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Background: Zinc finger (ZNF) proteins play pivotal roles in the initiation, progression, and metastasis of various cancer types.
Nevertheless, the precise mechanism of ZNF genes (ZNFGs) in the prognosis and treatment of gastric cancer (GC) patients
remains unclear.
Methods: Transcriptomic data and clinical information related toGC, as well as ZNFG-related data, were retrieved frompublicly
available databases. Initially, differentially expressed ZNFGs (DE-ZNFGs) were identified through comparative analysis between
GC and normal tissue samples. Subsequently, univariate andmultivariate regression analyses, and the Least Absolute Shrinkage
and Selection Operator (LASSO) algorithmwere utilized to identify potential biomarkers and formulate a risk assessment model.
Furthermore, Kaplan-Meier survival curve analysis was conducted to analyze the correlation between the risk score and overall
survival of GC patients, while the receiver operating characteristic (ROC) curve analysis was performed to evaluate the reliability
of the model. Moreover, Gene Set Enrichment Analysis (GSEA) was performed to elucidate Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, comprehensive investigations were conducted to
assess immune infiltration, immune checkpoints, and the immunophenoscore of distinct risk groups.
Results: A total of 165 DE-ZNFGs were identified, from which, five genes (zinc finger protein 36 (ZFP36), zinc finger protein 121
(ZNF121), ZNF131, ZNF22, and Replication initiator 1 (REPIN1) were selected as biomarkers to construct the risk model. This
model demonstrated high predictive accuracy for the prognosis of GC patients, with an area under the curve (AUC) exceeding
0.6 for 1-, 3- and 5-year survival rates. Both the risk score and patient age were observed to independently predict prognosis in
GC.Moreover, GSEA results showed that high risk group exhibited enrichment in pathways related to mitogen-activated protein
kinase (MAPK), calcium signaling, neuroregulation, cellular connections, and cytoskeletal regulation, while low risk group was
characterized by pathways associated with metabolic processes, transcription of genetic information, and stringent regulation
of genetic stability. Immune analysis revealed significantly elevated stromal, immune, and Estimation of STromal and Immune
cells in MAlignant Tumors using Expression data (ESTIMATE) composite scores in high-risk patients. Additionally, there was
a notable difference in the expression levels of 19 immune cells and 13 immune checkpoints between the two groups, suggesting
significant immunological differences.
Conclusions: Our ZNFG-related risk model can be used to predict the survival of GC patients and may have potential guiding
implications for GC treatment.
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Introduction

Globally, gastric cancer (GC) ranks as the fifth most
prevalent cancer and the fourth highest cause of cancer-
related deaths [1]. Despite significant advancements in
surgical approaches, radio, and chemotherapy, the overall
survival (OS) rate for GC patients, primarily in advanced
stages, remains low [2,3]. Currently, the primary method
for determining prognosis in clinical settings is the tumor

node metastasis (TNM) staging system. However, vari-
ations in therapeutic responses and prognoses among pa-
tients with cancers of the same stage may occur due to un-
characterized genetic alterations [4]. Existing biomarkers
lack the precision to accurately predict patient prognosis.
Thus, there is a critical need to identify prognostic indica-
tors capable of reliably forecasting outcomes for individuals
with GC.
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Zinc finger (ZNF) proteins constitute a prominent
family of transcription factors characterized by finger-like
DNA-binding domains [5]. These proteins play crucial
roles in regulating cell proliferation, autophagy, motility,
programmed cell death, cellular invasion, DNA mainte-
nance, and chromatin remodeling, all impacting cancer
progression [6]. Additionally, ZNF proteins significantly
influence immune responses at transcriptional and post-
transcriptional levels [7]. Study by Cheng et al. [8] has
demonstrated that zinc finger homeobox 2 (ZHX2) exhibits
elevated expression in GC tissues, correlating significantly
with clinical characteristics and poor prognosis. Increased
ZHX2 levels in GC are associated with immune cell infil-
tration, including B cells, CD4+ T cells, macrophages, and
dendritic cells. Moreover, the upregulation of ZHX2 en-
hances the proliferative, invasive, and migratory capaci-
ties of gastric cancer cells while inhibiting apoptosis. Jin
et al. [9] reported that ZNF479 promotes GC cell pro-
liferation, glucose uptake, lactate production, adenosine
triphosphate levels, extracellular acidification ratios, and
tumor growth while decreasing the oxygen consumption ra-
tio through modulation of the β-catenin/c-Myc signaling
pathway. Similarly, ZNF139 promotes cell proliferation
and inhibits apoptosis by upregulating x-IAP, survivin, and
Bcl-2 expression and downregulating Bax and caspase-3
levels [10]. Notably, ZNF139 expression levels are signifi-
cantly elevated inGC patients, and high ZNF139 expression
independently predicts patient prognosis [11].

