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Background: Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD) globally, characterized by
increased albuminuria and reduced glomerular filtration rate. Recent evidence points to inflammation as a vital contributor to
the development and progression of DKD, involving interactions among immune cells, cytokines, and chemokines. Our study
focused on uncovering inflammation-related genes in DKD to understand its mechanisms and developed an inflammation-centric
predictive model. We aimed to bridge molecular insights with immune interactions, paving the way for innovative treatments.
Methods: This study involves comprehensive data collection from gene expression omnibus (GEO) datasets (GSE1009 and
GSE30528) to identify differentially expressed genes (DEGs) between patients with DKD and healthy controls (HC). Using the
ComBat method for batch effect removal, R package Limma for DEGs identification, and Metascape for enrichment analysis,
we focused on the interplay between inflammation-associated genes and immune cell infiltration. We developed a predictive
model for DKD using the least absolute shrinkage and selection operator (LASSO) regression, centered on six potential candi-
date genes: chitinase-3-like protein 1 (CHI3LI), coagulation factor V (F5), decay-accelerating factor (CD55), insulin-like growth
factor 1 (IGF1I), vascular endothelial growth factor A (VEGFA), and 15-hydroxyprostaglandin dehydrogenase (HPGD), within a
training cohort. This model was subsequently validated in a test cohort utilizing data extracted from the GEO dataset GSE96804.
Immune cell infiltration was determined using CIBERSORT, followed by Pearson correlation analysis to elucidate the interac-
tions between hub genes, immune cells, and chemokines.

Results: We identified 349 DEGs, including 99 upregulated and 250 downregulated genes, highlighting the significant role of
inflammation in DKD. Through weighted gene co-expression network analysis (WGCNA), a module consisting of 784 genes
strongly associated with DKD was identified. Within this module, six inflammatory-related genes were identified as crucial for the
predictive model, achieving an area under the receiver operating characteristic curve (AUC) of 1 in training and 0.76 in validation.
Analysis of immune cells revealed significant differences between DKD patients and controls, while Pearson correlation analysis
highlighted key associations with immune infiltration and regulation.

Conclusions: Our study provides novel insights into the genetic and inflammatory landscape of DKD, establishing a predictive
model with high accuracy compared to existing models. We pinpoint significant correlations between hub genes and immune cell
dynamics, potentially opening avenues for new therapeutic strategies. Our findings underscore the promise of precision medicine
in diagnosing and treating DKD.
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Introduction

Diabetic kidney disease (DKD) is the primary cause
of end-stage renal disease (ESRD) worldwide and a signif-
icant microvascular complication of diabetes mellitus, with
multifactorial mechanisms [1]. Recent studies have high-
lighted inflammation as a pivotal factor in the onset and
progression of DKD [2—4]. Growing evidence suggests that
DKD-related inflammation is complex and multifaceted,
involving a web of interactions among immune cells, cy-
tokines, chemokines, and both the innate and adaptive im-
mune systems [2,4-6]. The persistent, mild inflamma-
tion common in diabetes accelerates endothelial dysfunc-
tion, significantly contributing to the pathology of DKD
[2]. Elevated levels of complement factors, such as com-
plement component 3 (C3) and complement component 5
(C5), along with their activated forms C3a and C5a, have
been observed in plasma, urine, and kidney tissues of di-
abetic patients [2,5]. These factors are associated with an
increased risk of developing DKD and poorer kidney out-
comes in individuals affected by the disease [2,5,7-9]. Tar-
geting the receptors for C3a and C5a has demonstrated a
reduction in inflammation-related gene activity, a decrease
in albuminuria, and an improvement in kidney fibrosis, both
in vivo and in vitro [10,11].

Immune cell infiltration by monocytes, macrophages,
neutrophils, natural killer (NK) cells, and dendritic cells
significantly contributes to the progression of DKD [12—
14]. Strategies that reduce or block signaling molecules
that attract macrophages have been particularly effective in
kidney protection [15]. Furthermore, high levels of pro-
inflammatory cytokines such as Tumor Necrosis Factor-a
(TNF-«), interleukin-13 (IL-13), and interleukin-6 (IL-6)
in the kidneys of DKD patients are closely linked to more
severe albuminuria and kidney damage [16].

