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Background: Prostate cancer (PC) is a solid tumour that is highly prevalent worldwide, ranking as the second most common
tumour in humans. The N6-methyladenosine modification of ribonucleic acid (RNA) (m6A) is the most prevalent epigenetic
internal modification of both non-coding RNAs (ncRNAs) and messenger RNAs (mRNAs). This study aimed to investigate the
link between m6A-related long non-coding RNAs (lncRNAs) and PC to provide a new solution for treating this disease.
Methods: This study used a Pearson’s correlation analysis to identify m6A-related lncRNAs. The expression and function of
AC020907.4, one of the four selected m6A-related lncRNAs, were verified through experimental validation in PC tissue samples
and cell lines. In addition, univariate Cox regression was employed to screen thesem6A-related lncRNAs for PC. In the validation
and entire groups, a least absolute shrinkage and selection operator (LASSO) Cox regression analysis was used to establish and
validate the prognostic model for biochemical recurrence (BCR), and small interfering RNA (siRNA) was used to knockdown
AC020907.4. Real-time quantitative polymerase chain reaction assay was used to detect the mRNA expression level. A cell
counting kit-8 assay was used to detected cell viability.
Results: In total, this study identified 204 m6A-related lncRNAs and found that 64 of the 204 were linked with BCR in patients
diagnosed with PC. The LASSO Cox regression was employed to establish a BCR model containing four lncRNAs (AC020907.4,
AC022364.1, AC099850.3 andAP001505.1). Kaplan–Meier curves confirmed the different outcomes in the low-risk and high-risk
groups. The effectiveness of the model was evaluated using receiver operating characteristic and concordance index curves. The
independence of the model for the prognosis prediction was analysed using univariate and multivariate Cox regression analyses.
The knockdown of AC020907.4 reduced the cell viability of PC cells.
Conclusions: This study constructed and validated an m6A-related lncRNA model for BCR prediction in patients with PC,
providing new insights for research related to m6A and the clinical treatment of PC.
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Introduction

Prostate cancer (PC) is a solid tumour that is highly
prevalent worldwide, ranking as the second most common
tumour in humans. In 2021, it was the fifth leading cause of
cancer deaths in men [1,2]. Currently, if patients develop
localised PC, the optimal results are achieved through radi-
cal prostatectomy (RP). However, after RP, approximately
27%–53% of patients develop prostate-specific biochemi-
cal recurrence (BCR) because of the inherent heterogenic-
ity of PC [3,4]. According to the guidelines provided by the
European Association of Urology, BCR can be identified
if the prostate-specific antigen value, the most commonly
recognised diagnostic biomarker of PC, rises to 0.2 ng/mL
with an upward trend at two consecutive follow-up appoint-

ments after RP [5]. It is well known that BCR does not
equal clinical recurrence, which can be confirmed through
imaging examinations. Although not all patients progress
to BCR after RP, BCR remains a key risk factor for the to-
tal mortality of PC [6]. Distinguishing patients who have
a high risk of BCR from those with a low risk is crucial
so that rescue therapy can be administered to high-risk pa-
tients promptly. Although a number of prognostic models
have been developed and used for the prediction of the over-
all survival (OS) of patients with PC after treatment [7], a
model is urgently needed for use in clinics as an early pre-
dictor of BCR.

The N6-methyladenosine modification of ribonucleic
acid (RNA) (m6A) is a major epigenetic modification of
different types of RNAs, including non-coding RNAs (ncR-
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NAs) and messenger RNAs (mRNAs) [8]. The methylation
of RNA has been demonstrated to regulate its stability, mat-
uration, cellular export and decay [9–11]. The m6A methy-
lation is a dynamically reversible RNA modification. This
modification is regulated by three m6Amodulators: writers
(methyltransferases that put m6A on RNAs), readers (pro-
teins that can recognise the m6A site in RNAs) and erasers
(demethylases that remove m6A from RNAs) [12,13].

Multiple studies have shown that m6A patterns of
mRNA (abundance and location) are vital for assessing the
progression and pathogenesis of different types of cancers
[8,14,15]. For example, research suggested that methyl-
transferase 3 (METTL3) promotes the translation of mR-
NAs that are related to the pathogenesis of human lung can-
cer, including the Hippo pathway effector tafazzin and epi-
dermal growth factor receptor [14]. Methylation regulators
have been associated with the clinicopathological features
of PC, and prognostic models constructed using genes in-
volved in m6Amethylation have a high predictive value for
recurrence after RP [15].