Consequently, we constructed a prognostic model
based on ZNF genes (ZNFGs), employing the Least Ab-
solute Shrinkage and Selection Operator (LASSO) cou-
pled with Cox regression analyses. This predictive model
demonstrated clinical utility in estimating the outcomes of
GC patients and was intricately associated with immune
functionality and the degree of immune cell infiltration.

Materials and Methods

Data Sources
We retrieved the GC-RNA expression matrix from the

Cancer Genome Atlas (TCGA) database (https://xenabrow
ser.net). This matrix encompassed mRNA data from 375
GC patients and 32 normal samples (NS), along with sur-
vival and clinical data from 350 GC patients. Additionally,
we acquired the GSE26901 dataset, containing survival in-
formation for 109 individuals with GC, from the Gene Ex-
pression Omnibus database (https://www.ncbi.nlm.nih.gov
/) [12], which served as an external validation dataset. Fur-
thermore, we identified 1057 ZNFGs using the UniProt
database (http://www.uniprot.org) by the keyword “Zinc
finger protein”.

Identification and Functional Enrichment Analyses
of Differentially Expressed ZNFGs (DE-ZNFGs)

Initially, we combined the expression matrix of GC
patients from the TCGA cohort with the 1057 ZNFGs from
UniProt to create a ZNFG expressionmatrix. Subsequently,
we used the “linear models for microarray data” package
(v 3.52.4) to identify differentially expressed ZNFGs (DE-
ZNFGs) in 375 GC patients and 32 NS from TCGA, em-
ploying the following criteria: “adj. p < 0.05” and “|log2
FC| > 0.5”. Finally, DE-ZNFGs were subjected to func-
tional enrichment analyses using the “clusterProfiler” pack-
age (v 4.8.3) [13] for Gene Ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathways.

Constructing and Validating the Risk Model
Initially, univariate Cox analysis [14] was conducted

onDE-ZNFGs identifiedwithin the TCGAcohort (p< 0.1).
Subsequently, the “glmnet” package (v 4.1.7) [15] was em-
ployed to implement the Least Absolute Shrinkage and Se-
lection Operator (LASSO) algorithm on the DE-ZNFGs,
with parameter settings including family = “cox”, and n-
fold = 20, resulting in the identification of feature DE-
ZNFGs. Further, stepwise multivariate Cox analysis was
performed on these feature DE-ZNFGs to screen for poten-
tial biomarkers. The coefficients of these biomarkers were
utilized to construct the risk model. Additionally, we cal-
culated the risk score (RS) for all GC patients in the TCGA
cohort using the following formula: RS =

∑n
n=1 coef i×xi.

Subsequently, we stratified the 350 GC patients into a high-
risk group (HRG) and a low-risk group (LRG) based on the
median RS value.

Moreover, receiver operating characteristic (ROC)
curves of the predictive model were plotted, and the cor-
responding area under the curve (AUC) values were calcu-
lated using the “survivalROC” package (v 1.0.3) to assess
the accuracy of the model in predicting patient prognosis.
Additionally, a risk curve of the riskmodel and a heatmap of
the biomarkers were generated for patients in both groups.
Finally, these evaluation procedures were replicated on the
external validation set (GSE26901) to assess the applicabil-
ity of the model.

