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Background: Lung cancer stands as the leading cause of cancer-related mortality globally, with non-small cell lung carcinoma
(NSCLC) accounting for approximately 85% of all lung cancer cases. Despite advancements in diagnostic techniques and thera-
peutic interventions, the 5-year survival rate for NSCLC remains low due to the recurrence and dissemination of malignant cells.
There is an urgent need to identify novel biomarkers and therapeutic targets to address this challenge. Therefore, this study aims
to identify common genes associated with tumor-related immune cells and investigate their potential clinical utility in both early
and advanced NSCLC.

Methods: Early-stage and advanced NSCLC expression data, mutation data, and associated medical records were obtained and
refined for subsequent examination from The Cancer Genome Atlas (TCGA). Differential expression analysis, gene ontology
(GO), transcription factors and pathway enrichment analysis, and gene set enrichment analysis (GSEA) were implemented to
discern molecular function and regulatory relationship across differentially expressed genes (DEGs). Single-sample gene set
enrichment analysis (ssGSEA) was employed to analyze immune cell abundance. Furthermore, the weighted gene co-expression
network analysis (WGCNA) of DEGs was utilized to screen out gene modules related to tumor-associated immune cells in early-
stage and advanced NSCLC. This was achieved by the tumor immune estimation resource (TIMER) algorithm to assess immune
cell abundance. Subsequently, consensus genes associated with drug sensitivity and pathways activity were analyzed using the
Gene Set Cancer Analysis Literate (GSCALite) platform. Notably, we also evaluated the correlation between consensus genes
expression and TP53 mutant (TP53mut) and TP53 wild-type (TPS3wt). Finally, the KMPlotter online tool was used to evaluate
the prognostic implications of consensus genes exhibiting different correlation patterns in NSCLC.

Results: In early and advanced NSCLC, there were 996 (445 upregulations and 551 downregulations) and 822 (398 upregulations
and 424 downregulations) DEGs from lung adenocarcinoma (LUAD) versus lung squamous cell carcinoma (LUSC), respectively,
following differential expression analysis. In the interferon signal pathway, functional enrichment analysis showed significant en-
richment of DEGs. A correlation between immune infiltration and NSCLC was found using ssGSEA. WGCNA analysis revealed
a strong association between tumor-immune infiltration characteristics and the blue and turquoise modules. Notably, a total
of 27 consensus genes linked to tumor-related immune cells were identified in both early and advanced NSCLC. Furthermore,
differential expression patterns were observed for these consensus genes, such as melanoma-associated antigen A 4 (MAGEA4)
and dynein cytoplasmic 1 intermediate chain 1 (DYNCII1), between TP53 mutant (TP53mut) and TP53 wild-type (TP53wt).
Conclusions: This study revealed the crucial role of immune cell infiltration, especially dendritic cells, in the onset and progression
of early and advanced NSCLC, providing potential targets for immune therapy.
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Introduction Non-small cell lung carcinoma (NSCLC), which en-
compasses lung adenocarcinoma (LUAD) and lung squa-
mous cell carcinoma (LUSC), is the most common subtype

of lung cancer [5]. Focusing solely on early-stage NSCLC

Lung cancer is the second most prevalent malignancy
worldwide, according to the data from the Global Cancer

Statistics 2020. It also exhibits the highest mortality rates
[1]. Furthermore, given that breast cancer has the highest
incidence, lung metastasis is the main contributor to mortal-
ity from breast cancer [2,3]. The incidence of lung cancer
is progressively increasing in China annually, with a recent
trend showing its development at younger ages [4].

is insufficient when compared with advanced NSCLC. Re-
search by Guerrera F et al. [6] indicated that the progno-
sis for stage I lung cancer remains unfavorable even after
surgical resection, with a 5-year overall survival rate of ap-
proximately 70%.
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Immune checkpoint inhibitors (ICIs) including pem-
brolizumab, atezolizumab, and durvalumab have been con-
secutively introduced into clinical practice as potential
treatments for NSCLC [7], demonstrating notably effective
results. However, clinical practice has revealed instances
of therapy failure with ICIs.