Long non-coding RNAs (lncRNAs) contain<200 nu-
cleotides with no standard open reading frame, and they do
not encode any proteins [16]. The abnormal expression of
lncRNAs is linked with a variety of cancers and has key
functions in regulating the cell cycle and its differentia-
tion; it also impacts the apoptosis, proliferation, invasion
and metastasis of different cancer cells [17,18]. Some stud-
ies have shown that lncRNAs can be utilised as biomarkers
for predicting the progression and diagnosis of PC [19,20].
In addition, some reports have noted that m6A can occur
extensively on a variety of lncRNAs to change their sta-
bility, resulting in abnormal transcription and gene expres-
sion [21–23]. Ni et al. [24] found that the m6A reader
protein, YTH N6-methyladenosine RNA binding protein
(YTHDF) 3, can increase the degradation of lncRNAGAS5
by affecting its m6A modification, thereby facilitating the
yes-associated protein pathway in colorectal cancer (CRC).
Thus, targeting the m6A of GAS5 may be a novel treat-
ment for CRC [24]. Lang et al. [25] reported that m6A pro-
motes PC bonemetastasis and tumour growth; however, the
detailed pathogenesis mechanism of how m6A-modified
lncRNAs affect PC has not been fully investigated.

In this study, through a study of The Cancer Genome
Atlas (TCGA) [26] datasets (n = 499) and Chinese Prostate
Cancer Genome and Epigenome Atlas (CPGEA) [27,28]
datasets (n = 208), 204 m6A-related lncRNAs were iden-
tified in patients with PC. Subsequently, in the training
group, 64 m6A-related lncRNAs were predicted to be re-
lated to PC. This study also established a model of m6A-
related lncRNAs for the prediction of the likelihood that a
patient with PC may progress to BCR. This research may
assist with the improved prediction of prognosis in patients
with PC, thus providing earlier interventional therapies in
high-risk patients that may progress to BCR.

Materials and Methods

Expression of mRNA and Clinical Data
The mRNA expression datasets from the PC tissue

samples and adjacent normal tissue specimens were down-
loaded from TCGA (https://portal.gdc.cancer.gov/) and
CPGEA (https://ngdc.cncb.ac.cn/bioproject/browse/PRJC
A001124). As of 29 October 2021, the datasets contained
707 PC tissue samples and 260 samples from adjacent non-
tumour tissue. The corresponding information from clini-
cal data (e.g., identity, survival time and state, tumour (T)–
node (N)–metastasis stage, age, ethnicity, BCR state, BCR
time and Gleason score) was downloaded from the Univer-
sity of California at Santa Cruz Xena website (https://xena
browser.net/datapages/?dataset). The local research ethics
committee indicated no additional ethical clearance was re-
quired because the initial research that generated these data
was conducted in accordancewith TCGA andCPGEA stan-
dards.

Identification of the Differentially Expressed m6A
Modulators

In total, 22 m6A modulators were identified from
previous research, including m6A writers (methyltrans-
ferase (METTL)3/14/16, RBM15, RBM15B, VIRMA,WTAP
and ZC3H13), readers (HNRNPC, IGF2BP2/3, RBMX,
YTHDC1/2, YTHDF1/2/3, etc.) and erasers (alkB ho-
molog 5 (ALKBH5) and alpha-ketoglutarate-dependent
dioxygenase (FTO)) [23]. The edgeR software (Version
100.0.1185.29, Bioconductor, Redmond, WA, USA) pack-
age [29] was used to identify the differentially expressed
m6A modulators (p < 0.05). A Venn diagram was drawn
based on the differentially expressed m6Amodulators from
TCGA and CPGEA data.

Identification of m6A-Related lncRNAs
The m6A-related lncRNAs in PC were identified us-

ing Pearson’s correlation analysis. In this study, m6A-
related lncRNAs were defined as lncRNAs that have cor-
relation coefficients > 0.5 and a p-value < 0.05. The re-
sults were visualised through a Sankey diagram using the
ggplot2 function in R [30].