Independent Prognostic Analysis
We investigated the prognostic predictive potential of

our risk model alongside various clinicopathological fea-
tures. Firstly, univariate Cox analysis was performed on
clinicopathological features, including age, gender, patho-
logical T, N, M, tumor stage, neoplasm histological grade,
and the RS of 350GC patients fromTCGA (p< 0.05). Sub-
sequently, a multivariate Cox analysis was performed on
the statistically significant clinicopathological features.

Gene Set Enrichment Analysis (GSEA)
We used the “GSEA” package (v 4.0.3) with

the settings “c2.cp.kegg.V7.4.symbols.gmt” and

https://www.biolifesas.org/
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Fig. 1. Identification of differentially expressed ZNF genes (DE-ZNFGs) in gastric cancer (GC) patients (n = 375) and normal
samples (NS) (n = 32) from the Cancer Genome Atlas (TCGA) cohort. (A) Heatmap illustrating the expression patterns of DE-
ZNFGs. (B) Volcano plot showing DE-ZNFGs. (C) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses of DE-ZNFGs. ZNF, zinc finger.

“c5.go.bp.v7.4.symbols.gmt”, using KEGG pathway
and GO biological process (BP) as the enrichment back-
ground. We identified differentially regulated pathways or
functions between the HRG and LRG based on a nominal
p-value < 0.05.

Analyzing Tumor Immune Microenvironment (TIME)
The “Estimation of STromal and Immune cells inMA-

lignant Tumors using Expression data (ESTIMATE)” algo-
rithm [16] was employed to evaluate variations in immune
and stromal scores, and the combined ESTIMATE score
among patients from TCGA classified into HRG and LRG.
Subsequently, the “ggplot2” package (v 3.3.6) in R was
used to visualize results using the Wilcoxon test. Addition-
ally, Spearman correlation analysis was performed to deter-
mine the correlation between RS and stromal, immune, and
ESTIMATE composite scores. The corresponding p-value
and correlation coefficient were calculated, and a scatter di-
agram illustrating the correlation between RS and immune,
stromal, and ESTIMATE scores was generated using the
“ggplot2” R package.

Furthermore, to quantify the presence of 28 types of
immune cells within each sample, we employed the “sin-
gle set GSEA (ssGSEA)” algorithm. Spearman correlation
analysis was then applied to determine the correlation be-
tween RS and differentially expressed immune cells. The
resulting p-values and correlation coefficient were obtained
and visualized using the “ggplot2” package.

Subsequently, we extracted the expression levels
of immune checkpoints (ADORA2A, CD160, BTLA,
KIR2DL3, CD244, PDCD1LG2, CSF1R, TIGIT,
HAVCR2, IDO1, IL10RB, IL10, CTLA4, KIR2DL1,
CD274, LAG3, KDR, LGALS9, CD96, PVRL2, TGFB1,
TGFBR1, PDCD1, and VTCN1) from GC patient in
the TCGA cohort. Differential expression of immune
checkpoints between LRG and HRG was identified. Fi-

nally, the correlation between RS and differential immune
checkpoints was determined using the Spearman method.

Furthermore, we evaluated the response of patients in
the LRG andHRG to immunotherapy by calculating the im-
munophenoscore (IPS) of the 350 samples in the TCGA co-
hort. A boxplot was generated to present a comparison of
IPS between both groups.