Lymphomas are susceptible to immune checkpoint in-
hibitors that target the PD-L1/PD-1 pathway, attributed to
the elevated expression of PD-L1 [8]. The tumor mutation
burden (TMB) serves as a significant source of tumor im-
mune antigens. Abnormal proteins are presented on the hu-
man leukocyte antigen (HLA) complex and recognized by
T cells, thereby triggering an anti-tumor immune response.
TMB has emerged as a promising predictive biomarker for
the efficacy of immune checkpoint inhibitor therapy [9].
Additionally, the characteristics of the tumor microenviron-
ment and immune checkpoints play a crucial role in deter-
mining the response to PD-1/PD-L1 inhibitors [10].

Tumor immune estimation resource (TIMER), en-
abled by high-throughput sequencing technologies and
bioinformatics methods, was employed to assess the distri-
bution of immune cells in cancer [11]. Additionally, gene
co-expression modules associated with immune cells can
be generated using weighted gene co-expression network
analysis (WGCNA), a robust guilt-by-association (GBA)
method for constructing co-expression networks [12].

The Cancer Genome Atlas (TCGA) lung cancer
dataset was used to compare differential gene expression
profiles and associated functional enrichment terms, focus-
ing on immune-related signaling pathways in early and ad-
vanced NSCLC, specifically LUAD versus LUSC. Further-
more, immune-related consensus genes were identified us-
ing immune cell infiltering analyses and WGCNA. Sub-
sequently, the correlation between consensus genes, drug
sensitivity, and signaling pathway activity was investi-
gated. Notably, the presence or absence of a TP53 muta-
tion appeared to influence the expression levels of consen-
sus genes. Patients with lung cancer exhibiting high ex-
pression of consensus genes and TP53 mutation generally
experienced poorer prognoses.

Immune cell infiltration plays a crucial role in
NSCLC. However, the characteristics of immune infiltra-
tion in lung cancer subtypes and their association with dis-
ease advancement require further investigation. Our study
simultaneously analyzed early and advanced NSCLC sub-
types, contrasting their immune cell infiltration patterns
to delineate similarities and distinctions. This compara-
tive analysis provides insights into the potential application
of immunotherapy for lung cancer. By integrating multi-
ple bioinformatics algorithms, we systematically identified
common genes related to tumor immunity at the whole-
genome level, moving beyond the scope of established
immune-related genes. Additionally, the research investi-
gated the associations between consensus genes, drug sen-
sitivity, and important signaling pathway activity, provid-
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ing clues for discovering potential targeted therapies and
predicting treatment efficacy. It also analyzed the effect of
TP53 mutation status on consensus gene expression and its
correlation with prognosis, laying the foundation for per-
sonalized immunotherapy in NSCLC.

Materials and Methods

Data Collection and Preprocessing

Data regarding NSCLC, associated with batch-
corrected gene expression profiles, curated clinical data,
and unified somatic simple mutation data, were obtained
from the PanCanAtlas (https://gdc.cancer.gov/about-data/
publications/pancanatlas). Using the HUGO Gene Nomen-
clature Committee (HGNC) [13] multi-symbol checker
tools (https://www.genenames.org/tools/multi-symbol-che
cker/), all gene names were reannotated to official gene
symbols. Quartile normalization was conducted for cross-
sample normalization using the “normalizeBetweenAr-
rays” function of the “limma” R package (http://www.rpro
ject.org/). Genes showing zero expression in any sample
were excluded, and logy (TPM+1) transformation was ap-
plied to adjust the data post-analysis. Following the guide-
lines of the National Comprehensive Cancer Network, we
determined the number of non-synonymous and all somatic
mutations (tumor mutation burden, TMB) in the coding re-
gion for each tumor sample. For this study, we extracted
gene expression and associated comprehensive clinical data
(Supplementary Table 1) from 530 early-stage (stage I,
286 LUAD and 244 LUSC) and 201 advanced-stage (stage
II-1V, 110 LUAD and 91 LUSC) NSCLC patients, as de-
scribed by Shi R et al. [14] and Blakely CM et al. [15].

