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Background: Anoikis, a process crucial for maintaining tissue homeostasis, is implicated in tumor initiation and progression,
particularly in pancreatic ductal adenocarcinoma (PDAC), known for its dismal prognosis. Understanding the molecular mech-
anisms underlying anoikis is imperative for unraveling PDAC pathogenesis. This study aimed to investigate the role of anoikis-
related genes (ARgs) in PDAC prognosis and their interaction with the tumor immune environment.

Methods: Differential expression analysis of ARgs between tumor tissues and normal tissues was conducted utilizing The Can-
cer Genome Atlas (TCGA) dataset. Then, utilizing weighted gene co-expression network analysis (WGCNA) and least absolute
shrinkage and selection operator (LASSO) regression analysis, ARgs with prognostic relevance were discovered as differentially
expressed hub genes. Subsequently, these hub ARgs were employed to construct risk signatures, and a consensus cluster analysis
was conducted. Predictive values of risk groups and molecular subtypes, alongside characteristics of tumor immune microenvi-
ronment, were analyzed to accurately predict the prognosis. Combined with risk signatures and molecular subtypes, validation
of prognostic classification models was achieved through external datasets and RT-PCR experiments.

Results: We identified six hub ARgs, divided patients into two groups according to their expression as the basis of consensus clus-
ter analysis, established an ARgs risk signature based on four of these ARgs, divided patients into high-risk and low-risk groups,
and accurately predicted their prognosis. Furthermore, by combining the above classification, the two subgroups showed signif-
icant differences in their prognostic outcomes and immune microenvironment characteristics. To further validate our findings,
we utilized data from the International Cancer Genome Consortium (ICGC). RT-PCR was performed to verify the expressions
of hub ARgs.

Conclusion: Our findings underscore the role of anoikis in shaping the tumor microenvironment and PDAC progression. More-
over, the established risk signature and classification exhibit close associations with the immune microenvironment, showing
potential for prognostic predictions in PDAC patients.
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Introduction of genetic and non-genetic factors. Unfortunately, by the
time symptoms manifest, the disease often progresses be-
yond operable stages, contributing significantly to its poor
prognosis. Even radical resection fails to substantially im-

prove long-term survival rates for pancreatic cancer patients

Pancreatic cancer, ranking seventh among the lead-
ing causes of cancer-related deaths globally, has the high-
est mortality rate compared to its incidence rate. In 2020
alone, there were 495,773 new patients diagnosed with this [4].
disease, resulting in 466,003 fatalities, emphasizing its pro-

- ; ; The absence of an effective screening method to de-
found impact on public health. With a meager 10% 5-year

tect pancreatic cancer exacerbates the situation, impeding

survival rate, it presents a formidable challenge [1-3].

Pancreatic ductal adenocarcinoma (PDAC) consti-
tutes 90% of pancreatic cancer cases and displays signif-
icant ethnic and regional differences in incidence rates.
Western Europe and North America report the highest inci-
dence, while East Africa and South-Central Asia record the
lowest, with disparities exceeding tenfold [2]. Pancreatic
cancer is a complex disease stemming from a combination

early detection efforts [5]. The Alliance for Early Detec-
tion of Pancreatic Cancer advocates for standardized imag-
ing and MRI report templates to enhance screening con-
sistency and accuracy [6,7]. However, relying solely on
imaging approaches for early pancreatic cancer detection
proves insufficient, underscoring the necessity for integrat-
ing biomarker detection. Recent studies propose various
novel serum biomarkers [8—10].
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Continually refining existing predictive models and
exploring novel, more convenient, accurate, and personal-
ized models are imperative. These efforts will offer valu-
able insights to aid in clinical decision-making processes.

Anoikis is a programmed cell death process trig-
gered when cells lose contact with the extracellular ma-
trix and neighboring cells [11]. Resistance to anoikis is
vital for tumor cells survival during bloodstream circula-
tion and malignant cells metastasis [12,13]. The ability
to evade apoptosis and complete this process with robust
anti-anoikis mechanisms renders it a significant contribut-
ing factor in tumor progression [14]. Consequently, un-
raveling the molecular mechanisms underpinning anoikis is
crucial for developing effective cancer treatment options.
Anoikis is a pivotal element in tumorigenesis, necessitat-
ing a profound understanding of its underlying molecular
mechanism for the development of effective cancer treat-
ment options. Despite extensive literature exploring the
roles of anoikis-associated genes in the prognosis of various
cancers [ 15—18], their specific impact on PDAC patients re-
mains insufficiently elucidated. Hence, there exists a criti-
cal need to identify anoikis-related genes that distinctly im-
pact the prognosis of PDAC.