Results

Identification and Functional Enrichment Analyses
of DE-ZNFGs

A total of 165 DE-ZNFGs were identified, compris-
ing 144 upregulated and 21 downregulated ZNFGs. The
heatmap and volcano plot illustrate the distribution and ex-
pression levels of these DE-ZNFGs (Fig. 1A,B). Moreover,
functional enrichment analyses revealed that these 165 DE-
ZNFGs were significantly enriched in 47 GO terms and
one KEGG pathway. Among the biological process (BP)
terms, the DE-ZNFGs were enriched in 38 terms, including
cellular response to antibiotic, negative regulation of gene
expression, epigenetic regulation, and cellular response to
hydrogen peroxide. The three GO-CC terms enriched by
DE-ZNFGs were promyelocytic leukemia (PML) body,
condensed chromosome, and heterochromatin. Moreover,
the six GO-MF terms enriched by DE-ZNFGs encom-
passed DNA-binding transcription repression, ubiquitin-
like protein transferase activity, promoter-specific chro-
matin binding, protein-cysteine S-acyltransferase activity,
and protein-cysteine S-palmitoyltransferase activity, and
methyl-CpG binding. Furthermore, the only KEGG path-
way enriched by DE-ZNFGs was herpes simplex virus 1 in-
fection (Fig. 1C). These findings highlight the diverse func-
tional roles of DE-ZNFGs in various biological processes
and pathways associated with cancer progression and im-
mune regulation.

https://www.biolifesas.org/
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Fig. 2. Development of a biomarker-based prognostic signature for GC patients in the TCGA cohort. (A) Univariate Cox anal-
ysis screens prognosis-related DE-ZNFGs. (B) Least Absolute Shrinkage and Selection Operator (LASSO) coefficients profile of the
prognosis-related DE-ZNFGs. (C) Multivariate Cox analysis identifies the biomarkers. (D) Kaplan-Meier (KM) survival analysis of
the high-risk group (HRG) (n = 175) and low-risk group (LRG) (n = 175). (E) Receiver operating characteristic (ROC) curves of risk
score (RS) predicting 1-, 3-, and 5-year overall survival (OS). (F) Distribution of survival status of patients in the TCGA cohort. (G)
Expression of biomarkers in HRG and LRG. *p < 0.05, ***p < 0.001.

Construction of a ZNFG-Related Prognostic Model

We initially screened 28 out of the 165 DE-ZNFGs
using univariate Cox analysis (Fig. 2A). Subsequently, 12
feature DE-ZNFGs, including FGD6, Replication initia-
tor 1 (REPIN1), SNAI1, TRIM15, ZDHHC24, zinc finger
protein 36 (ZFP36), ZFYVE27, ZNF121, ZNF131, ZNF22,
ZNF443, and ZNF74, were selected from these 28 DE-
ZNFGs using LASSO with the criterion of lambda.min =
0.02020203 (Fig. 2B). Finally, five biomarkers, namely
ZFP36, ZNF121, ZNF131, ZNF22, and REPIN1, were
identified using multivariate Cox analysis (Fig. 2C).

The RS was calculated using the following formula:
0.187132798 × ZFP36 + (–0.376229302) × ZNF121 + (–
0.498680748) × ZNF131 + 0.789220676 × ZNF22 + (–
0.30051864) × REPIN1. Subsequently, based on the me-
dian RS value (1.012), we categorized the 350 GC patients
into the HRG (175 GC samples) and LRG (175 GC sam-
ples). The Kaplan-Meier (KM) survival curve of RS of
all patients in both groups revealed that patients in LRG
exhibited a significantly better survival rate (p < 0.0001)
(Fig. 2D). Moreover, AUC values for 1-, 3- and 5-year
survival rates all exceeded 0.6, suggesting the effective-
ness of our model in accurately forecasting the outcomes

https://www.biolifesas.org/
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Fig. 3. Validation of the ZNFG-related prognostic signature in the GSE26901 dataset. (A) Kaplan-Meier survival curve of the HRG
(n = 55) and LRG (n = 54) in the GSE26901 dataset. (B) ROC curves of RS predicting 1-, 3-, and 5-year OS in the GSE26901 dataset. (C)
Distribution of survival status of patients in the GSE26901 dataset. (D) Expression of biomarkers in HRG and LRGs in the GSE26901
dataset.

for GC patients (Fig. 2E). The risk profile demonstrated
that patients within the HRG had elevated RS and expe-
rienced shorter survival time (Fig. 2F). Additionally, the
heatmap representation revealed elevated expression lev-
els of ZFP36 and ZNF22, and reduced expression levels of
ZNF121, ZNF131, and REPIN1 among patients in the HRG
(Fig. 2G). This trend aligns with the findings in Fig. 2C,
where, within the forest plot analysis, ZFP36 and ZNF22
exhibited Hazard Ratios (HRs) exceeding 1, suggesting
their roles as risk factors for GC. Conversely, ZNF121,
ZNF131, and REPIN1, with HRs below 1, imply their po-
tential roles as protective factors against GC.