Differentially Expressed Genes Analysis

Using the “FactoMineR” (http://www.rproject.org/)
and “Factoextra” R packages (http://www.rproject.org/), a
principal component analysis (PCA) plot was conducted to
evaluate the quality of the transcriptomic data. Differen-
tially expressed genes (DEGs) between LUAD and LUSC
were identified employing the “limma” R package, apply-
ing established criteria [16] of [logoFC| >1 and adjusted p
< 0.05. The list of DEGs was then used for downstream
analysis, followed by visualization using a volcano plot.

Functional Enrichment Based on
Over-Representation Analysis

The background gene set and the Fisher’s test are
essential components for conducting over-representation
analysis (ORA) and the first generation of functional en-
richment [17]. Metascape [18] (http://metascape.org/gp/i
ndex.html) was implemented to complete the functional an-
notation for DEGs. Gene/protein functional annotation was
facilitated through the gene ontology (GO), encompassing
biological processes (BP), cellular components (CC), and
molecular functions (MF), as well as the Kyoto Encyclo-
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Fig. 1. Visualization of gene expression profile data quality control. (A,B) A PCA plot of the data showing no batch effect in the
TCGA NSCLC dataset. Red nodes represent the LUAD cluster, while blue nodes represent the LUSC cluster. PCA, principal component
analysis; NSCLC, non-small cell lung carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TCGA, The

Cancer Genome Atlas.

pedia of Genes and Genomes (KEGQG) (https://www.kegg.j
p/). Metascape TRRUST analysis [18] was used to identify
enriched transcription factors among the DEGs. The statis-
tical significance of overrepresented pathways was assessed
using an adjusted p-value < 0.05.

Functional Enrichment Based on Functional Class
Scoring

The utilization of gene expression profile data was
significantly improved when functional class score (FCS),
a second-generation functional enrichment method, was
compared to ORA [17]. Gene set enrichment analysis
(GSEA) was conducted utilizing MSigDB H: hallmark gene
sets (50 available gene sets, V7.4) via the “plotGseaTable”
function in the “fgsea” R package (http://www.rproject.o
rg/) with parameters set as minSize = 5, maxSize = 1000,
and nperm = 10000 [19]. The gene-pathway data file was
acquired (http://www.gsea-msigdb.org/gsea/msigdb/index.
jsp). Gene sets were considered significantly enriched if the
false discovery rate (FDR) threshold was <0.05.

Analysis of Immune Cell Infiltration

Single-sample gene set enrichment analysis (ss-
GSEA) (http://software.broadinstitute.org/gsea/msigdb/in
dex.jsp) was applied to determine immune infiltration, and
the normalized ssGSEA data were compared with gene sets
using the “GSVA” (R package, http://www.rproject.org/)
function. The infiltration levels of 22 immune cell types
(B cells naive, B cells memory, plasma cells, T cells CDS,

T cells CD4 memory resting, T cells CD4 memory acti-
vated, T cells follicular helper, T cells regulatory, T cells
gamma delta, NK cells resting, NK cells activated, mono-
cytes, macrophages M0, macrophages M1, macrophages
M2, dendritic cells resting, dendritic cells activated, mast
cells resting, mast cells activated, eosinophils, and neu-
trophils) were estimated using ssGSEA analysis. A box-
plot was generated using the “ggplot2” R package (http:
/l'www.rproject.org/) to exhibit the differences in the abun-
dance of these 22 infiltrating immune cells between early
and advanced stages of NSCLC.

Identification of Co-Expression Immune Cell
Infiltration-Related Modules Using WGCNA
Algorithm

The WGCNA strategy [12] was employed to detect
gene modules associated with immune cell abundance in
the early and late stages of NSCLC. Initially, we curated
the dataset consisting of DEGs and deleted the outlier sam-
ples and genes with missing data, as well as those with
zero variance. Subsequently, we applied the “goodSam-
plesGenes” function from the WGCNA R package (http:
/Iwww.rproject.org/) for network construction. The op-
timal soft threshold power for the gene expression pro-
file was determined using the PickSoftThreshold function
and sft$powerEstimate parameters of the WGCNA pack-
age. According to the power-value, a GeneTree was con-
structed. Dynamic modules were determined utilizing a
minimum size of 30 genes, and highly similar modules were
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Fig. 2. Visualization of the results of gene differential expression analysis. (A,B) Volcano plot of all differentially expressed genes
between LUAD and LUSC in early and advanced NSCLC. Differential gene expression was performed with “limma” and “linear” models.
The false discovery rate (FDR)-adjusted p-value was used for the plot. (C,D) Venn plot for the differentially expressed genes between