To address this gap, we conducted comprehensive
analyses leveraging RNA data and clinical features from
public databases to establish risk signatures and molecu-
lar subtypes for PDAC patients. These signatures were
based on expression levels of genes associated with anoikis,
promising more robust prognostic predictions for PDAC
patients. Additionally, we aimed to elucidate the interplay
between anoikis-associated genes and the tumor microen-
vironment through functional studies.

Materials and Methods

Data Acquisition and Gene Selection

RNA sequencing data and clinical information for 150
PDAC patients, comprising 146 PDAC samples and four
normal tissues adjacent to the tumor (NATs), were obtained
from The Cancer Genome Atlas (TCGA) database (https:
/Iportal.gdc.cancer.gov/). A total of 338 genes associated
with anoikis were retrieved from the GeneCards database
(https://www.genecards.org/). Additionally, PDAC RNA
sequencing data and related clinical data for a validation set
of 234 patients were acquired from the International Cancer
Genome Consortium (ICGC) through the Sangerbox web
platform [19].

Identification of Differentially Expressed Genes
(DEGs)

Differential expression analysis was conducted using
Limma (linear models for microarray data), a method based
on generalized linear models [20]. The R software limma
(version 3.40.6, The Walter and Eliza Hall Institute of Med-
ical Research, Melbourne, Australia) was employed to as-
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sess gene expression differences between the TCGA-PDAC
and the NATs groups. A fold-change threshold of 1.5 was
applied, and p < 0.05 considered statistically significant.

WGCNA and Correlation Analysis

A total of 54,469 gene expression profiles from 150
samples were subjected to weighted gene co-expression
network analysis (WGCNA) to identify modular genes as-
sociated with the cancer phenotype. Initially, the Median
Absolute Deviation (MAD) was computed for each gene
using the gene expression profile. Subsequently, we fil-
tered out the top 50% of genes with the smallest MAD
and removed outlier genes and samples using the goodSam-
plesGenes method from the R software package WGCNA
(version 1.72-5, University of California, Los Angeles, CA,
USA), refining our dataset.

Next, we constructed a scale-free co-expression net-
work using WGCNA, which enabled us to elucidate the re-
lationship and functions of genes within the network. Addi-
tionally, Gene Ontology (GO) enrichment analysis and Ky-
oto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were performed using the WebGestaltR package
(version 0.4.6, Baylor College of Medicine, Houston, TX,
USA) to assess the module genes. A significance thresh-
old of p < 0.05 and false discovery rate (FDR) <0.1 was
applied with a minimum gene set comprising at least 5
genes and a maximum gene set containing up to 5000 genes,
which was considered statistically significant.

Acquisition of the Hub Anoikis-Related Genes
(ARgs) and Gene Set Enrichment Analysis (GSEA)

To identify the hub ARgs, we conducted an inter-
section analysis among the DEGs, module genes, and
anoikis-related genes. Subsequently, the samples were
stratified into two groups based on the expression lev-
els of the hub ARgs and used GSEA software (version
3.0, Broad Institute of Massachusetts Institute of Tech-
nology and Harvard, Cambridge, MA, USA) for analy-
sis. Background gene sets were retrieved from the Molecu-
lar Signatures Database (http://www.gsea-msigdb.org/gsea
/downloads.jsp), and GSEA was executed using the GSVA
package (version 1.34.8, Hospital del Mar Medical Re-
search Institute, Barcelona, Spain) to reveal the functional
roles of each hub ARg. Significance was determined by
a cutoff point of |normalized enrichment score (NES)| >1
and false discovery rate (FDR) value <0.25 for GSEA anal-
ysis.

