased lev-
els of ERFE expression and an unfavorable prognosis for
the patients. Moreover, these patients experienced consid-
erably shorter overall survival (OS), disease-specific sur-
vival (DSS), and progression-free interval (PFI), as illus-
trated in Fig. 2D–F. Specifically, patients at stages T3 and
T4 who displayed high ERFE expression had a signifi-
cantly worse prognosis compared to those with low expres-
sion levels. Similarly, these patients also exhibited signif-
icantly shorter OS, DSS, and PFI, as depicted in Fig. 2G–
I. Through the examination of clinical data from 644 pa-
tients (as shown in Supplementary Table 1), a deeper un-
derstanding of the role of ERFE expression in the progres-
sion of CRC was achieved. These patients were catego-
rized into high-expression (n = 322) and low-expression

(n = 322) groups based on their levels of ERFE expres-
sion. The analysis of clinical data using statistical methods
revealed a significant correlation between elevated ERFE
levels and advanced age, diverse treatment outcomes, and
a tendency to be associated with high T-stage. However,
there were no notable differences in other clinical char-
acteristics (Supplementary Table 2). Univariate analy-
sis demonstrated a connection between ERFE expression
and T-stage as well as advanced age (Supplementary Ta-
ble 3). To assess the risk ratios of various variables in
CRC patients, Cox regression models were utilized for both
univariate and multivariate calculations. These analyses
highlighted that the expression profile of ERFE acted as
an independent factor impacting the prognosis of CRC pa-
tients. Moreover, the association betweenERFE expression
level and DSS, OS, and PFI in these patients indicated that
ERFE expression served as a reliable prognostic indicator
for individuals with CRC (Supplementary Tables 4,5,6).
The prognostic capabilities of the ERFE gene were further
validated using the GEO database. KM survival analysis
yielded results showing a significantly lower survival prob-
ability in the high ERFE expression group compared to the
low ERFE expression group in the three validation cohorts.
The ROC curve indicated that the AUC value for 1-year sur-
vival time performance exceeded that for 3-year and 5-year
survival time performance (Supplementary Fig. 2).

Nomogram Constructed Based on ERFE and
Clinicopathological Variables

ERFE and clinicopathological variables were taken
into account when fabricating a nomogram, which can be
used to obtain the total score and estimate the 1-, 3-, and 5-
year survival rate of patients with CRC, making the predic-
tion method more intuitive (Fig. 3A). Furthermore, 1-, 3-,
and 5-year calibration curves illustrated the satisfactory per-
formance of the constructed nomogram, with a C-index of
0.789 (Fig. 3B). Additionally, the 1-, 3-, and 5-years AUCs
were 0.787, 0.858, and 0.733, respectively, indicating a bet-
ter and more accurate prediction ability (Fig. 3C). More-
over, the distribution of ERFE expression, the survival sta-
tus of affected individuals, and the risk scores of the high-
and low-ERFE expression groups are shown in Fig. 3D.