Establishment of an m6A-Related lncRNA Model
The m6A-related lncRNA model was established

using a least absolute shrinkage and selection operator
(LASSO) Cox regression analysis [31], as in previous stud-
ies [32]. The stratified randomisation method was used
to separate the patients into training and validation groups
(5:5). The biomarkers were identified in the training group,
and the validation group was used to evaluate the identi-
fied regression. The LASSO Cox regression analysis was
utilised to analyse the expression of m6A-related lncRNAs
and determine the prognostic model. Finally, receiver oper-
ating characteristic (ROC) curves [33], Kaplan–Meier sur-
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vival estimates and concordance index (C-index) curves
[34] were used to evaluate the power of the model in pre-
dicting the prognosis of patients with PC.

Patients and Clinical Specimens
Ten PC specimens and their paired healthy tissue were

collected from the patients undergoing laparoscopic RP at
the urology department of Kunshan Hospital of Traditional
Chinese Medicine between June 2018 and December 2020.
All tissue samples were stored in liquid nitrogen. The speci-
men and clinical pathological data collectionwere approved
by the Institutional Research Ethics Committee of Kunshan
Hospital of Traditional Chinese Medicine, and written in-
formed consent was obtained. The ethical approval number
for this study was KZY2020-09.

Cell Culture
Two human PC cell lines (C4-2B and DU145) and hu-

man normal prostate epithelial cell line RWPE-1 cells were
purchased from the Shanghai ChineseAcademy of Sciences
cell bank (Shanghai, China). The PC cell lines were grown
in Dulbecco’s Modified Eagle Medium (11995040, Gibco,
Grand Island, NY, USA), which was supplemented with
10% foetal bovine serum (10270-106, Gibco, Grand Island,
NY, USA) and 1% penicillin–streptomycin. The RWPE-
1 cells were cultured in keratinocyte serum-free medium,
which contained human recombinant epidermal growth fac-
tor (PHG0311, Thermo Fisher Scientific, Waltham, MA,
USA) (5 ng/mL) and bovine pituitary extract (02-104,
Sigma-Aldrich, Saint Louis, MO, USA) (0.05 mg/mL). All
cell lines have passed mycoplasma detection and STR iden-
tification. All cells were free of mycoplasma contamination
and no additional cell contamination.

RNA Extraction and Real-Time Quantitative
Polymerase Chain Reaction Assays

The total RNA of the PC specimens and paired healthy
tissue were extracted using Ezol Reagent (B002-v001,
GenePharma, Shanghai, China). The target complemen-
tary deoxyribonucleic acid was synthesised through reverse
transcription (RT) using random primers and the GoScript
RT system (A5001, Promega, Madison, WI, USA). A real-
time quantitative polymerase chain reaction (qRT-PCR)
was performed using GoTaq qPCR Master Mix (A6001,
Promega, Madison, WI, USA) and qRT-PCR Plus System
(Stratagene, La Jolla, CA, USA). Data processing was per-
formed using the 2−∆∆Ct method. The results are pre-
sented as mean ± standard deviation (n = 3 replicates). A
two-tailed Student’s t-test or one-way analysis of variance
(ANOVA) was used for statistical analysis.

The sequences of the METTL3, AC020907.4 and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
primers were as follows:

METTL3 forward:
5′-TTGTCTCCAACCTTCCGTAGT-3′;

METTL3 reverse:
5′-CCAGATCAGAGAGGTGGTGTAG-3′;
AC020907.4 forward:
5′-GGCAGAGGTCGCACCACTG-3′;
AC020907.4 reverse:
5′-CCCACAGCCAGCCTTTGAGAA-3′;
GAPDH forward:
5′-ATCACCATCTTCCAGGAGCG-3′;
GAPDH reverse:
5′-CAAATGAGCCCCAGCCTTC-3′.

Cell Transfection
Small interfering RNA (siRNA) targeting

AC020907.4 (siRNA-1 and siRNA-2) and the nega-
tive control (NC) were purchased from GenePharma
(Shanghai, China). The AC020907.4 siRNA-1
was 5′-CCAGCUGCAGGUAAGUGCUCAGUCU-
3′, and the AC020907.4 siRNA-2 was 5′-
CAGCUGCAGGUAAGUGCUCAGUCUA-3′. The
siNC was 5′-AAUAAACUUUGCUUGUGUUGGGUGG-
3′. Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)
was applied according to the instructions.