Based on these findings, inflammation seems to be
prevalent and potentially crucial in the progression of DKD.
Our research focuses on identifying genes that undergo
changes contributing to DKD-associated inflammation and
constructing a predictive model for these genes. Addition-
ally, we investigated the interaction between these altered
genes and infiltrating immune cells, along with their poten-
tial underlying mechanisms.

Materials and Methods

Data Collection, Processing, Differentially
Expressed Genes (DEGs) Screening, and Enrichment
Analysis

Early intervention is essential in DKD to prevent and
slow down the progression of the disease. To elucidate
the inflammatory characteristics in glomerular tissue during
early-stage DKD, we analyzed three datasets: GSE1009,
GSE30528, and GSE96804. These datasets contain gene
expression profiles of glomeruli from patients with DKD
and are publicly available in the gene expression omnibus
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(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The
original clinical trials included patients with type 2 diabetes
mellitus (T2DM) classified as stages 1 to 3 DKD, repre-
senting early disease phases with varying degrees of kid-
ney damage ranging from minor to mild. Detailed dataset
information is provided in Table 1 (Ref. [17-19]).

We integrated the data from GSE1009 and GSE30528,
employing the ComBat algorithm to address batch effects.
DEGs between DKD patients and healthy controls (HC)
were identified using the Limma package in R, based on
criteria of an adjusted p-value (adj. p) below 0.05 and an ab-
solute log?2 fold change (|log2 FC|) exceeding 1. Heatmaps
generated with the Pheatmap package in R facilitated the vi-
sualization of these DEGs, while enrichment analysis was
conducted using the Metascape database (https://metascap
e.org). Probes corresponding to the same gene with missing
values were excluded, and expression levels were averaged
to ensure accuracy. This rigorous methodology enables a
deeper understanding of the molecular mechanisms under-
lying early DKD, highlighting the importance of prompt
therapeutic interventions.

Weighted Gene Co-Expression Network Analysis
(WGCNA)

The WGCNA package was used to build co-
expression networks for genes in the dataset, facilitating
further analysis with a soft-thresholding power of 9. This
approach converts the weighted adjacency matrix into a
topological overlap matrix (TOM), which estimates net-
work connectivity. Subsequently, hierarchical clustering
was applied to TOM to create a dendrogram, where dif-
ferent branches represent distinct gene modules, and dif-
ferent colors indicate distinct modules. Genes were clas-
sified based on their weighted correlation coefficients and
expression patterns. Genes exhibiting similar patterns were
grouped into a single module, effectively organizing thou-
sands of genes into multiple modules according to their
gene expression patterns.

Model Construction

Datasets GSE1009 and GSE30528 were combined to
create the training cohort, with dataset GSE96804 serving
as the test cohort. By intersecting 28 inflammatory genes
with 784 genes associated with DKD as determined by
WGCNA, we identified 12 candidate genes. These genes
were used to build a predictive model for DKD through least
absolute shrinkage and selection operator (LASSO) regres-
sion, which highlighted six key genes as significant indi-
cators of DKD. Patient risk scores were calculated by com-
bining gene expression values with their respective LASSO
regression coefficients. Based on the median risk score,
patients were divided into low or high-risk groups. The
model’s predictive performance was assessed by analyzing
the area under the receiver operating characteristic curve
(AUC).
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Table 1. The information of GEO datasets in this study.

Tissue HC DKD Isolation of Experiment type ~ Attribute  Reference
glomeruli

GSE1009-GPL8300 Glomeruli Cadaveric donor kidneys (n = 3) Stage 1-stage 3 (patients with T2DM) Dissected by by array Test [17]
(Homo sapiens) (n=3) Sieving techniques

GSE30528-GPL571 Glomeruli Living allograft donors, surgical Stage 3-stage 4 (not specified the type Microdissection by array Test [18]
(Homo sapiens)  nephrectomies, and leftover portions  of diabetes) (n =9)

of diagnostic kidney biopsies (n = 13)

GSE96804-GPL17586 Glomeruli Surgical nephrectomies (n = 20) Stage 1-stage 3 (patients with T2DM) Microdissection by array Validation [19]

(Homo sapiens) (n=41)

GEO, gene expression omnibus; HC, healthy controls; DKD, diabetic kidney disease; T2DM, type 2 diabetes mellitus.
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Immune Cell Infiltration and Correlation Analysis

CIBERSORT (https://cibersortx.stanford.edu/index.
php), a method employing support vector regression, was
used to deconvolve the expression matrix into 22 different
immune cell phenotypes. This algorithm estimated the
composition of immune cells in patient samples. Spearman
correlation analysis was conducted to investigate the
relationship between gene expression and immune cell
prevalence.