LUAD and LUSC in early and advanced NSCLC.

combined using a Diss Threshold of 0.25. The blockwise-
Modules function was used to construct the network with
the following parameters: networkType = “signed”, TOM-
Type = “signed”, corType = “bicor”’, minModuleSize = 30,
mergeCutHeight = 0.25, and minKMEtoStay = 0.8. Subse-
quently, we plotted the correlations between modules and
traits, including immune infiltration score and co-expressed
gene modules, using R software (http://www.rproject.org/).
The heatmap of module-trait correlations was generated uti-
lizing the “labeledHeatmap” function. Modules exhibiting
the strongest connections with immune cell infiltration were
identified, and an intersect evaluation (consensus genes)
was performed for early and advanced NSCLC.

Drug Sensitivity and Pathway Activity Linked to
Consensus Genes

An examination of drug resistance associated with
consensus genes was conducted using the “drug sensitiv-
ity analysis” and “pathway activity” modules of “Gene Set
Cancer Analysis Literate (GSCALite)” (http://bioinfo.life.h
ust.edu.cn/web/GSCALite/) [20].
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Fig. 3. Differentially expressed genes (DEGs) enriched for IFN signaling. (A,C) Functional enrichment for GSEA of differentially
expressed genes in initial and progressive stages of NSCLC. (B,D) Functional enrichment for GO and pathway of differentially expressed
genes in initial and progressive stages of NSCLC. (E,F) Functional enrichment of the transcription factors of differentially expressed genes

in early and advanced NSCLC. GSEA, gene set enrichment analysis; GO, gene ontology.

Differential Gene Expression Analyzed According to
TP53 Mutation Status

We used the “coBarplot” function from the “maftools”
R package (http://www.rproject.org/) [21] to compare and
extract the significantly mutated genes in LUAD com-
pared to LUSC at both the initial and progressive stages
of NSCLC. Genes were screened based on their significant
expression differences between groups (|log2FC| >1, ad-
justed p < 0.05).

Survival Analysis for Genes Based on the
Kaplan-Meier Platform

Survival analysis was performed to assess the cor-
relation of several consensus genes in individuals with
lung cancer utilizing an online Kaplan-Meier plotter
[22] (http://kmplot.com/analysis/index.php?p=service&ca
ncer=lung). Additionally, individuals with lung cancer
used overall survival (OS) as a measure of their progress.

Statistical Analysis

Quantitative assessments were conducted using online
bioinformatics tools, R software (http://www.rproject.org
/), and Microsoft Excel Software (version 2018, Microsoft,
Redmond, WA, USA). The “VennDiagram” R program was
used to create a customizable Venn diagram [23]. The as-
sociation between modules and clinical characteristics was
analyzed using the Pearson correlation coefficient. All p-
values were derived from two-sided tests, with statistical
significance set at p < 0.05.

Results

Different Tissue Subtypes of Early and Advanced
NSCLC Have Different Gene Expression Profiles

We first performed differential gene expression anal-
yses comparing early and advanced NSCLC (LUAD vs
LUSC samples) using the “limma” R package. Following
that, we reduced the dataset’s dimensionality through prin-
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cipal component analysis (PCA). The two sample groups
were normalized for further differential expression analysis
(Fig. 1A,B, Supplementary Fig. 1A,B). The volcano plot
was employed to visualize the DEGs. In the early NSCLC
category, the top 5 upregulated and downregulated genes
were NKX2.1, SFTA2, CEACAMG6, SLC34A2, NAPSA, and
KRTS5, CALML3, KRT6A4, KRT17, KRTI4, respectively
(Fig. 2A). For advanced NSCLC, SFTA2, NKX2.1, KRT7,
CEACAMG6, and NAPSA were the top 5 upregulated genes,
while DSG3, KRAS5, CALML3, KRT6A, and KRTI13 were
the top 5 downregulated genes (Fig. 2B). The compari-
son of downregulated genes within the DEGs in both early
and advanced NSCLC groups revealed a significant over-
lap, indicating that the differences in expression profiles be-
tween these groups predominantly stemmed from upregu-
lated genes. Furthermore, the Venn diagram (Fig. 2C,D)
showed that there are 340 commonly upregulated genes and
414 commonly downregulated genes shared between early
and advanced NSCLC.