Cell Counting Kit-8 Assay
Cell proliferation rates were measured using a cell

counting kit-8 (CCK-8; GW770, Dojindo, Tokyo, Japan)
assay. The transfected C4-2B and DU145 cell lines (5 ×
103 cells/well) were seeded in a 96-well plate. After 0, 24,
48 and 72 h of culture, 10 µL of CCK-8 solution was added,
after which the cells were incubated for 2 h at 37 °C. The ab-
sorbance was measured in a microplate reader (Multiskan
SkyHigh, Thermo Fisher Scientific, Waltham, MA, USA)
at 450 nm.

m6A RNA Methylation Quantification
Total RNA isolation and two rounds of PloyA+

mRNA selection were performed to measure the global
change of the m6A modification level. The change in
global m6A levels in the mRNA was measured using an
EpiQuik m6A RNA Methylation Quantification Kit (Epi-
Gentek, cat. P-9005, New York, NY, USA) following the
manufacturer’s protocol.

Univariate and Multivariate Cox Regression
Analyses

Univariate and multivariate Cox regression analyses
were used to evaluate the model’s independence from the
available clinical data (e.g., age, Gleason score, T/N stage
and ethnicity) to predict the prognosis. Statistical Prod-
uct and Service Solutions (SPSS) 19.0 software (IBM,
Chicago, IL, USA) was employed to calculate the two-
tailed hazard ratios and 95% confidence intervals.
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Functional Enrichment Analysis and
Immunohistochemistry Analysis

The Gene Ontology (GO) annotations of the mRNAs
that were differentially produced in the low-risk and high-
risk groups were conducted using the ClusterProfiler func-
tion in R [35]. The immunohistochemistry figures of the
m6A modulators were downloaded from the Human Pro-
tein Atlas Database (https://www.proteinatlas.org/) [36].

Statistical Analysis
The SPSS 19.0 software was used for statistical anal-

yses. A two-tailed Student’s t-test was performed for the
comparison between two groups. One-way ANOVA was
performed for comparisons between three or more groups
based on one factor. A two-way ANOVA was performed
for comparisons between three ormore groups based on two
factors. Univariate and multivariate Cox regression analy-
ses were used to evaluate the model’s independence from
the available clinical data, and p values < 0.05 were con-
sidered statistically significant.

Results

Expression of m6A Modulators in Patients with PC
The analytical procedure is presented in the flowchart

in Fig. 1. Data from TCGA and CPGEA included 707 PC
tissue samples and 260 samples of adjacent non-tumour tis-
sue, along with the clinical information. First, in the cancer
and healthy tissue, 22 differentially expressed m6A modu-
lators were identified (Fig. 2a,b). The number of differen-
tially expressed (p < 0.05) m6A modulators in TCGA and
CPGEA data was 18 and 17, respectively. Second, the m6A
modulators with the same expression pattern in both TCGA
and CPGEA data were identified using the Venn diagram
shown in Fig. 2c. In total, 14 m6A modulators were used
for further study. In addition, some of the differentially
expressed m6A modulators were validated at protein level
(data extracted from the Human Protein Atlas Database),
as shown in Supplementary Fig. 1a. The link between the
m6A modulator expression and Gleason score is shown in
Supplementary Fig. 1b.

Recognition of m6A-Related lncRNAs
The m6A-related lncRNAs in TCGA data were found

using Pearson’s correlation analysis. In total, 204 lncRNAs
were identified as m6A-related lncRNAs. Fig. 3a shows
the potential relationship between the m6A modulators and
lncRNAs using a Sankey diagram. To determine the prog-
nostic models of these 204 lncRNAs, univariate Cox regres-
sions for BCR were conducted, and 64 lncRNAs (p< 0.05)
were identified as the m6A-related lncRNAs for prognos-
tic prediction in patients with PC. A forest plot is shown in
Fig. 3b.