Development of a Prognostic Risk Signature Based
on the Hub ARgs

Regression analysis was conducted using the R soft-
ware package glmnet (version 4.1-2, Stanford Univer-
sity, San Francisco, CA, USA) and the least absolute
shrinkage and selection operator/cyclooxygenase (LASSO-
COX) method, which integrated survival time, survival
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Fig. 1. Identification of differentially expressed genes. (A) The volcano plot illustrates the differentially expressed genes. (B) The

heatmap displays the top 20 genes significantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) or normal samples.
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Fig. 2. Results of the weighted gene co-expression network analysis (WGCNA). (A) Correlation between different modules and
clinical phenotypes (cancer or normal). (B) Average connectivity. (C) Mean connection values are associated with various soft threshold
powers. (D) Gene cluster dendrogram. *p < 0.05.
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Fig. 3. Identification of hub anoikis-related genes. Six hub anoikis-related genes (ARgs) were identified by combining the differentially
expressed genes (DEGs), WGCNA module genes, and anoikis-related genes.
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genes. (B) GO analysis of the module genes.
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Fig. 5. Enriched pathways of hub ARgs were identified by GSEA. (A) BCL2, (B) CXCR4, (C) HAVCR2, (D) MYOS5A, (E) SESNI,
(F) SIRPA. GSEA, gene set enrichment analysis; BCL2, B-cell lymphoma-2; CXCR4, C-X-C motif chemokine receptor 4; HAVCR2,
hepatitis A virus cellular receptor 2; MYOSA, myosin VA; SESNI1, sestrin 1; SIRPA, signal-regulatory protein A.

state, and

was constructed through 10-fold cross-validation.

thermore,

hub genes expression data. The optimal model
Fur-
the R package “maxstat” (Maximally chosen

rank statistics with multiple p-value approximations: ver-

sion 0.7-25, Ludwig-Maximilians-Universitdt Miinchen,
Miinchen, Germany) was employed to determine an opti-
mal RiskScore cut-off value. Subsequently, based on this
threshold, the patient population was stratified into low-risk
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and high-risk groups. To compare the prognosis between
these groups, the survfit function from the survival pack-
age in R (version 3.5-7, University of Oslo, Oslo, Norway)
was utilized, and significant differences in prognosis were
defined using a log-rank test.

Receiver operating characteristic (ROC) curve anal-
ysis was conducted using the pROC package (version
1.17.0.1, University of Washington, Seattle, WA, USA) in
R to calculate the area under the curve (AUC). Specifically,
the ROC function of pPROC was employed to gather patient
follow-up duration and RiskScore data, and ROC analysis
was performed at 365-day intervals.

Consensus Clustering Analysis and Construction of
Molecular Subtypes Based on the Hub ARgs

Cluster analysis was performed using ConsensusClus-
terPlus (version 1.66, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA) [21]. This analysis was
performed iteratively with 80% of the samples, repeated 10
times, utilizing a Pearson correlation distance metric and
agglomerative Pam clustering method. The optimal number
of clusters was determined using the empirical cumulative
distribution function plot.

Based on the expression values of the hub ARgs in
each sample from the TCGA-PDAC dataset, the patients
in TCGA dataset were analyzed by consistent cluster anal-
ysis and subtype was performed. The cumulative distri-
bution function (CDF) curve demonstrated a steep ascent,
enabling the optimal number of clusters to be determined.
Subsequently, patients were stratified into distinct molecu-
lar subtypes based on the following criteria: the correlation
between groups was the lowest and the intra-group correla-
tion was the highest after clustering.

Tumor Immune Infiltration Characteristics Analysis
between Subgroups

Utilizing our expression profile, we employed IOBR
[22], an immune tumor biology computational tool, to cal-
culate the CIBERSORT scores for 22 different types of im-
mune invading cells in each sample [23]. Additionally, it
allowed us to calculate the proportions of 22 immune cells
in each of the two subgroups.

Tissue Samples

This study received approval from the Clinical Med-
ical Research Ethics Committee of the Suzhou Ninth Peo-
ple’s Hospital (approval number: 202232). Tumor and ad-
jacent normal tissues were procured from Suzhou Ninth
People’s Hospital. All patients included in this study were
not undergoing anticancer therapy and had provided in-
formed consent prior to surgery. Tumor and precancerous
tissues were obtained from a total of 10 postoperative pa-
tients under the supervision of an experienced pathology
colleague.