Differentially Expressed Genes are Significantly
Enriched in Immune-Related Pathways

The early NSCLC group showed that upreg-
ulated genes were significantly enriched in “inter-
feron alpha response”,  “interferon_gamma response”,
“kras_signaling up”, and “complement”, according to
GSEA and GO/Pathway analysis (Fig. 3A,B). Analysis of
the advanced NSCLC group indicated that differentially ex-
pressed genes were linked to “interferon_alpha response”,
“interferon_gamma response”, “coagulation”, and “com-
plement” (Fig. 3C,D). In addition, Metascape TRRUST
analysis of all statistically enriched transcription factors
in the early NSCLC group identified KMT2D, HSD17B8,
and WGGAATGY TEFI Q6 as key regulators of gene
expression (Fig. 3E). KMT2D, WGGAATGY TEF1 Q6,
and TGTTTGY HNF3 Q6 transcription factors have the
ability to regulate all significantly enriched transcription
factors in advanced NSCLC, according to the Metascape
TRRUST analysis (Fig. 3F). The finding demonstrated


https://www.biolifesas.org/

Journal of

BIOLOGICAL REGULATORS

and Homeostatic Agents

09

Height

Moduecolors

Cc

MEturquoise

MEblue

MEbrown

MEgrey

10

Height

Modulecolors

F

MEblue

MEturquoise

MEgrey

4831

Glustar Dantcagram B Scaleindependence Meanconnectivity
o
- W e 2 8"
10 12
789
6
5
g 8
[, -
2 S 4
5
£ H
H g
z £ g
5 3 § g
% =
=R
T."; ¢
I e g4
4
3
ERE o T8990 12 1 16 18 2
T T T T T T T T
5 10 15 20 5 10 15 20
SoftThreshold(power) SoftThreshold(power)
Module-trait relationships
.
0032  -041 0093 0035 =029 021 01  -031 -0073 028 047 03 034 021  -0.16 -022 -0069 -032 021  -0.031 01 | =089
©5)  (001) (003  (04) (6e-12) (9%-07) (0.02) (3e-13) (009) (3e-11) (9e-05) (fe-12) (8e-16) (2e-06) (3e-04) (2e-07) (0.4) (Se-14) (fe-06) (0.5)  (0.02) |(4e-185)
05
-0075 0084 0098 -042 = 03  -031 012 033 00041 =027 042 034 -029 =08 017 031 014 | 038  -019 -0023 -0078
009) (005 (0.02) (0.006) (%e-13) (2e-13) (0.006) (fe=14) (09) (3e-10) (0.005) (fe=15) (Se-12) (3e-11) (1e-04) (2e-13) (0.002) = (8e=20) (1e-05) (0.6)  (0.07)
0
-0.36 0.14 -0.32 0.043 02 -0.081 -0.24 021 0.09 -0.24 -0.0073 025 -0.19 0.037 023 027 -0.078 037 -0.26 -0.056 -0.065 052
(1e-17) (0.001) (5e-14)  (0.3)  (5e-06) (0.06) (1e-08) (1e-06) (0.04) (2¢-08)  (0.9) (4e-09) (1e-05) (04)  (8e-08) (2e-10) (0.07)  (2e-18) (2e-09) (0.2 (0.1) | (2e-38)
=05
-00012 0075 -0.032 -00013 019  -0.14 -0051 = 038 0043 021 017 046 =023  -0.19 0046 015 0049 018  -015 -0.035 -0.068
0o (05 () (8e-08) (0.001) (02) | (26-19) (0.3) (2e-06) (1e-04) (2e-04) (5e-08) (1e-05) (0.3) (8e-04) (0.3) (3e=05) (7e-04) (04)  (0.1)
-1
* e ® & > S ®
& &S & LA A A
POl P £ & & & §
B & < N & & <&
A & & &
&
E Scaleindependence Meanconnectivity
1
D)
w | 78 g_
< 6
s
< g |
& .
5z &
g 3 g
£ 1 ©| 2z &
5 © 18 H
g §
2 o 3 £
5 ° § 8
g A
g H
3
3 - 3
; e
s
<
3 5
o,
, o 910 12 14 16 18 2
T T T T T T T
5 10 15 20 5 10 15 20
‘SoftThreshold(power) SoftThreshold(power)
Module~trait relationships
s
-0089 0057 -0045 019 033  -019 -022 021 -00068 -0.13 00082 03  -016  -03 014 026 019 029  -025 -0045 0082
02 (04 (05 (0006) (2e-06) (0.006) (0.002) (0.003) (0.9)  (0.06)  (0.9) (2e-05) (0.03) (2e-05) (0.04) (2e-04) (0.008) (4e-05) (3e-04) (05)  (02)
0046  -0074 -0.0032 0082 -025 0025 018 023 -0.054 042 0031 -024 014 022  -0087 041  -043  -008 019  -0.0033 018
©5 (03 " (02) (3-04) (07)  (001) (0001) (04)  (0.08)  (0.7) (6e-04) (0.06) (0.002) (02)  (ON)  (007)  (03) (0006) (1)  (0.01)
021 012  -04 0015 003 015 013 049  -0.0094 0014  -0.02 16 -0074 046 004 017 022 0031 012 0035  -0.069
0002 (009) (@1)  (08) 07)  (004) (006) (0006) (09 (08 (08 (002  (©3) (002 (06 (002 (0001) (07)  (008) (06  (0.3)
© N & S
& $ & (@“& S f} &;x 5 \&@ @»“Q ﬁ\& @\e \@Q«\\”
@ < S
& & & A é@‘& @6@‘@ dd?& a R ° o & &
M 4 i o & ¥ @
S gﬂ&