Pearson’s correlation analysis was used to examine the
relationship between immune cells, hub genes, as well as
between hub genes and chemokines along with their recep-
tors.

Single-Gene Gene Set Enrichment Analysis (GSEA)

We ranked genes from the DKD samples across the
combined datasets based on their relative expression lev-
els of chitinase-3-like protein 1 (CHI3L1), coagulation fac-
tor V (F5), decay-accelerating factor (CDJSJ5), insulin-like
growth factor 1 (/GF1), vascular endothelial growth fac-
tor A (VEGFA), and 15-hydroxyprostaglandin dehydroge-
nase (HPGD), categorizing them into either the top 10th
percentile (indicative of high gene expression) or the bot-
tom 10th percentile (indicative of low gene expression)
for GSEA. Subsequently, we compared the differential en-
richment of the kyoto encyclopedia of genes and genomes
(KEGG) signaling pathways between the high and low-
expression groups. The analysis involved 1000 permuta-
tions, with phenotypes determining the permutation type.

Regulatory Network Analysis and Inverse Prediction
of microRNAs (miRNAs) for Hub Genes

We employed the RcisTarget package for predicting
transcription factor (TF) regulation through motif enrich-
ment analysis. The significance of each motif’s overrep-
resentation in a gene set was assessed by calculating the
AUC of the recovery curve in comparison to motif ranking.
The normalized enrichment score (NES) for each motif was
derived from the AUC for all motifs within a set. Gene-
motif rankings were obtained from the DRIMust database
(https://drimust.technion.ac.il). To predict upstream miR-
NAs for hub genes, we employed the miRcode database
(http://www.mircode.org). Visualization of the miRNA-
mRNA regulatory network was accomplished using Cy-
toscape (version 3.7.2: https://github.com/cytoscape/cytos
cape/releases/3.7.2/).

Statistical Analysis

In this analysis, the R language (version 4.0: https:
//cran.r-project.org/src/base/R-4/) was used, with statistical
significance set at p < 0.05.
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Results

Identifying Inflammatory DEGs in Glomeruli
between Patients with DKD and HC

Fig. 1 outlines the study workflow, while Table 1 pro-
vides details on the datasets employed. We acquired the
expression profile datasets for DKD, specifically GSE1009
and GSE30528, from the GEO database, comprising 16
healthy individuals and 12 patients with DKD. The data
were integrated, and batch effects were corrected using the
ComBat algorithm. Principal component analysis (PCA)
revealed a significant reduction in batch effects after Com-
Bat adjustment, as depicted in Supplementary Fig. 1A,B.
Using the limma package with criteria of p < 0.05 and
[log2FC| >1 for screening, we identified 349 DEGs in con-
trast to healthy controls and DKD patients. The volcano
plot and heatmap of DEGs revealed that 99 genes were
upregulated, whereas 250 were downregulated in patients
with DKD compared to controls (Fig. 2A, Supplementary
Fig. 1C). Subsequent analysis of these DEGs using gene
ontology (GO) and KEGG highlighted key biological pro-
cesses and signaling pathways. Enriched GO terms in-
cluded ‘regulation of cell-cell adhesion’ and ‘positive reg-
ulation of leukocyte activation’, with signaling pathways
such as ‘cytokine-cytokine receptor interaction’ and ‘com-
plement and coagulation cascades’. These results indicate
a significant role of inflammation in the progression of
DKD (Fig. 2B,C). The involvement of inflammation in dia-
betic DKD has increasingly gained attention in recent years
[2,5,6].

Hyperglycemia, the presence of advanced glycation
end products (AGEs), and the activation of the Renin-
Angiotensin-Aldosterone System (RAAS) contribute to
damage in renal cells, leading to chronic kidney inflamma-
tion [20]. To further explore the influence of inflamma-
tion on DKD, we retrieved a list of 11,449 inflammation-
associated genes from GeneCards, which we refined to 528
based on a relevance score cutoff exceeding 5. A Venn di-
agram showed that 28 of these genes overlapped with pre-
viously identified DEGs (Fig. 2D).