Moreover, 109 GC patients from the external valida-
tion set (GSE26901) were grouped into HRG (n = 55) and
LRG (n = 54) based on median RS (1.667). The ROC
curves for the external validation group at 1, 3, and 5 years

exhibited AUC values greater than 0.6, aligning with the
outcomes observed in the TCGA cohort. These findings
suggest that this prognostic model has potential applicabil-
ity in forecasting patient survival (Fig. 3A–D).

Independent Prognostic Analysis
Results from the univariate Cox analysis indicated that

age, pathological T, N, M, tumor stage, and the RS demon-
strated significant clinical relevance (p < 0.05) (Fig. 4A).
Furthermore, multivariate Cox analysis was conducted on
these six factors, revealing that patient age and the RS were
significant clinicopathological factors (p< 0.01) (Fig. 4B).

https://www.biolifesas.org/
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Fig. 4. ZNFG prognostic signature independently predicts GC patient prognosis in the TCGA cohort. (A) Univariate and (B)
multivariate Cox analyses identify independent prognostic factors.

Fig. 5. Results of Gene Set Enrichment Analysis (GSEA). (A,B) Top five GO-biological process (BP) terms and KEGG pathways in
the HRG (n = 175) (C,D) and the LRG (n = 175).

Gene Set Enrichment Analysis (GSEA)

In the high-risk group (HRG), GO-biological process
(BP) terms enriched by genes included gliogenesis, protein
kinase A signaling regulation, negative regulation of trans-
membrane transport, glial cell differentiation, and multicel-
lular organismal response (Fig. 5A). Additionally, KEGG
pathways enriched by genes in the HRG encompassed the
mitogen-activated protein kinase (MAPK) and calcium sig-
naling pathways, interaction between neuroactive ligand re-
ceptors, gap junctions, and actin cytoskeleton regulation
(Fig. 5B).

Conversely, in the low-risk group (LRG), GO-BP
terms enriched by genes included isoprenoid biosynthetic,
diol metabolic and biosynthetic processes, transcription of
5S class rRNA by RNA polymerase III, and regulation of
sister chromatid cohesion (Fig. 5C). Furthermore, signif-

icantly enriched KEGG pathways in the LRG consisted
of the one-carbon pool by folate, pyrimidine metabolism,
RNA polymerase, and terpenoid backbone biosynthesis and
base excision repair pathways (Fig. 5D).

Correlation between the Risk Model and TIME

The results of ESTIMATE analysis revealed signifi-
cantly higher stromal, immune, and ESTIMATE composite
scores among patients in the HRG (p < 0.001) (Fig. 6A).
Subsequently, the correlation scatter diagram demonstrated
a positive correlation between the RS and stromal as well
as ESTIMATE scores (p < 0.05 and r > 0.3) (Fig. 6B).

Additionally, the ssGSEA boxplot showed a signif-
icant difference in 19 immune cell types between both
groups, including activated, effector memory, and cen-
tral memory CD8 T cells, immature and activated B cells,

https://www.biolifesas.org/


5739

Fig. 6. Analysis of the Tumor Immune Microenvironment in patients from the TCGA cohort in HRG and LRG. (A) Differences
in stromal, immune, and ESTIMATE composite scores between HRG (n = 175) and LRG (n = 175). (B) Correlation between risk score
(RS) and ESTIMATE, immune, and stromal scores. (C) Differences in the infiltration of 28 immune cell types between the two groups.
(D) Correlation between the RS and 19 immune cell types. (E) Differences in the expression of 24 immune checkpoints between the
two groups. (F) Correlation between the RS and differential immune checkpoints. (G) Differences in the immunophenoscore (IPS) of
patients between the two groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, NS: p > 0.05. ESTIMATE, Estimation of
STromal and Immune cells in MAlignant Tumors using Expression data.