GO and KEGG Analyses of Proteins and Related
Genes Interacting with ERFE

ERFE forms a complex network with a variety of pro-
teins. To identify these proteins, a PPI network of ERFE
proteins was generated using an online web analysis tool.
Additionally, we explored 20 genes that may interact with
ERFE, including TMEM25, GAL, STC1, LRP1, EPHA6,
DUSP13, NPPB, DNAJA4, PKNOX1, C1QL4, CBLN4,
CBLN2, CLCN5, C1QTNF12, C1QTNF4, TGFB1, CBLN3,
WDR60, CBLN1, and ZNF91, which were primarily asso-
ciated with cell junction maintenance, regulation of gluco-
neogenesis, the positive regulation of cell-based response
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Fig. 1. Detection of ERFE expression discrepancies in various cancer types and CRC. (A) Comparative analysis using boxplots
to visualize the distinction in ERFE mRNA expression levels between normal tissues and CRC in TCGA COADREAD dataset. (B)
Comparative analysis using boxplots to visualize the distinction in ERFE mRNA expression levels between normal tissues and CRC
in TCGA-GTEx-COADREAD dataset. (C) Comparative analysis using pairwise boxplots to visualize the distinction in ERFE mRNA
expression levels between normal tissues and CRC in TCGA dataset. (D) Evaluation of ERFE mRNA expression levels in multiple
cancer types based on TCGA database. (E) Evaluation of ERFE mRNA expression levels in multiple cancer types based on XENA-
TCGA-GTEx database. (F) Comparative analysis using pairwise boxplots to visualize the distinction in ERFE mRNA expression levels
among multiple cancer types using the TCGA database. (G) Comparative analysis using pairwise boxplots to visualize the distinction
in ERFE mRNA expression levels among multiple cancer types using the XENA-TCGA database. (ns, p > 0.05; *, p < 0.05; **,
p < 0.01; ***, p < 0.001). ERFE, Erythroferrone; TCGA, the Cancer Genome Atlas; CRC, colorectal cancer; COADREAD, Colon
adenocarcinoma/Rectum adenocarcinoma; GTEx, Genotype-Tissue Expression; TPM, Transcripts Per Million; ns, no significance.
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Fig. 2. ROC analysis and survival analysis of ERFE. (A) The diagnostic value of the ERFE gene level was assessed using the TCGA
data set. (B) The relative mRNA expression level of the ERFE gene was analyzed in the GSE4107 data set. (C) The relative mRNA
expression level of the ERFE gene was further analyzed in the GSE4107 data set. (D) Kaplan-Meier curves were used to demonstrate
the overall survival of CRC patients based on their ERFE expression. (E) Kaplan-Meier curves were used to show the disease-specific
survival of CRC patients based on their ERFE expression. (F) Kaplan-Meier curves were used to demonstrate the progression-free
interval of CRC patients based on their ERFE expression. (G) Kaplan-Meier curves were used to assess the overall survival of CRC
patients in T3&T4 stage, stratified by ERFE expression. (H) Kaplan-Meier curves were used to analyze the disease-specific survival of
CRC patients in T3&T4 stage, stratified by ERFE expression. (I) Kaplan-Meier curves were used to assess the progression-free interval
of CRC patients in T3&T4 stage, stratified by ERFE expression. (**, p< 0.01; ***, p< 0.001). GSE, Gene Expression Omnibus Series;
ROC, Receiver Operating Characteristic; FPR, False Positive Rate; AUC, Area Under Curve; HR, Hazard ratio; CI, Confidence interval;
TPR, True positive rate.
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Fig. 3. Evaluation of prognostic value of ERFE in CRC patients. (A) Nomogram construction based on ERFE and clinicopathologic
variable. (B) Calibration curves of 1-, 3-, and 5-year. (C) ROC curves and its AUCs for 1-, 3-, and 5-year survival of ERFE. (D) From top
to bottom: the risk scores, the distribution of patients’ living conditions and the expression heat map ofERFE in the ERFE low-expression
group and the ERFE high-expression group. AUC, Area Under Curve; TPR, True positive rate.
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to insulin stimulus, and the negative regulation of synap-
tic transmission, carbohydrate metabolic process, cell mi-
gration, and excretion (Fig. 4A). The potential biological
functions of ERFEwere studied through the KEGG andGO
pathway analysis. GO terms included MF, BP, and CC.
The GO enrichment analysis results suggested that ERFE
was primarily enriched in chemokine activity, in the struc-
tural constituent of the extracellular matrix, which confers
tensile strength, cytokine activity, receptor-ligand activ-
ity, tertiary granule membrane, collagen-containing extra-
cellular matrix, secretory granule membrane, positive reg-
ulation of secretion, neutrophil-mediated immunity, pos-
itive regulation of cytokine production, and extracellular
matrix organization (Fig. 4B). The enrichment analysis of
KEGG suggested that ERFE was primarily enriched in sig-
naling pathways such as Mitogen-activated protein kinase
(MAPK), nuclear factor (NF)-Kappa B, Toll-like receptor,
Tumor necrotic factor (TNF), and Nucleotide oligomeriza-
tion domain like receptor (NLR) signaling pathway. ERFE
is also enriched in transcriptional misregulation in cancer,
hematopoietic cell lineage, proteoglycans in cancer, leuko-
cyte transendothelial migration, and Cytokine-cytokine re-
ceptor interaction (Fig. 4C).