5051

Real-Time Polymerase Chain Reaction Assay

Total RNA extraction from each adipose tissue sam-
ple was performed using Trizol (Cat. # 740955.50, Takara,
Shiga, Japan). Subsequently, the concentration and pu-
rity of the extracted RNA were assessed using a NanoDrop
Spectrophotometer (NanoDrop Technologies Inc., Wilm-
ington, DE, USA). cDNA was synthesized from mRNA us-
ing a cDNA synthesis kit (Cat. # 639506, Takara, Shiga,
Japan).

Quantitative real-time PCR was conducted using an
SYBR Green Premix Pro Taq HS qPCR kit (Cat. # 740703,
Takara, Shiga, Japan). Relative gene expression levels were
determined and normalized to GAPDH using the 2~ 2AC
method. All reactions were conducted in triplicate using
an ABI 7300HT instrument (Applied Biosystems, Ther-
moFisher scientific, Waltham, MA, USA). Statistical anal-
yses were conducted using GraphPad Prism 8.0 (GraphPad
Software, Inc., San Diego, CA, USA), employing the 2-
tailed Student #-test. Differences in transcriptome levels
were assessed using Spearman’s R. The list of primer pairs
utilized in the assay is shown in Supplementary Table 1.

Results

Identification of Hub ARgs

Initially, we identified 1890 differentially expressed
genes from the TCGA-PDAC dataset, with 683 genes
showing up-regulation and 1207 genes displaying down-
regulation. Fig. 1A depicts these genes, while Fig. 1B
shows the top 20 differentially expressed genes.

Using the TCGA-PDAC expression profile, we con-
structed a weighted gene co-expression network following
the removal of anomalous samples and gene filtering. To
evaluate their correlation with tumor phenotypes, we gen-
erated a heat map depicting 21 co-expression modules rep-
resented by various colors (Fig. 2A,D). The average con-
nectivity was calculated as 10.14, with a scale-free fit in-
dex of 0.87 (Fig. 2B) and a soft threshold of 9 (Fig. 2C).
Notably, the blue and light-yellow modules exhibited statis-
tically significant associations with cancer (blue modules:
r=-0.3, p=3.3 x 10~%; light-yellow module: r = —0.3,
p =28 x 107%). Based on these results, a total of 569
genes from these two modules were designated as module
genes. The hub ARgs were subsequently selected through
the intersection of DEGs, anoikis-related genes, and mod-
ule genes (Fig. 3).

Moreover, we conducted a KEGG enrichment anal-
ysis of the module genes. Our findings revealed signifi-
cant enrichment in Th17, Th1, and Th2 cell differentiation,
T Cell Receptor Signaling Pathway, Hematopoietic Cell
Lineage, and Cell Adhesion Molecules (CAMs) (Fig. 4A).
Subsequently, we performed GO analysis on the module
genes. The findings indicated a strong association between
immune system processes and immune responses, which
exhibited the highest statistical significance (Fig. 4B). No-
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tably, functions such as regulation of the immune system
process, immune system process, and immune response
were prominently enriched.

GSEA and Enrichment Analysis

Using GSEA, we evaluated the signaling path-
ways associated with hub ARgs. Our findings indi-
cate that these genes are associated with various path-
ways, including calcium signaling pathway, Cell Adhesion
Molecules (CAMs), cytokine-cytokine receptor interaction,
chemokine signaling pathway, and hematopoietic cell lin-
eage (Fig. 5).

Development of a Prognostic Gene Signature

LASSO-COX regression was employed, with the
lambda value set to 0.0154387394424353 yielding the fol-
lowing model formula with four hub ARgs (Fig. 6):

RiskScore = 0.5929 x BCL2 + 0.2705 x HAVCR2
+ 0.3444 x MYO5A — 0.4350 x SIRPA

The overall survival (OS) analysis revealed a shorter
survival time for high-risk patients than low-risk patients, as
illustrated by the Kaplan-Meier curve and distribution map
(p = 1.6 x 10~%). Additionally, the area under the curve
(AUC) for l-year survival time was calculated to be 0.71

(Fig. 7).