Novel Model of m6A-Related lncRNA Established
Using LASSO Regression in the Training Group

The LASSO method was employed for the construc-
tion of a novel and accurate prognostic model to simplify
and normalise the m6A-related lncRNA model. The strat-
ified randomisation method was used to separate patients
equally into validation and training groups (5:5). The for-
mula below was used to calculate the risk score in the m6A-
related lncRNA model in the training group:

Risk score = Σ (Expi × Coefi).
In the formula, for the specific lncRNA, Expi rep-

resents the expression level, and Coefi represents the es-
timated regression coefficient analysed using multivariate
Cox regression. Fig. 4a displays the estimated coefficients
analysed using the LASSO model, where the dotted line
indicates the coefficient in the training group that is de-
fined by cross-validation. In Fig. 4b, a generalised cross-
validation plot of the expressions of the lncRNAs (train-
ing group) is visualised. The tuning parameter (the partial
likelihood deviance against log [Lambda]) was also plotted.
The most suitable Lambda occurred when five variables
were shown in the model. Finally, the multivariate Cox re-
gression analysis constructed a significant BCR-associated
lncRNA model containing four lncRNAs: AC020907.4,
AC022364.1, AC099850.3 and AP001505.1. The expres-
sion of the selected lncRNAs and association between the
m6A modulators and these lncRNAs is plotted in Fig. 4c.
In addition, the coefficients for AC020907.4, AC022364.1,
AC099850.3 and AP001505.1 were 1.49, –1.13, 0.67 and
0.42, respectively.

m6A-Related lncRNA AC020907.4 Was Upregulated
in PC Cells, and the Knockdown of AC020907.4 Can
Inhibit PC Proliferation in Vitro

Since lncRNA AC020907.4 possessed the highest co-
efficient among the four selected lncRNAs, we decided to
validate the expression of AC020907.4 in the PC tissue
samples and cell lines. As shown in Fig. 4c, AC020907.4
is closely related to METTL3, which is widely regarded
as an m6A writer in current studies. Thus, we conducted
qRT-PCR to quantify METTL3 and AC020907.4 expres-
sion in PC tissue samples and cell lines. The METTL3
and AC020907.4 expression was upregulated in both the
PC tissue samples and cell lines compared with healthy tis-
sue (Fig. 5a,b,e,f). In addition, m6A levels in the PC tis-
sue samples were higher than those in the paired healthy
tissue (Fig. 5c). The expression of AC020907.4 was also
positively correlated with m6A levels in the PC specimens
(Fig. 5d). As shown in Fig. 5g,h, both siRNA-1 and siRNA-
2 significantly reduced the expression of AC020907.4 in
DU145 and C4-2B. Furthermore, the proliferation ability
of DU145 and C4-2B was significantly reduced in both the
siRNA-1 and siRNA-2 groups (Fig. 5i,j).

https://www.biolifesas.org/
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Fig. 1. Workflow to identify an m6A-related long non-coding RNA (lncRNA) model. Abbreviations: TCGA, The Cancer Genome
Atlas; CPGEA, Chinese Prostate Cancer Genome and Epigenome Atlas; LASSO, least absolute shrinkage and selection operator; C-
index, concordance index; BCR, biochemical recurrence; m6A, N6-methyladenosine modification of ribonucleic acid (RNA).

Effectiveness of the m6A-Related lncRNA Model for
Predicting BCR Validated Using the Validation
Group and Entire Group

Apart from the experimental validation of one selected
lncRNA, the ability of the model to validate the prognostic
power in different patients was evaluated. We applied the
model to obtain the risk scores in the validation and entire
groups. The optimal cutoff score was calculated using the
Survminer function in R, and this value was employed to
separate patients into low-risk and high-risk groups. As we
expected, the validation and entire groups shared similar
results with the training group; high-risk patients seemed
to have a higher BCR frequency than those that were low-
risk (Fig. 6). The Kaplan–Meier curves revealed the BCR
frequency in the low-risk and high-risk patients in the dif-
ferent groups (Fig. 6a–c). The risk scores, distribution of
patients and lncRNA expression in the different groups are
displayed in Fig. 6d–l.

Independence from Other Clinical Information and
Effectiveness of the Prognostic Model Validated
through Multiple Approaches

To the best of our knowledge, the Gleason score and
T/N stage are usually used to predict the prognosis of pa-
tients with PC. Therefore, univariate and multivariate Cox
regression analyses were used to evaluate the independence

of the model in predicting the prognosis of patients with PC.
A significant difference (p< 0.05) was observed in the uni-
variate Cox regression analysis when patients were grouped
by the Gleason score, T/N stage and other predictors of the
risk score. However, the age and ethnicity of patients did
not correlate with BCR (p > 0.05) (Fig. 7a).