Correlation of ERFE with Immune Characteristics of
Patients with CRC

The immune scores and degree of immune cell infil-
tration in the TME of CRC were determined using the ss-
GSEA algorithm. The expression profile of the ERFE gene
and the immune cell infiltration was shown to be some-
what correlated. Positive correlation of ERFE with helper
T cell 1 (Th1) cells, macrophages, neutrophils, Follicular
helper T cell (Tfh), Dendritic cell (DC), aDC, cytotoxic
cells, iDC, Tem, Natural Killer (NK) cells, T cells, Reg-
ulatory cells (Treg), Mast cells, Th2 cells, Tgd, pDC, cy-
totoxic T cell (CD8+ T cells), B cells, Tfh, NK, CD56dim
cells, T helper cells, and Eosinophils, were found but were
positively linked to Tcm and Th17 cells (Fig. 5A). The ap-
plication of the Estimation of STromal and Immune cells
in MAlignant Tumor tissues using Expression data (ESTI-
MATE) algorithm elucidated that the immune score, inter-
stitial score, and ESTIMATE score experienced notable en-
hancement in the high-ERFE expression group compared to
the low-ERFE expression group (as illustrated in Fig. 5B–
D). Furthermore, the enrichment scores showcasing im-
mune cell infiltration exhibited significant variations be-
tween the high and low expression groups, with the high
expression group displaying higher values for a diverse ar-
ray of cells such as aDC, CD8+ T cells, cytotoxic cells,
DCs, iDCs, macrophages, Mast cells, neutrophils, NK cells,
pDCs, T helper cells, Tem, Tfh, Tgd, Th1 cells, Th2 cells,
and Treg (as portrayed in Fig. 5E).

Susceptibility to Immunotherapy
Bioinformatics tools were utilized to analyze the

TCGApatient data in order to determine the expression pro-
file of vital immune checkpoints. Furthermore, an explo-
ration was conducted to establish the connection between
the expression of the ERFE gene and the aforementioned
immune checkpoints. The findings indicated a notable
rise in the mRNA expression of specific immune check-
points among all patients exhibiting high ERFE expres-
sion, include CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCDILG2, TIGIT and SIGLEC15 (Fig. 6A). The signif-
icant link between the ERFE gene and the expression of
multiple immune cell gene markers was demonstrated by a
heat map (Fig. 6B). A histogram was employed to visual-
ize the correlation analysis results of ERFE gene expression
with MSI, TMB, and NEO. This allowed for the examina-
tion of the relationship between these factors. As shown
in (Fig. 6C–E), MSI, NEO, and TMB were significantly
higher when patients had high expression of ERFE (p <

0.001). In addition, IC50 values were calculated to analyze
the susceptibility of patients to molecular targeting drugs.
The data obtained suggested that patients with increased
ERFE expression had a significantly lower IC50 value for
5-FU (Fig. 6F). Based on the heat map analysis, it is evi-
dent that the ERFE gene and three ICB-related genes dis-
play similar expression patterns. Their expression levels are
low in the pre-treatment group, but significantly increase in
the ICB+ radiation group (Supplementary Fig. 3A). The
scatter plots represent the expression levels of these genes
in the before-treatment, ICB-treatment, and ICB+ radiation
groups, with the horizontal and vertical axes indicating the
expression levels of ERFE genes and ICB-related genes, re-
spectively. According to the correlation coefficient and sig-
nificance test p value, there is no significant correlation be-
tween ERFE gene and ICB-related genes before treatment,
but with the implementation of immunotherapy, ERFE gene
expression in ICB+ radiation group has a significant posi-
tive correlation with CD274 and PDCD1 (Supplementary
Fig. 3B).

Vitro Assays
The expression of ERFE in the chosen CRC cell lines

(HCT116 and LOVO) was examined using qRT-PCR and
WB methods. According to the qRT-PCR results, the RNA
level of ERFE in CRC cells (HCT116 and LOVO) was
significantly higher compared to FHC cells (p < 0.05,
Fig. 7A). Subsequently, WB analysis was conducted to de-
termine the protein level expression of ERFE, and the re-
sults showed a significant increase in ERFE expression in
CRC cell lines compared to FHC cells at the protein level
(Fig. 7B). By analyzing the protein images, it can be visu-
ally observed that the protein level of ERFE in Lovo and
HCT116 cells is considerably higher than that in normal
colon epithelial cells (p < 0.01, Fig. 7C). WB analysis also
revealed a decrease in ERFE expression in CRC cell lines

https://www.biolifesas.org/
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Fig. 4. GO and KEGG analysis of ERFE gene. (A) Using GeneMANIA database to build Protein-Protein Interaction (PPI) network of
ERFE. (B) Histogram (BP, MF and CC) of GO function enrichment analysis of ERFE-related genes. (C) Histogram of the first 10 KEGG
pathways of ERFE-related genes. BP, biological processes; MF, molecular functions; CC, cellular components; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes.