A Predictive Model for DKD was Robustly
Constructed Using Key Inflammatory Genes

The WGCNA algorithm was employed to determine
DKD-related genes by integrating expression data from the
GSE1009 and GSE3052 datasets. Utilizing the WGCNA
package in R software, a scale-free co-expression network
was generated from a tom matrix with a threshold of g =
9, achieving a scale-free R? of 0.9 (Fig. 3A,B). The DKD
expression profile revealed 13 distinct gene modules, each
represented by a different color (Fig. 3C). Through Pear-
son’s correlation analysis applied to genes within each mod-
ule across different groups, the turquoise module (compris-
ing 784 genes) emerged with the strongest correlation coef-
ficient of —0.93, p =4 x 10~13 with DKD (Fig. 3D).
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Fig. 1. Workflow of the current study. This figure presents the integrative process used to identify inflammatory gene signatures linked
to diabetic kidney disease (DKD) progression. Initially, data from the gene expression omnibus (GEO) datasets GSE1009 and GSE30538
were combined and subsequently cleaned to eliminate batch effects. The Limma package was utilized to identify differentially expressed
genes (DEGs) by comparing DKD patients with healthy controls. By intersecting these DEGs with a predefined list of inflammatory
genes, a subset specifically related to inflammatory responses was identified. Through weighted gene co-expression network analysis
(WGCNA), genes implicated in DKD progression were determined and further refined by their overlap with inflammatory DEGs. A
predictive model was developed using the least absolute shrinkage and selection operator regression on a selection of 12 candidate
genes, ultimately isolating six key genes as central hubs of inflammation in DKD within a training cohort, validated by an area under
the receiver operating characteristic curve (AUC) of 1. In the test cohort, the model’s validity was confirmed with an AUC of 0.76.
CIBERSORT was employed for immune cell infiltration profiling, and Pearson’s correlation analysis was conducted to elucidate the
complex interplay among hub genes, immune cell dynamics, and chemokine signaling. Additionally, single-gene gene set enrichment
analysis offered insights into the active signaling pathways associated with each hub gene. Finally, a detailed examination was performed
on transcription factors and microRNAs that might regulate the activity of these central hub genes.

Twelve candidate genes (CHI3LI, lipoprotein lipase
(LPL), F5, VEGFA, phospholipase C gamma 2 (PLCG2),
IGF1, tachykinin precursor 1 (TACI), serine peptidase in-
hibitor kazal type 1 (SPINKI), HPGD, coagulation fac-
tor III (F3), CD55, and interleukin-33 (/L-33)) were iden-
tified by analyzing 784 turquoise module genes with 28
inflammation-related DEGs for further analysis (Fig. 4A).
The datasets GSE1009 and GSE30528 were used as training
sets, with GSE96804 serving as the validation set. LASSO
regression analysis was applied to the 12 inflammation-
related DEGs to identify key genes for constructing the
DKD predictive model. Through iterative analysis using a
10-fold cross-validation method, an optimal model with the
minimum number of variables was obtained at A = 0.063
(log A = -3.62) (Fig. 4B). The regression coefficient was
then calculated (Fig. 4C) to aid in predicting DKD.

Six genes (HPGD, IGF1, CD55, VEGFA, F5, and
CHI3L1) were identified as hub genes for predicting DKD
(Fig. 4D). After training and model optimization, the
model demonstrated a strong diagnostic accuracy for DKD,
achieving an AUC of 1 in the training dataset (Fig. 4E). In
the validation dataset GSE96804, the AUC for DKD was
0.76 (Fig. 4F).