Consensus Clustering Analysis and Classification of
Molecular Subtypes Based on Hub ARgs

To further explore the characteristics of ARgs in
PDAC patients, we also selected six Hub ARgs for clus-
tering. Our findings indicated that K = 2 yielded the high-
est intra-cluster correlation (Fig. 8A), suggesting effective
segregation of patients into two groups based on these six
ARgs. Fig. 8B,C show the differences in the area under the
cumulative distribution function (CDF) curve when varying
the K for uniform clustering. However, no statistically sig-
nificant prognostic differences were observed between the
two cluster groupings, as evidenced by Kaplan-Meier sur-
vival curves based on these two clusters (HR =0.94, 95% CI
=0.60-1.46, p = 0.77, Fig. 8D). Consequently, we further
examined the composition ratio of patients in the two risk
signature subgroups and the cluster subgroup through the
Sankey chart (Fig. 9). Notably, high-risk patients and those
in the C1 group exhibited significant differences compared
to those in the low-risk and the C2 groups.

Subsequently, we compared the survival rates of the
two subgroups following the regrouping by Sankey anal-
ysis. We observed a worse prognosis among patients in
the high-risk+C1 group (HR = 0.43, 95% CI = 0.21-0.87,
p = 0.02, Fig. 10A). Moreover, the AUC values for 1, 2,
and 3-year survival periods were determined to be 0.73,
0.74, and 0.71, respectively (Fig. 10B). Our findings sug-
gest that combining RiskScore and cluster analysis repre-
sents a novel classification method to further screen and
classify patients.


https://www.biolifesas.org/

Journal of

BIOLOGICAL REGULATORS
and Homeostatic Agents 5 053

A

104 RiskScore
mL
W H
0.8 -
2
3
©
Q
o
8 0.5+
2
s
=
(0]
0.3+
p=1.6e-4 \
009 HR=2.27,95C1%(1.47,3.52)
Numberatrisk S SO FUUSORU T ORUSUURR USSR |
L78 30 O e 1
H (67 16 3 3 1
(I) 5;1 1,1I42 1,7I13 2 2IB4
Time
1.0
0.8
0.6
8
B =
g
n
0.4
02
] AUC(95%CI)
—0.71(0.81-0.61
0.0 T T T T ( )
0.0 02 04 0.6 0.8 1.0
1-Specificities

Fig. 7. Evaluation of the risk signature. (A) Kaplan-Meier survival analysis curves of the high- and low-risk groups in the TCGA
database separated by the signature. (B) Time-dependent receiver operating characteristic (ROC) curve for the patients in the TCGA-
PDAC at 1-year follow-up.


https://www.biolifesas.org/

Journal of

BIOLOGICAL REGULATORS
5 054 and Homeostatic Agents
0.5
o
2
3
& 0.4
S
£
El
°3 4
& g 03
E
£024
=
k]
23
I
0.1
00 T T T T _10 00 T T T T T
0.0 02 04 0.6 0.8 1.0 2 4 6 8 10
consensus index K
%0 c1
mc2
el
0.8
%‘
§0.5'—
5
;
0.3
p=0.77
0.0 14R=0.94,95C1%(0.60,1.46)
mber AUHSK |||
c2|s2 2 3 A i
ctlgs 2 6 4 i
(I7 5;1 1,1‘42 1,7'13 2,2'&

Fig. 8. Consensus clustering analysis based on hub ARgs in TCGA-PDAC. (A) Distribution of the cumulative distribution function
(CDF) curve for consensus clustering. (B) Relative shift in the area under the curve (AUC) of the CDF curve at K =2-10. (C) Examination
of unsupervised clusters based on hub ARgs. (D) Kaplan-Meier plot in OS contrasting clusters 1 and 2 in OS.

group cluster

Fig. 9. Sankey diagram of the two subgroups (C1 and C2 subjected to gene clustering) and two risk groups.
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Fig. 11. Correlation between different subgroups and immune cell infiltration levels in PDAC patients. (A) The box plots show
significantly different immune cell levels between the high-risk and low-risk subgroups. (B) The box plots illustrate significantly different
immune cell levels between the C1 and C2 subgroups. (C) The box plots demonstrate the varying immune cell infiltration levels between
the high+C1 group and the low+C2 group after adopting the new classification method. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001.
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Subtype-Based Analysis of Immunological Features

We employed the “CIBERSORT” algorithm to deter-
mine the differences in immune cell infiltration between the
C1 and C2 clusters, representing high-risk and low-risk sub-
groups. Notably, significant variations were observed in B
cells naive, T cells CDS, plasma cells, and macrophage MO.
In the low-risk group, the infiltration level of macrophages
MO was lower than in the high-risk group, with the C1 clus-
ter exhibiting a lower infiltration level compared to the C2
cluster. Conversely, in the high-risk group, the infiltration
level of B cells naive, T cells CD8, and plasma cells was
also lower compared to the low-risk group, and the C2 clus-
ter exhibited a lower infiltration level compared to the C1
cluster.