Subsequently, all factors were included in a multivari-
ate Cox regression analysis (Fig. 7b). The results indicated
that the ‘risk score’ variable was validated as independent
for the prediction of a BCR prognosis (p < 0.05). The area
under the curve (AUC) of the ROC curve was also em-
ployed to evaluate the prognostic ability of different pre-
dictors in Fig. 7c. The AUC of the risk score (0.764) was
greater than those of other parameters containing clinical
information. The time-dependent ROC curve in Fig. 7d in-
dicated a model with improved performance and relatively
high stability (these usually show a greater time-dependent
AUC). The AUC values of the models were 0.764, 0.713
and 0.713 for 1-year, 3-year and 5-year BCR, respectively.
The C-index curve also demonstrated that the risk score of
the model had the highest C-index, indicating that the prog-
nostic model was effective (Fig. 7e).
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Fig. 2. Abnormal expression of m6A modulators in patients with prostate cancer (PC) at messenger RNA level. (a) Expression of
22 m6Amodulators using data from patients with PC in The Cancer Genome Atlas (TCGA). (b) Expression of the 22 m6Amodulators in
patients with PC in the Chinese Prostate Cancer Genome and EpigenomeAtlas (CPGEA). (c) Venn diagram of identified m6Amodulators
in TCGA and CPGEA. *: p < 0.05; **: p < 0.01; ***: p < 0.001. YTHDF, YTH N6-methyladenosine RNA binding protein; METTL,
methyltransferase; ALKBH5, alkB homolog 5; FTO, alpha-ketoglutarate-dependent dioxygenase.
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Fig. 3. Prognostic m6Arelated long non-coding RNA (lncRNA) identification in patients with prostate cancer. (a) Relationship
between lncRNAs and m6A modulators using a Sankey diagram. (b) Univariate Cox regressions for biochemical recurrence using a
forest plot.

m6A-Related lncRNA Model to Identify High-Risk
Patients in the T3–4 Group

Because of the model’s effective sensitivity, speci-
ficity and stability (time-dependent) for predicting BCR
in patients with PC, we combined the risk score with

the pathological features described previously to improve
the model’s prediction power using a Kaplan–Meier curve
across the entire group. Fig. 8a,b indicates that the risk
score can identify the high-risk patients with a Gleason
score of ≤7 and >7. In Fig. 8c,d, the risk score can iden-
tify the high-risk patients in both the N0 and N1 groups. In
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Fig. 4. Establishment of the m6A-related long non-coding RNA (lncRNA)model. (a) Least absolute shrinkage and selection operator
coefficient values of the expression of five lncRNAs. The dotted lines indicate tenfold cross-validation. (b) Tenfold cross-validation for
choosing the tuning parameters in the model. (c) Heatmap indicating the links between the m6A modulators and selected lncRNAs; the
dotted plot shows the expression of the selected lncRNAs. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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Fig. 5. Experimental validation of one selected long non-coding RNA, AC020907.4, in tissue samples and cell lines. (a) Expression
of methyltransferase 3 (METTL3) in prostate cancer (PC) tissue samples and paired healthy tissue, error bars: mean± Standard deviation
(SD); n = 3 replicates; two-tailed Student’s t-test was used for statistical analysis. (b) Expression of AC020907.4 in PC tissue samples
and paired healthy tissue, error bars: mean± SD; n = 3 replicates; two-tailed Student’s t-test was used for statistical analysis. (c) Relative
m6A level in PC tissue samples and paired healthy tissue, error bars: mean ± SD; n = 3 replicates; two-tailed Student’s t-test was used
for statistical analysis. (d) Correlation analysis between relative m6A level and AC020907.4 in PC tissue samples. (e) Expression of
METTL3 in RWPE-1, DU145 and C4-2B, error bars: mean ± SD; n = 3 replicates; one-way ANOVA was used for statistical analysis.
(f) Expression of AC020907.4 in RWPE-1, DU145 and C4-2B, error bars: mean ± SD; n = 3 replicates; one-way ANOVA was used
for statistical analysis. (g) Downregulation of AC020907.4 in the siRNA-1 and siRNA-2 groups in the DU145 cell line, error bars:
mean ± SD; n = 3 replicates; one-way ANOVA was used for statistical analysis, reference group: negative control (NC) group. (h)
Downregulation of AC020907.4 in the siRNA-1 and siRNA-2 groups in the C4-2B cell line, error bars: mean ± SD; n = 3 replicates;
one-way ANOVA was used for statistical analysis, reference group: NC group. (i) Growth curves for DU145 after transfection with
siRNAs or the NC and blank group by the cell counting kit-8 (CCK-8) assay, error bars: mean± SD; n = 3 replicates; two-way ANOVA
was used for statistical analysis, reference group: NC group. (j) Growth curves for C4-2B after transfection with siRNAs or the NC and
blank group by the CCK-8 assay. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, no significance. Error bars: mean
± SD; n = 3 replicates; two-way ANOVA was used for statistical analysis, reference group: NC group. ANOVA, analysis of variance;
siRNA, small interfering RNA.