Hub Genes Correlate with Immune Cell Infiltration
in DKD

The immune microenvironment is a complex assem-
bly primarily consisting of immune-related fibroblasts, im-
mune cells, the extracellular matrix, a variety of growth and
inflammatory factors, unique physical and chemical charac-
teristics, and diseased cells [21,22]. This immune microen-
vironment significantly affects the diagnosis, survival rates,
and therapeutic responses of numerous prevalent diseases
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Fig. 2. Identification of inflammatory differentially expressed genes (DEGs) in diabetic kidney disease (DKD). (A) The volcano
plot displays the differential expression between patients with DKD and healthy controls, highlighting 349 DEGs with 99 upregulated
and 250 downregulated genes. (B,C) The bar plots provide a summary of the DEGs enrichment analysis illustrated through gene ontology
terms (B) and kyoto encyclopedia of genes and genomes pathways (C). (D) The Venn diagram identifies a subset of 28 genes common to
both the identified DEGs and the inflammation-related genes, which were selected from GeneCards with a relevance score exceeding 5.
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Fig. 3. Identification of genes associated with diabetic kidney disease (DKD) through weighted gene co-expression network anal-
ysis. (A,B) Determination of network threshold parameters. The plot of the scale-free fit index against the soft-thresholding power
demonstrated the selection of the power threshold that achieves a scale-free network (A). Additionally, the graph of average node con-
nectivity against soft-thresholding power aids in determining network stability (B). (C) Gene clustering and module identification. The

dendrogram represents gene clustering based on the topological overlap, with gene modules displayed in different colors alongside the

tree. (D) Analysis of module-trait relationship. Each row represents the eigengene of a module, while each column corresponds to a phe-

notype trait. The cells indicate the correlation and significance between module eigengenes and clinical traits, with colors indicating the

strength and direction of the correlation. This section of the figure also shows the distribution of mean gene significance and error within
modules linked to DKD. The turquoise module (784 genes) exhibited the highest correlation coefficient of —0.93 with DKD (marked by

the red box).
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Fig. 4. Construction of a predictive model with inflammatory differentially expressed genes (DEGs) for diabetic kidney disease
(DKD). (A) The Venn diagram shows the identification of 12 candidate genes by intersecting 28 inflammatory DEGs with 784 turquoise
module genes. (B,C) Screening of distinctive genes and construction of the DKD predictive model using the least absolute shrinkage
and selection operator regression. The range between two dotted lines represents the positive and negative standard deviations of log
(A). The left dotted line indicates the value of the harmonic parameter log (\) when the error of the model is minimized. Six variables
were selected at log (\) = —-3.62 (B). A vertical line marks the value chosen through 10-fold cross-validation. Decreasing A enhances
model compression and variable selection (C). (D) Development of a predictive model for DKD based on the expression levels of six
pivotal genes. For each patient in the study cohort, a risk score was computed, and the median of these scores was established as a
cut-off point. A distribution chart of the risk scores illustrates this bifurcation, with a vertical demarcation representing the median,
effectively categorizing patients into low-risk or high-risk classifications. (E,F) The area under the receiver operating characteristic
curves demonstrate the robust diagnostic accuracy of the DKD predictive model, which is based on the six-gene signature. These curves
demonstrate the model’s effectiveness in distinguishing between DKD cases and controls in both (E) the training cohort and (F) validation
cohort.

[23]. To gain more insight into the role of inflammation We conducted Pearson correlation analysis to exam-
in the progression of DKD, we investigated the correlation  ine the relationship among different immune cells show-
between hub genes and the infiltration of immune cells. ing significant alterations in the glomeruli of patients with

The number of immune cells within the glomeruli ~ DKD. Our findings revealed a positive correlation factor of
of each individual is shown in Supplementary Fig. 2. 0.41 between gamma delta T-cells and CD4 naive T-cells
The immune cell distribution varied significantly between ~ (Supplementary Fig. 4). Additionally, M2 macrophages
HC and DKD patients, as indicated by the combined ex- and activated dendritic cells displayed a positive correla-

pression profiles of the GSE1009 and GSE30528 datasets ~ tion coefficient factor of 0.5 (Supplementary Fig. 4).
(Supplementary Fig. 3). Specifically, there was a notable However, CD4 naive T-cells and resting NK cells were
increase in CD4 naive T-cells, gamma delta T cells, and negatively correlated, with a coefficient factor of —0.46
resting dendritic cells, while the counts of resting NK cells, (Supplementary Fig. 4).