Similarly, following the implementation of the new
classification approach, we compared immune cell levels
in the high+C1 and low+C2 groups. Our analysis revealed
that the levels of M2 macrophages, resting dendritic cells,
and neutrophils were lower in the high+C1 group, indicat-
ing a worse prognosis in comparison to the low+C2 group
(Fig. 11).

Overall, we explored the correlation between immune
cells and risk signatures. Our findings revealed that an
increase in the RiskScore was associated with lower lev-
els of CD8 T cells and naive B cells but higher levels of
macrophages (M0 and M2) (Fig. 12).

Validation of the Novel Categorization and the
Anoikis-Related Prognostic Risk Signature

Using ICGC datasets, we validated the performance
of the anoikis-related predictive risk signature. Our anal-
ysis revealed that patients with high-RiskScores exhibited
lower survival rates and higher mortality (HR = 1.37, 95%
CI=1.02-1.85, p=0.04, Fig. 13A). Additionally, the AUC
for the one-year survival time of prognostic signature in the
ICGC dataset was 0.66 (Fig. 13B). Subsequently, through
the expression of six hub ARgs, patients were categorized
into C1 and C2 subclusters via cluster analysis (Fig. 14).
With the application of this novel classification method, the
Kaplan-Meier curve results for high-risk C1 subgroup pa-
tients and low-risk C2 subgroup patients mirrored those in
the TCGA dataset. Furthermore, a more significant statis-
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Fig. 13. Assessments of the risk signature in the International Cancer Genome Consortium (ICGC) database. (A) Kaplan-Meier
survival analysis curves of the high- and low-risk groups in the ICGC database, separated by the signature. (B) Time-dependent ROC
curves for the patient in ICGC-PDAC at 1 year of follow-up.

tical difference was observed (HR = 0.49, 95% CI =0.32—  all survival conferred by the newly developed classification
0.75, p=8.9 x 10~%, Fig. 15A), with AUC values of 0.66, method and the risk prediction signature based on genes re-
0.64, and 0.68 at 1, 2, and 3 years, respectively (Fig. 15B). lated to anoikis.

These results underscored the high predictability of over-
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Verification of Hub Genes in PDAC Tissues through
PCR Assay

PCR was conducted to further confirm the expres-
sions of hub genes in clinical samples. The results revealed
significant down-regulation of B-cell lymphoma-2 (BCL2),
CACR4, and hepatitis A virus cellular receptor 2 (HAVCR?2)
expressions in pancreatic ductal adenocarcinoma tissues
compared to the adjacent tissues (Supplementary Fig. 1).
The expressions of myosin VA (MYO54), SESNEI, and
signal-regulatory protein A (SIRPA) were not statistically
significant but consistent with the results of bioinformatics
analysis.

Discussion

By 2030, the absolute death rate of pancreatic cancer
is projected to rank second only to lung cancer, making it
the second-leading cause of cancer-related deaths world-
wide [24]. The challenge of early diagnosis and poor prog-
nosis of patients underscores the urgent need for effective
interventions. Epidemiological data from 2022 revealed a
median survival time of less than 20 months for pancreatic
cancer patients post-surgery [3]. Despite comprehensive
systemic therapies, including surgery, chemotherapy, ra-
diotherapy, targeted therapy, and immunotherapy [25], ef-
fectively extending patient survival remains elusive. There-
fore, elucidating accurate biomarkers to detect the associ-
ated molecular subtypes of PADC and predict patient out-
comes is paramount for guiding precise and personalized
treatment strategies.

The extracellular matrix (ECM) is a pivotal non-
cellular component that regulates various cell behaviors and
mediates cell communication. Its role in influencing cell
migration, proliferation, tumor metastasis, and treatment
resistance mechanisms in pancreatic cancer is increasingly
recognized [26]. Anoikis, coined in 1994, has been pre-
dominantly studied for its ability to suppress abnormal cell
proliferation or detachment from the ECM [27], playing a
pivotal role in tumor progression [28-30]. However, re-
search on the collective impact of ARgs in PDAC patients
has been limited.