particular, the model improves the predictive power for the
prognosis of T3–4 patients (p < 0.001) (Fig. 8e,f), which
can serve as a reference for the precise medication and treat-
ment protocol required. Consistent with previous findings,
high-risk patients tend to have poor outcomes in several
clinical subgroups.

Differentially Expressed mRNAs in the Low-Risk and
High-Risk Groups

We used R software to identify the differentially ex-
pressed genes in the low-risk and high-risk groups. In
total, 155 mRNAs were classified as differentially ex-
pressed in these two groups (Supplementary Fig. 2a).
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Fig. 6. Biochemical recurrence (BCR) in the different groups. (a) Kaplan–Meier plot for the low-risk and high-risk patients in the
training group. (b) Kaplan–Meier plot for the low-risk and high-risk patients in the validation group. (c) Kaplan–Meier plot for the
low-risk and high-risk patients in the entire group. (d) Different risk scores in the training group. (e) BCR distribution of patients in the
training group. (f) Number of selected long non-coding RNAs (lncRNAs) in the training group. (g) Different risk scores in the validation
group. (h) BCR distribution plot for patients in the validation group. (i) Expression of the selected lncRNAs in the validation group. (j)
Different risk scores in the entire group. (k) BCR distribution plot for patients in the entire group. (l) Expression of selected lncRNAs in
the entire group.
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Fig. 7. Independence evaluation of the m6A-related long non-coding RNA model from other clinical information. Receiver
operating characteristic (ROC) and concordance index (C-index) curves were utilised to assess the model’s effectiveness. (a) Forest
plot of the univariate Cox regression analysis. (b) Forest plot of the multivariate Cox regression analysis. (c) Risk scores and clinical
information were assessed through the ROC curve using the entire group. The area under the curve (AUC) for the risk score = 0.764, and
the cutoff value is 0.615 (p < 0.05). (d) Risk score in the training group was calculated using a time-dependent ROC curve. The AUCs
are 0.764, 0.713 and 0.713 at 1-year, 3-year and 5-year survival points, and the cutoff value is 0.628, 0.784 and 0.781, respectively (p <
0.05). (e) The clinical information and risk scores were investigated using the C-index.

In addition, the GO pathway analysis suggested that these
genes were strongly enriched in several molecular func-
tions and biological processes related to cancer pathogen-
esis (Supplementary Fig. 2b). Detailed information on
the differentially expressed genes from the GO analyses is
shown in (Supplementary Fig. 2b).

Discussion

Prostate cancer is a highly complex and heterogeneous
tumour, and castration is usually the treatment of choice.
However, after a median of 18–24 months of hormone
therapy, almost all patients progress to castration-resistant
PC (CRPC); unfortunately, there are currently no effective
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Fig. 8. Interaction between clinical information and risk scores investigated using a Kaplan–Meier plot. (a) Kaplan–Meier plot of
low-risk and high-risk patients with Gleason scores ≤7. (b) Kaplan–Meier plot of low-risk and high-risk patients with Gleason scores
>7. (c) Kaplan–Meier plot of low-risk and high-risk patients in the N0 group. (d) Kaplan–Meier plot of low-risk and high-risk patients
in the N1 group. (e) Kaplan–Meier plot of low-risk and high-risk patients in the T1–2 group. (f) Kaplan–Meier plot of low-risk and
high-risk patients in the T3–4 group.