gamma delta T cells, immature and plasmacytoid dendritic
cells, type 1 T helper cells, MDSC, central memory and ef-
fector memory CD4 T cells, regulatory T cells, eosinophils,
natural killer cells, T follicular helper cells, macrophages,
natural killer T (NKT) cells, and mast cells between both
groups, all of which were higher in the HRG (p < 0.05)
(Fig. 6C). The correlation between the RS and mast cells
was the strongest, followed by NKT cells, macrophages,
and effector memory CD4 T cells, among others (Fig. 6D).

The results also demonstrated differences in the
expression of 13 immune checkpoints between both
groups, including ADORA2A, CD244, TGFB1, CSF1R,
IL10, CD96, KDR, LAG3, HAVCR2, PDCD1LG2, BTLA,
TGFBR1, and TIGIT (p < 0.05), with higher expression
level observed among patients in the HRG (Fig. 6E). The
correlation results revealed that the RS demonstrated some

degree of correlation with these 13 immune checkpoints,
with notable emphasis on TGFB1 and CSF1R (Fig. 6F).
However, the immunophenoscore (IPS) did not exhibit sig-
nificant difference between the two groups (p > 0.05)
(Fig. 6G).

Discussion

Gastric cancer (GC) is a prevalent malignancy with a
steadily increasing annual incidence [17]. Notably, despite
similar TNM stages, someGC patients exhibit diverse treat-
ment responses and prognoses [18]. Hence, the identifica-
tion of precise, accurate, and sensitive biomarkers is im-
perative for predicting the diagnosis and prognosis of GC
patients. Zinc finger genes (ZNFGs) in humans encode the
most extensive family of regulatory proteins characterized

https://www.biolifesas.org/
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by zinc ion-binding domains resembling finger-like projec-
tions [5]. ZNF proteins, a subset of ZNFGs, are intricately
involved in the onset, progression, and metastasis of vari-
ous cancers.

Through a combination of univariate and multivariate
analyses along with LASSO modeling, five ZNFGs were
identified, including ZFP36, ZNF121, ZNF131, ZNF22,
and REPIN1, to construct a risk model. ZFP36, known
as tristetraprolin, is an RNA-binding protein that induces
mesenchymal-to-epithelial transition by downregulating
Twist1 and Snail1 levels [19]. Several studies have linked
ZFP36 to cancer, noting reduced expression levels in var-
ious tumors [20–23]. Chen et al. [24] observed de-
creased ZFP36 expression in hepatocellular carcinoma tis-
sues compared to adjacent non-tumorous tissues. Further-
more, ZFP36 has been associated with modulating protein
regulators of cytokinesis 1, suppressing cell proliferation,
migration, and invasion, and enhancing sensitivity to 5-
fluorouracil treatment in xenograft tumor models. More-
over, Chen et al. [25] identified a variable pentanucleotide
repeat (ATTTT)n within the 3’ untranslated region of the
ZNF121 gene, which encodes a protein of 390 amino acids
and has a molecular mass of approximately 43 kDa. Stud-
ies have shown that ZNF121 regulates growth and differ-
entiation of human embryonic stem cells [26,27] and aug-
ments the growth and invasiveness in lung and breast can-
cers [28,29]. ZNF131, belonging to the POZ-ZNF protein
superfamily, acts as a transcriptional regulator [30]. Huang
et al. [31] showed that ZNF131 regulates apyrimidinic en-
donuclease 1 expression to promotemelanoma cell prolifer-
ation and migration. ZNF22, a classic TF, exhibits signifi-
cant upregulation in glioblastoma tissues and independently
predicts prognosis in glioblastoma patients [32]. Our re-
sults indicated that ZNF22 could independently predict the
poor prognosis of GC patients. Replication initiator 1 (RE-
PIN1), a ZNF-DNA-binding protein, initiates DNA replica-
tion [33,34]. Studies have indicated that REPIN1 promotes
proliferation, migration, and invasion in papillary thyroid
carcinoma cells [35], while low expression levels correlate
with poor overall survival in glioma patients [36]. More-
over, Hsa-mir-127 inhibits REPIN1 to enhance the prolif-
erative, migratory, and invasive abilities of glioma cells.
However, Qi et al. [37] demonstrated that patients with
multiple myeloma expressing high levels of REPIN1 exhib-
ited poor outcomes.