In this study, the differential expression of ARgs in
PDAC laid the foundation for developing a robust and reli-
able prognostic signature. We identified two distinct molec-
ular subtypes and examined the interactions between ARgs
and the clinical tumor immune microenvironment. By inte-
grating these findings, we have established a novel classi-
fication system to facilitate more precise and personalized
PDAC treatment approaches for PDAC patients.

In this study, we initially explored a total of 68 dif-
ferentially expressed ARgs in the TCGA-PDAC dataset.
Subsequently, we employed the WGCNA method to iden-
tify 7 modules of ARgs associated with tumor phenotype,
from which 6 hub ARgs (BCL2, C-X-C motif chemokine
receptor 4 (CXCR4), HAVCR2, MYOS5A, sestrin 1 (SESN1),
SIRPA) were identified through the intersection. Next, em-
ploying the LASSO-COX approach, we constructed a risk
signature comprising four hub ARgs to predict the prog-
nosis of PDAC patients, categorizing them as low-risk or
high-risk groups. Notably, significant variations in prog-
nosis and immune infiltration were observed between these
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Fig. 15. Evaluation of the new classifications in the ICGC database. (A) Kaplan-Meier survival analysis curves, stratified by the new
classification into the high-risk+C1 and low-risk+C2 categories. (B) Time-dependent ROC curves for the patients with ICGC-PDAC at

1, 2, and 3 years of follow-up.

two subgroups. Additionally, based on the expression pat-
terns of the six hub ARgs, PDAC patients were separated
into two molecular subgroups. However, Kaplan-Meier
survival analysis did not reveal in overall survival (OS) dif-
ferences between the two subtypes. Nevertheless, further
analysis under the condition of immune infiltration unveiled
distinct differences.

Furthermore, we observed an overlap between pa-
tients categorized by RiskScore and those classified by
molecular subtypes, as depicted by the Sankey diagram.
To enhance prognostic prediction, we combined the two
approaches, thereby classifying patients into the High+C1
group and low+C2 group. Ultimately, we successfully
externally validated the risk signature and the combined
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screening model, confirming their significant predictive
value. Our findings underscore the importance of devel-
oping robust molecular markers based on ARgs to enhance
clinical management and reduce mortality rates among
PDAC patients.

BCL?2 is the pioneering anti-apoptotic gene discov-
ered [31], exhibiting high expression levels in most pan-
creatic cancers [32]. The intricate interplay between pro-
apoptotic (e.g., BAX) and anti-apoptotic (e.g., BCL2) mem-
bers within the BCL2 family determines cellular fate in
response to apoptotic stimuli at the mitochondrial level
[33,34]. CXCR4, a specific a-chemokine receptor for stro-
mal cell-derived factor-1 (SDF-1) [35], plays a crucial role
in PDAC. The CXCR4-SDF-1 axis bridges the tumor and
the stroma, contributing to tumor progression [36]. Recent
findings have highlighted heightened CXCR4 expression in
CDS8+ cells and macrophages in PDAC, suggesting its po-
tential as a biomarker for assessing the efficiency of im-
mune checkpoint inhibitors (ICI) [37]. Consequently, tar-
geting CXCR4+ macrophage infiltration is crucial in PDAC
immunotherapy [38].

HAVCR2, also referred to as T cell immunoglobulin 3
(Tim-3), is a marker of T cell failure. In PDAC, elevated
expression of Tim-3 on T cells correlates with poorer prog-
nosis [39,40]. Tim-3 promotes immunological invasion,
evasion, and metastasis in pancreatic cancer [41]. Signal-
regulatory protein A (SIRPA), a renowned transmembrane
glycoprotein, produces protein byproducts that can enhance
the response to immunotherapy in various malignancies.

The landscape of tumor therapy has shifted towards
immunotherapy, with recent research highlighting the pro-
found inhibition of pancreatic cancer in the immune envi-
ronment [42]. Our results unveiled a significant correlation
between hub ARgs and immune cell populations, prompt-
ing us to explore further their interaction within the im-
munological microenvironment. Accumulating evidence
suggests the presence of CD8+ T cells in PDAC tumor
tissue, and substantial infiltration is linked to markedly
improved disease-free survival (DFS) and/or OS rates in
PDAC patients [43,44]. Consistent with these findings, our
study revealed a negative correlation between the risk sig-
nature and CDS cells.