treatments for CRPC [1]. Although plenty of therapies have
been applied to improve the prognosis, drug resistance can
still occur in patients with advanced hormone-refractory PC
and CRPC [5]. Therefore, investigating the mechanisms at

the molecular level and distinguishing reliable and accurate
biomarkers are needed for the diagnosis, prevention and de-
velopment of novel treatments.
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The modification of m6A RNA is indispensable in
post-transcriptional regulation and has been found in dif-
ferent types of ncRNAs, including lncRNAs, tRNAs, mi-
croRNAs and mRNAs [8]. Numerous studies have claimed
that m6A-related lncRNAs may affect tumours from vari-
ous perspectives [7,14,17]. For example, m6A modulators
affect the m6A modification of lncRNAs, which affects the
structure of the lncRNAs and enhances their stability. As
a result, m6A modifications of lncRNAs can influence tu-
mour development to some extent. Research is needed to
determine the detailed interaction between lncRNAs and
m6A modification in PC to identify new biomarkers for
early clinical treatment and the prediction of disease pro-
gression.

In this study, we established a model of four m6A-
related lncRNAs to predict BCR in patients with PC by
analysing TCGA (n = 499) and CPGEA (n = 208) datasets.
Patients with PC were divided into two subtypes that ex-
hibited different outcomes. This study also verified the ex-
pression and function of AC020907.4, one of the four se-
lected m6A-related lncRNAs, in PC tissue samples and cell
lines. This studymay help clinicians identify patients with a
high BCR risk and develop personalised treatment plans for
these patients. In addition, this study may help researchers
understand the detailed molecular mechanism of PC patho-
genesis.

The model identified four lncRNAs: AC020907.4,
AC022364.1, AC099850.3 and AP001505.1. Of these,
AC022364.1 and AP001505.1 were newly identified
biomarkers for PC, having not been previously reported,
whereas AC020907.4 and AC099850.3 are known in sev-
eral types of tumours as prognostic biomarkers. For ex-
ample, a high level of AC020907.4 was found in clear cell
renal cell carcinoma, and it can be utilised for the pre-
diction of OS in these patients [37]. In this study, pa-
tients with a high level of AC020907.4 had a poor prog-
nostic indication. The expression of AC099850.3 was also
found to be upregulated in non-small cell lung cancer tis-
sue samples and was verified as a biomarker for this dis-
ease [38]. Moreover, both AC020907.4 and AC099850.3
were found to be associated with the autophagy pro-
cess of cancer; AC020907.4 is active in the autophagy
of clear cell renal cell carcinoma [38], and AC099850.3
is related to autophagy in hepatocellular carcinoma [39].
Plenty of studies have demonstrated that m6A modifica-
tion is strongly correlated with autophagy in cancer [40,
41]. Alpha-ketoglutarate-dependent dioxygenase (FTO),
an m6A demethylase, can inhibit autophagy and main-
tain the accumulation of FTO [42]. Moreover, YTHDF1,
an m6A reader, is related to hypoxia-induced autophagy
and the progression of autophagy-associated hepatocellu-
lar carcinoma [43]. We hypothesise that AC020907.4
and AC099850.3 may interfere with the autophagy of PC
through m6A modification. Further research is essential to
verify this hypothesis.

This study has some limitations. We used TCGA and
the CPGEA databases to identify the m6A-related lncR-
NAs; however, we were unable to identify the detailed
mechanism underlying these lncRNAs and m6A modifica-
tion. We did verify the model in the entire group, but a
larger sample size of patients with PC from different medi-
cal centres is required for further validation. The expres-
sion of lncRNAs was detected in the tumour tissue as a
biomarker for predicting PC prognosis, but it may be more
practical to detect this expression in the urine or blood of
patients.

Conclusions

This study systematically identified m6A-related
lncRNAs in PC, constructed a model for the prediction of
BCR in patients with PC and validated the model’s stability
and effectiveness. The model was used independently as
a marker for predicting BCR in our study and can provide
novel insights for treating PC.
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