M2 macrophages, and activated dendritic cells were signif-

icantly reduced in DKD patients compared to their healthy ~ Correlation between Hub Genes and Chemokines
counterparts (Supplementary Fig. 3). and their Receptors in Regulating Immune Cell

Gamma delta T cells have been reported to produce Infiltration in DKD Glomerular Tissue

abundant cytokines among the immune cells showing no- Investigating the impact of hub genes on the regula-
table changes. A KEGG enrichment analysis indicated that ~ tory mechanisms of immune infiltration in DKD patients,
16 genes were enriched in cytokine-related signaling path- we conducted a Pearson correlation analysis between hub

ways (Supplementary Table 1). These findings align with genes and immune cells. Our analysis revealed various cor-
the increased expression of gamma delta T cells, as 11 out  relations between hub genes and significantly altered im-
of the 16 DEGs were upregulated (Supplementary Table = mune cells in DKD patients. Notably, all hub genes ex-
1). hibited positive correlations with resting NK cells, while
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Fig. 5. Correlations between the hub genes and infiltrated immune cells in glomeruli in diabetic kidney disease (DKD). Lollyplots

illustrate the correlations between different immune cells infiltrating the glomerular tissue in DKD patients and six hub genes: (A)
chitinase-3-like protein 1 (CHI3L1), (B) coagulation factor V (F5), (C) insulin-like growth factor 1 (/GFI), (D) vascular endothelial
growth factor A (VEGFA), (E) decay-accelerating factor (CDJ55), and (F) 15-hydroxyprostaglandin dehydrogenase (HPGD). Each panel

corresponds to one of the hub genes and displays the strength of their positive (red) or negative (blue) association with various immune

cell types in patients with DKD.

CHI3L1, F5, VEGFA, and HPGD showed negative correla-
tions with gamma delta T-cells (Fig. 5SA—F). These results
suggest that hub genes may play a role in regulating im-
mune infiltration and sculpting the immune environment in
DKD.

Chemokines and their receptors play critical roles in
mediating immune cell infiltration in DKD [24]. Specifi-
cally, C-C motif chemokine ligand 19 (CCL19) and its re-
ceptor C-C motif chemokine receptor 7 (CCR7) are key fac-
tors in immune inflammation, with previous reports indicat-
ing the upregulation of CCL19 in DKD [22,25]. The inter-
action between C-C motif chemokine ligand 5 (CCL5) and
C-C motif chemokine receptor 5 (CCRY) is known to reg-
ulate the migration of monocytes and macrophages, exac-
erbating inflammation-induced damage to endothelial cells
[21]. To better understand the mechanisms by which hub
genes regulate immune cell infiltration, we examined the
correlation between these hub genes, chemokines, and their
receptors using the TISIDB database (http://cis.hku.hk/T
ISIDB/). The analysis revealed that chemokines such as
CCL5 and CC19, along with their corresponding receptors
CCRS5 and CCR7 were negatively correlated with all six hub
genes (Fig. 6A,B).

Enrichment of Signaling Pathways and Regulatory
Networks Involving Hub Genes in DKD

We applied single-gene GSEA to investigate the
molecular mechanisms contributing to DKD progression by
examining the enrichment of specific signaling pathways
associated with each hub gene. The mRNA expression ma-
trix of patients with DKD was categorized based on the
expression levels of CHI3LI, F5, IGF1, CD55, VEGFA,
and HPGD. The GSEA analysis revealed the ubiquitin-
mediated proteolytic pathway as a common signaling path-
way within the ranked gene matrix for DKD (Fig. 7A-F).
This result indicates that inflammation-related hub genes in
DKD may be controlled by a shared regulatory network.

Subsequently, we examined the TFs and miRNAs that
potentially regulate these hub genes. As expected, these
hub genes appeared to be regulated by multiple TFs. We
then conducted additional enrichment analyses for these
TFs, as demonstrated by the cumulative recovery curves
(Fig. 8A). The results detailing all enriched motifs and their
corresponding TFs for the hub genes are shown in Sup-
plementary Table 2. The cumulative recovery curves for
the top three motifs with the highest NES are presented in
Fig. 8B—D. Notably, among these motifs, cisbp M6431 ex-
hibited the highest NES of 6.22, with F'5, IGF1, VEGFA,
and HPGD being enriched within this motif (Fig. 8B, Sup-
plementary Table 2). We also performed a reverse predic-
tion of the six hub genes using the Mircode database, result-
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ing in 80 miRNAs and 271 mRNA-miRNA pairs. These as-
sociations were visualized in Cytoscape (Supplementary
Fig. 5). Among the miRNAs analyzed, Let-7 was iden-
tified to regulate CD55, VEGFA, IGF1, and miR-146a,
influencing the expressions of F5, VEGFA, and HPGD
(Supplementary Fig. 5).