Additionally, ‘hot” PDAC tumors are characterized by
macrophage infiltration, which may lower the cytotoxic ac-
tivity of CD8+ T cells [45]. Macrophages, often referred
to as tumor-associated macrophages (TAMs), represent one
of the most prevalent non-cancerous cell types in the tumor
microenvironment (TME). Kurahara et al. [46,47] first re-
ported the M2 polarization phenotype in human PDAC tis-
sues, which correlates with enhanced lymph angiogenesis
in lymph nodes and poor prognosis. Our findings corrobo-
rate the impact of macrophages on the overall survival (OS)
of the patient, demonstrating a positive association between
the risk signature and macrophages.
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Further analysis of differences in immune cell infil-
tration between the two subgroups stratified by the risk
signature revealed valuable insights. Despite higher MO
macrophage content in the high-risk group, native B cell, T
cell CDS, and plasma cell contents were lower in this group
with poorer prognosis. Similarly, although no prognostic
differences were observed between the two subgroups iden-
tified by consistent cluster analysis, comparable immune
cell infiltration patterns were evident. While group C2 ex-
hibited high MO Macrophage content compared to group
C1, native B cell, T cell CD8, and plasma cell contents were
lower in group C2 compared to group Cl1.

The convergence of immune infiltration patterns be-
tween C2 and high-risk groups post-reclassification un-
derscores the rationale behind their classification overlap.
Upon reclassification, we examined immune infiltration
level variations between the high-risk+C1 and low-risk+C2
groups. We observed that some initial differences were
eliminated following subgroup amalgamation, with notable
differences in M2 macrophage, resting dendritic cells (DC),
and neutrophils, and the group with poor prognosis had low
expression.

DC is rare in the TME of PDAC, mainly located in
the interstitial surrounding the tumor [48], and high levels
of circulating DC in PDAC tissues are significantly cor-
related with improved OS [49,50]. DCs have emerged as
the primary immune cells for developing anti-PDAC vac-
cines. Neutrophils have recently been identified as a key
factor in promoting tumor metastasis, although their role
in tumor progression remains contentious. In our findings,
the expression of MO macrophages was higher in the high-
risk group, which also corresponds to a poor prognosis,
while the high-risk+C1 group, another classification asso-
ciated with poor prognosis, exhibited lower expression of
M2 macrophages. The M2 phenotype of tumor-associated
macrophages (TAMs) has an immunosuppressive effect.
Previous study had indicated a predominance of M2-like
TAMs in pancreatic cancer, with a corresponding decrease
in overall survival as the number of M2 macrophages in-
creases [51]. However, our findings are contrary to this
finding. This might explain why there were no statistically
significant differences in prognosis between the C1 and C2
groups.

This study identified genes related to anoikis and es-
tablished a prognostic signature based on four hub ARgs to
evaluate their value in estimating PDAC prognosis. Fur-
thermore, we classified two molecular subtypes based on
six hub ARgs through consistent cluster analysis. The com-
bination of these molecular subtypes and the prognostic sig-
nature allowed for further stratification of patients, leading
to improved prognosis assessment.

However, PDAC is a complicated and heterogeneous
disease with various clinical characteristics. ~The ge-
netic and epigenomic modifications contributing to di-
verse molecular, cellular, and clinical characteristics signif-
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icantly increase inter- and intra-tumor heterogeneity, pos-
ing challenges in developing and managing PDAC. Exten-
sive prospective clinical investigations are required to es-
tablish the function of anoikis in the onset and progression
of diseases. This is also crucial for exploring its potential
therapeutic benefits.

Conclusion

In conclusion, this comprehensive study examined the
expression patterns and prognostic significance of ARgs in
PDAC patients. Novel risk signatures were developed, and
two molecular subtypes were classified for PDAC. Notably,
the combination of risk signature with molecular subtypes
accurately predicted the prognostic outcomes of PDAC pa-
tients. Additionally, we confirmed a close correlation be-
tween PDAC clinicopathological factors and the TME, and
validated the prognostic signature and classification using
external data from the ICGC. These findings offer new in-
sights into the onset and progression of PDAC and anti-
tumor targets, offering theoretical and practical support for
the effective screening and follow-up treatment of PDAC
patients.
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