Subsequently, GSEA was performed to determine the
underlying mechanism of action of these five ZNFGs in
GC. Our findings revealed enrichment of the mitogen-
activated protein kinase (MAPK) and calcium signaling
pathways in HRG. The MAPK signaling pathway, an evo-
lutionarily conserved signaling pathway [38], regulates cell
proliferation, apoptosis, and metabolism, thus contribut-
ing to the development of malignant phenotypes [39]. For
instance, Du et al. [40] suggested that DNA-damage-
inducible transcript 4 promotes gastric cancer cell prolif-
eration and tumorigenesis via the MAPK signaling path-

way. Additionally, Wu et al. [41] demonstrated that
calcium release-activated calcium modulator 2 activates
MAPK/ERK via FAK, promoting the disassembly of focal
adhesions at the rear edge of the cells and enhancing the
metastatic ability of gastric cancer cells. Calcium home-
ostasis is critically involved in the functioning and survival
of cells. Calcium ion concentration is tightly controlled by
calcium ion-binding proteins in cell organelles and cells for
generating and transducing Ca2+ signals of various magni-
tudes in cells [42]. Studies have shown the involvement of
calcium signaling in the growth, migration, distant metas-
tasis of cancer cells, inflammation, and survival [43–45].

Furthermore, ZNF proteins have been shown to play
significant roles in the immune system, influencing both
cellular and humoral immunity [46,47]. Some immune
cells, such as mast cells, NKT cells, and NK cells, act as
stromal elements within the inflammatory milieu and con-
tribute to human cancer progression [48]. Zhang et al.
[49] observed a significant increase in effector memory
CD4(+)/CD8(+) T cell percentage in the peripheral blood
of GC patients compared to healthy controls. Moreover,
Mu et al. [50] demonstrated that macrophage polarization
promotes metastasis and angiogenesis in GC. Additionally,
Ammendola et al. [51] reported a correlation between mast
cell concentration in the cancerous microenvironment and
tumor angiogenesis and lymph node involvement. In pa-
tients with GC, chymase-positive mast cells are prevalent,
and a higher density of these cells is often linked with worse
outcomes for the patients [52,53]. Our results revealed
a notable elevation in stromal, immune, and ESTIMATE
composite scores among patients in the HRG compared to
LRG. Furthermore, a significant association was observed
between RS and the presence of various immune cells, in-
cluding mast cells, macrophages, and NKT cells. Thus, our
ZNFG signature may serve as a predictive indicator for im-
mune cell infiltration and immune function in GC patients.

However, our study has several limitations. Firstly,
our results are based on bioinformatics analyses, and relia-
bility and applicability of the prognostic model need vali-
dation with prospective clinical data. Hence, we are in the
process of enrolling GC patients to validate and refine our
conclusions. Additionally, further experimental studies are
required to validate our findings in vitro and in vivo, which
would contribute to a deeper understanding of the roles of
ZNFGs in the onset and progression of GC.

Conclusions

In conclusion, our findings highlight a significant cor-
relation between five ZNFGs and the survival of GC pa-
tients. The identified five-ZNFG signature effectively strat-
ified patients into different risk groups, demonstrating its
potential as a robust prognostic indicator for GC patients.
Notably, the signature was associated with immune cell
infiltration and functional differences within the TIME of

https://www.biolifesas.org/
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GC patients. Therefore, the identified five-ZNFG signature
holds promise as molecular biomarker and potential thera-
peutic target for GC patients.
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