Discussion

Our study conducts a detailed exploration of the in-
flammatory landscape within DKD, uncovering potential
molecular drivers and therapeutic avenues. We identified
349 DEGs, including 99 upregulated and 250 downregu-
lated genes, which distinguish patients with DKD from HC.
Through GO and KEGG analyses, we have uncovered sig-
nificant enrichment in inflammation-related processes such
as ‘regulation of cell-cell adhesion’ and ‘positive regula-
tion of leukocyte activation’. These processes are crucial
for immune cell activation and infiltration, with pathways
like ‘cytokine-cytokine receptor interaction’ and ‘comple-
ment and coagulation cascades’ implicated. The leuko-
cyte infiltration—including neutrophils, macrophages, den-
dritic cells, T and B lymphocytes, and mast cells—has been
shown to contribute to kidney damage in diabetes [3,13].
Given the role of cytokines in mediating both innate and
adaptive immune responses and the involvement of the
complement system in DKD progression [2,6,8], these find-
ings underscore the complex inflammatory pathophysiol-
ogy of DKD.

DKD is the leading cause of ESRD globally, charac-
terized by its multifaceted and intricate mechanisms [26].
The significant emphasis on the role of inflammation in
DKD is supported by evidence of altered immune cells
and elevated levels of pro-inflammatory markers [3,12—-14].
The increase in inflammatory cytokines in the initial stages
suggests the potential of inflammation-related markers for
predicting DKD [6,27,28].

In our pursuit of precision medicine, we have de-
veloped a predictive model using an inflammation-related
gene signature. Previous models have incorporated a wide
array of predictors, ranging from patient demographics
to detailed metabolic data, including factors such as age,
ethnicity, antidiabetic medication, hypertension, diabetic
retinopathy, eGFR, albuminuria, as well as parameters like
prothrombin time, platelet large cell ratio, fibrinogen lev-
els, and red blood cell distribution width [29-34]. Our ap-
proach integrates six inflammation-related DEGs identified
through RNA sequencing analysis of glomerular tissue ob-
tained from T2DM patients in stages 1 to 3. Despite the
study’s limited sample size, our model demonstrated ex-
ceptional predictive accuracy, achieving an AUC of 1 in
the training set and a notable AUC of 0.76 in the validation
set. This innovative model, the first to utilize inflammation-
related DEGs for DKD prediction, competes well with ex-
isting models primarily designed for patients with T2DM.
Other models reported AUC values ranging from 0.74 to
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0.86 (with an average of 0.81) [29-34]. However, further
research is needed to expand these predictive models to
Type 1 diabetics and validate our findings across larger and
more diverse patient cohorts. Additionally, exploring the
expression of these hub genes in more accessible samples
such as blood and urine could offer broader clinical utility.

Our analysis has shed light on immune cell distribu-
tion differences between DKD patients and healthy con-
trols, enhancing our understanding of DKD’s immune re-
sponse nuances [21,35,36]. The correlations we identi-
fied between DEGs and specific immune cell types, such
as gamma delta T cells and CD4 naive T cells, reveal po-
tential mechanistic pathways that could influence the pro-
gression of DKD. Therapeutic interventions aimed at re-
straining the activation or mitigating the impacts of these
cells may help reduce inflammation-induced kidney dam-
age [37]. Consequently, exploring the therapeutic impacts
of antibodies or small molecules that specifically target sig-
nals critical for the activation or functional roles of gamma
delta T cells in DKD holds considerable interest. Poten-
tial strategies include utilizing antibodies against T-cell re-
ceptors or CD27, as well as employing small molecule in-
hibitors like phosphoinositide 3-kinase inhibitors or protein
kinase C inhibitors to modulate gamma delta T cell activ-
ity [38]. Additionally, our findings highlight an intrigu-
ing trend in macrophage population dynamics, providing
insights into the mechanisms underlying early-stage renal
damage response and fibrosis development in DKD.