after transfection with siRNA (Fig. 7D). Furthermore, the
protein images before and after knocking down the ERFE
gene were quantified. It is evident that in HCT116 cells,
knocking down ERFE led to a significant reduction in pro-
tein level expression (p < 0.01). Similarly, in Lovo cells,
knocking down ERFE resulted in a significant decrease in
protein expression (p < 0.05) (Fig. 7E). The CCK-8 assay
demonstrated a weaker proliferative ability in CRC cells
transfected with si-ERFE compared to control cells (p <

0.05, Fig. 7F,G), while the transwell assay indicated a sig-

nificantly reduced invasive capacity of CRC cells in the si-
ERFE group compared to the control group (Fig. 7H). The
scratch assay revealed a substantial attenuation in the mi-
gratory ability of CRC cells transfected with si-ERFE com-
pared to control cells 48 hours after scratching (Fig. 7I).

Discussion

A bioinformatics approach was utilized to conduct a
comprehensive pan-cancer transcriptional analysis in this

https://www.biolifesas.org/
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Fig. 5. The correlation between the expression level of ERFE and the infiltration level of immune cells in CRC. (A) Examining
the relationship between the expression level of ERFE and the presence of tumor infiltrating lymphocytes. (B) Assessing the estimated
scores in high and low expression groups of ERFE for comparison. (C) Comparing the stromal scores in high and low expression groups
of ERFE. (D) Analyzing the immune scores in high and low expression groups of ERFE for comparison. (E) Evaluating the enrichment
scores of 24 different immune cell types in high and low expression groups of ERFE. (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p <
0.001).
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Fig. 6. Sensitivity analysis of immunotherapy. (A) Comparison of the expression levels at immune checkpoints between the high and
low ERFE expression groups. (B) Correlation analysis between ERFE and immuno-infiltrating cell-related gene markers. (C) Compari-
son of microsatellite instability (MSI) fractional expression in the ERFE high-low expression group. (D) Comparison of neoantign (NEO)
fractional expression in high and low ERFE expression groups. (E) Comparison of Tumor Mutation Burden (TMB) fractional expression
in high and low ERFE expression groups. (F) Comparison of half-maximum inhibitory concentration (IC50) values of 5-Fluorouracil
(5-FU) between the high and low ERFE expression groups. (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).

study. ERFE exhibits diverse functions across various
types of cancer and is notably upregulated in multiple tu-
mor types, including thyroid, breast, pancreatic, and CRC.

Through analyzing data from TCGA and GEO databases,
a significantly higher expression of ERFE was observed
in CRC tissues compared to healthy tissues. Detecting

https://www.biolifesas.org/
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Fig. 7. Presents the results of cellular assays and immunohistochemical staining. (A) The mRNA expression of ERFE was assessed
using Quantitative real time polymerase chain reaction (qRT-PCR). (B) The protein expression of ERFE was evaluated by performing
western blot (WB). (C) The relative protein expression of ERFE was determined. (D) Upon transfection with siRNA-ERFE (si-ERFE), a
significant decrease in the expression of ERFE protein was observed. (E) The relative protein expression of ERFE was measured before
and after transfection. (F,G) Transfection of si-ERFE resulted in a considerable reduction in the proliferation ability of HCT116 and
LoVo cells. (H) The invasive ability of HCT116 and LoVo cells was significantly reduced after being transfected with si-ERFE. (scale
bar represents 50 µm). (I) Transfection of si-ERFE significantly weakened the migration ability of HCT116 and LoVo cells (Note: The
original magnification is ×4, and the black scale bar represents 100 µm). (*, p < 0.05; **, p < 0.01). NC, Normal control; OD, Optical
Density.
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CRC early through accurate diagnosis and appropriate treat-
ment can enhance the prognosis for individuals diagnosed
with this condition. Non-localized, minimally invasive,
safe, and rapid assays for tumor marker detection offer sev-
eral advantages, including precise diagnosis, effective treat-
ment, and improved prognosis prediction for CRC. While
numerous existing molecules currently contribute to guid-
ing CRC treatment and improving prognosis, complete cure
remains challenging for most patients with advanced-stage
CRC. Thus, the identification of new biomarkers holds im-
mense clinical significance by facilitating the screening of
new drugs and personalized therapy. This study was con-
ducted to investigate the diagnostic value of ERFE in CRC.
The data from the ROC curve yielded an AUC value of
0.933, indicating the potential of ERFE as a biomarker for
CRC diagnosis. In order to evaluate the association be-
tween ERFE and patient prognosis, we conducted analy-
ses on OS, DSS, and PFI, considering the notable expres-
sion of ERFE in CRC. The unfavorable prognosis of pa-
tients with an upregulated ERFE gene indicates a correla-
tion between increased gene expression and poorer prog-
nosis. A subgroup analysis was conducted, which revealed
that high ERFE expression predicted an adverse prognosis
specifically for mid- to late-stage patients (stages T3 and
T4). To identify the factors that endanger the prognosis
of CRC patients, univariate and multivariate Cox analyses
were performed. As demonstrated in Supplementary Ta-
bles 4,5,6, there was a strong correlation between ERFE
expression levels and OS, DSS, and PFI. This compelling
evidence suggests that ERFE can independently serve as a
predictor and risk factor for CRC. Nevertheless, it should
be noted that there was no significant correlation found
between ERFE expression and the clinical and pathologi-
cal features of CRC, potentially due to various underlying
causes influencing features such as clinical stage and patho-
logical grade.

Despite the fact that the role of ERFE in promoting
tumors in CRC is well established, the specific mechanism
through which ERFE influences CRC progression remains
uncertain. In order to shed light on the potential involve-
ment of ERFE in CRC, an investigation was conducted us-
ing TCGA data to analyze the co-expression of genes re-
lated to ERFE, employing both GO and KEGG methodolo-
gies. The results of the KEGG analysis indicated that these
ERFE-associated genes are mainly involved in signaling
pathways related to the progression of cancer and inflam-
mation. Additionally, GO enrichment analysis revealed
that these genes primarily regulate the immune microenvi-
ronment by influencing cytokines, components of the ex-
tracellular matrix, and immunity mediated by neutrophils.
Furthermore, molecular functional analysis demonstrated
that these genes primarily modulate cytokines, receptor-
ligand activity, and components of the extracellular ma-
trix, with the ability to interact with various structures, in-
cluding chemokines. The chemokine signaling system par-

ticipates significantly in either suppressing or promoting
growth, as well as tumor proliferation, angiogenesis, and
metastasis [12]. Moreover, the analysis of cellular compo-
sition revealed that these genes are highly concentrated in
diverse membranes, such as secretory granule membranes,
tertiary granule membranes, and components of the extra-
cellular matrix. It was postulated that ERFE might play
a role in the development and progression of CRC by be-
ing expressed on membranes and contributing to dysreg-
ulated transcription, hematopoietic processes, altered ex-
tracellular matrix components, inflammatory response, and
immune response in cancer. The existing literature solely
focuses on ERFE and CRC, presenting a model that inde-
pendently predicts the prognosis of patients with right-sided
colon cancer by considering four genes: Erythroblastosis
virus E26 oncogene homolog (ERG), ERFE, Growth fac-
tor independent 1 RASL10B: Ras-like protein family mem-
ber 10B (GFI1), and RASL10B. The data obtained from the
analysis of functional enrichment suggest a connection be-
tween right-sided colon cancer and antigen presentation and
processing pathways, natural killer cell-mediated cytotox-
icity, immunoglobulin production within the intestinal im-
mune network, and type I diabetes [13]. Additionally, spec-
ulations regarding its potential functions in CRC align well
with the findings of the current study.