The study further elaborates on the complex regula-
tory network of immune infiltration in DKD, highlighting
a notable negative correlation between hub genes and the
CCL5-CCR) axis. These findings, combined with the iden-
tification of shared signaling pathways such as ubiquitin-
mediated proteolysis, suggest novel molecular dysregula-
tion factors pivotal to the progression of DKD [39,40].

The elucidation of a comprehensive regulatory
network comprising both transcriptional and post-
transcriptional elements, including TFs and miRNAs,
provides profound insights into the complex nature of gene
regulation in DKD. This intricate network underscores
the importance of developing highly precise and nuanced
therapeutic strategies capable of effectively navigating the
labyrinth of gene expression dynamics characteristic of
DKD.

The identification of specific motifs through motif en-
richment analysis, revealing TFs collaboratively modulat-
ing key hub genes, unveils potential therapeutic targets.
The discovery of highly enriched motifs, particularly im-
plicating genes like 5, IGF1, and VEGFA, suggests these
motifs as likely binding sites for critical TFs such as PPARA
and PPARG [41,42]. Given the significant role of these TFs
in mediating inflammation, a hallmark of diabetes pathol-
ogy, their involvement accentuates the potential for target-
ing these transcription factors and their associated motifs to
alleviate the inflammatory processes in DKD [41,42].
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Fig. 8. The regulatory network analysis of hub genes. (A) The enrichment patterns of transcription factors (TFs) for six hub genes

central to the pathophysiology of diabetic kidney disease (DKD) were presented. These patterns were illustrated using cumulative

recovery curves, a statistical tool that provides insight into how frequently a certain TF is associated with the selected gene set compared

to a random distribution. The steeper the slope at these points, the stronger the association between the motif and the hub genes. (B-D)
The top three motifs with the highest normalized enrichment scores were (B) cisbp M6431, (C) cisbp M6433, and (D) cisbp M3415,
respectively. These motifs indicate potential TF binding sites that could play a central role in the gene regulation processes pertinent to

the progression of DKD.

Moreover, the significant role of miRNAs in govern-
ing renal fibrosis, a critical aspect of DKD progression,
highlights an additional layer of regulatory complexity. The
observed downregulation of Let-7 and its impact on genes
such as CD55, VEGFA, and IGFI introduce a targetable
pathway for potentially mitigating TGF-S-induced renal fi-
brosis in DKD [43,44]. Conversely, the decrease in miR-
146 within the context of DKD and its predicted regula-
tory impact on genes like F5, VEGFA, and HPGD further
elucidate a nuanced pathway where therapeutic interven-
tions could potentially suppress inflammation and oxidative
stress, cornerstones in the progression of DKD [45].

These findings suggest a potential shift towards pre-
cision medicine in DKD management. This approach in-
volves customizing therapies to target specific elements

within this regulatory network. By focusing on the modula-
tion of specific TFs and miRNAs implicated in DKD patho-
genesis, particularly those influencing inflammation and re-
nal fibrosis, precision medicine approaches could provide
more effective and personalized treatment modalities. The
ability to address the disease at a molecular level, targeting
the precise genetic and epigenetic alterations driving DKD,
could significantly improve therapeutic outcomes by atten-
uating disease progression and improving patient quality of
life. This shift towards precision medicine, supported by a
comprehensive understanding of the regulatory networks in
DKD, marks a new era in managing this complex condition,
offering promising prospects for more effective, targeted,
and individualized therapies.
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While this study has made valuable contributions, it
is important to note its limitations. These include the rela-
tively small cohort size and the exclusive focus on type 2
DKD datasets, which may limit its generalizability. More-
over, the use of computational methods to estimate immune
cell infiltration instead of direct experimental validation,
along with the logistical challenges in obtaining renal tis-
sues, highlight the need for additional in vivo studies to thor-
oughly validate these findings. This is particularly crucial
in understanding the involvement of gamma delta T cells.

Conclusions

This study offers an extensive overview of the genetic
changes in DKD, emphasizing the pivotal role of inflam-
mation in its progression. By establishing a solid foun-
dation for future research, the interaction of genetic in-
sights and immune microenvironment deserves further ex-
ploration. The clinical application of our findings depends
on continuous refinements to our predictive models and the
validation of suggested biomarkers and molecular targets.
Ultimately, integrating bioinformatics advancements with
clinical evaluation will determine the influence of our find-
ings on improving care for DKD patients.
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