The formation of a complete functional unit involves
the tumor cell and the tumor microenvironment (TME),
where the cell acts as the seed and the microenvironment
acts as the soil [14]. The TME encompasses the sur-
rounding blood vessels, various cells including immune
cells, fibroblasts, and bone marrow-derived inflammatory
cells, as well as signaling molecules and the extracellu-
lar matrix. The interaction and co-evolution between tu-
mor cells and the microenvironment play a crucial role in
promoting tumorigenesis. A particular focus is given to
tumor-infiltrating immune cells, which serve as markers
for studying the response of cancer cells to immunother-
apy. This study investigates the correlation between the
expression of ERFE and the infiltration status of immune
cells in CRC. Yoshihara et al. [15] developed the Estima-
tion algorithm, capable of analyzing gene expression data
to estimate the levels of immune cell infiltration and stro-
mal cell presence. Their findings demonstrate a positive
correlation between increased ERFE expression levels and
higher interstitial, immune, and assessment scores. Addi-
tionally, the correlation between genetic markers of vari-
ous immune cells and the expression of ERFE indicates a
significant role of ERFE in the regulation of the tumor mi-
croenvironment (TME). However, the certainty of utilizing
immune-related treatments for individuals with colorectal
cancer (CRC) and high ERFE expression remains uncer-
tain. Therefore, further exploration was conducted to de-
termine whether ERFE is associated with immune check-
points, such as PD-L1, which plays a critical role in pre-
dicting the efficacy of immunotherapy in CRC. Genes as-
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sociated with immune checkpoints include CD274 (PD-
L1), CTLA-4, HAVCR2 (TIM3), LAG-3, PDCD1 (PD-1),
PDCD1LG2 (PD-L2), TIGIT, and SIGLEC15. Interest-
ingly, patients with increased ERFE expression exhibited
significant upregulation of almost all these genes, suggest-
ing that ERFE is involved in the immune checkpoint path-
way and may serve as a potential biomarker for CRC im-
munotherapy. Mismatch repair is a mechanism that ac-
curately detects and corrects errors in DNA replication or
recombination, specifically base mismatches. Microsatel-
lite instability (MSI) refers to changes in the length of mi-
crosatellite sequences during DNA replication, which can
result from insertion or deletion mutations due to faulty
mismatch repair. This condition can serve as a prognos-
tic factor for patients with CRC, predicting their outcomes
[16]. Consequently, the assessment of MSI can effec-
tively determine the efficacy of anti-Programmed death 1
(PD1) immunotherapy in the treatment of CRC [17]. Im-
mune checkpoint inhibitors (ICIs) have shown significant
improvements in patients with advanced CRC who have
high levels of MSI. Besides ICIs, NEO, a class of antigens
specific to tumors, exhibits tumor specificity, making it an
excellent target for anti-tumor immunotherapy. NEO has
been extensively utilized in both basic and clinical stud-
ies on immunotherapy for CRC treatment [18]. The TMB
score, a crucial biomarker in various cancers, is frequently
employed to predict the effectiveness of immunotherapy
and identify individuals who are more likely to benefit from
it. The TMB score aids in identifying patients with worse
prognoses in the high-ERFE expression group, particularly
those who stand to gain the most from immunotherapy [19].
In this study, MSI, TMB, and NEOwere found to be signifi-
cantly higher in the high-ERFE expression group compared
to the low-ERFE expression group. Therefore, ERFE may
hold potential as an immunotherapeutic target for CRC.

Clinical diagnosis and treatment can benefit greatly
from the utilization of bioinformatics. Although this study
has yielded numerous valuable findings, there are still gaps
that require filling. This study aimed to investigate the spe-
cific role of ERFE in CRC. By manipulating the expres-
sion of ERFE in CRC cell lines, it was observed that a sig-
nificant reduction in ERFE expression effectively impeded
the migratory, invading, and proliferative capabilities of
CRC cells. These findings constitute the initial evidence of
ERFE acting as a pro-oncogene in CRC. However, further
research is necessary to elucidate the specific mechanism of
action. In summary, this research stands as the pioneer in
identifying and validating the distinct expression of ERFE
and its clinical significance in CRC. The discoveries made
in this study have immense diagnostic and predictive value
in terms of response to immunotherapy and molecular tar-
geting therapy in CRC. Overall, our findings shed light on
the involvement of ERFE in CRC initiation and progres-
sion, serving as a guide for future personalized and precise
treatments.

Conclusions

In summary, ERFE, functioning as a pro-oncogene in
CRC, is linked to the initiation and advancement of cancer,
and can serve as a standalone marker for unfavorable prog-
nosis among CRC patients.
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