Fig. 5. Development of the weight gene co-expression network. (A,D) Gene dendrogram, with modules represented by different

colors. (B,E) Analyses of network topology for various soft-thresholding powers. (C,F) The weighted gene co-expression network

analysis identified groups of co-regulated genes (modules). Each square in the figures represents the connection between a module

and the corresponding sample, and the p-value indicates the significance of the correlation. The colors of the squares indicate different

correlation types: positive correlation (red), negative correlation (green), and no correlation (white).
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Literate (GSCALite) platform. Red refers to positive correlation, which means the higher the gene expression, the more sensitive to the

drug, while blue represents the opposite. (C) Gene-pathway interaction network of consensus genes in NSCLC using the GSCALite

platform.

that differentially upregulated genes exhibit considerable
enrichment in immune-related biological processes and are
controlled by immune-related transcription factors.

Analysis of Immune Cells Infiltration in NSCLC

We investigated the role of immune infiltration in both
the early and advanced stages of NSCLC. Infiltration in-
volves the migration and accumulation of immune cells
within the tumor microenvironment. Our study utilized ss-
GSEA analysis to assess immune infiltration in the early
and advanced stages of NSCLC. Fig. 4A-D illustrate the
connection between early and advanced NSCLC (LUAD
and LUSC) and 22 types of immune cells. Additionally,
Fig. 4EF present box plots highlighting the differences in
immune cell abundance between early and advanced stages
of LUAD and LUSC. Dendritic cells showed the highest
levels of infiltration among all immune cell types in both
early and advanced stages of NSCLC. Furthermore, the
levels of infiltration of dendritic cells, memory-activated
CD4 T cells, M2 macrophages, and neutrophils were sig-
nificantly higher in advanced NSCLC compared to early-
stage disease, indicating an increased immune response in
later stages. In contrast, the abundance of CD8 T cells was
higher in early-stage NSCLC. In Fig. 4G,H, the bars rep-
resent the percentages of 22 immune cell infiltration abun-
dance in early and advanced LUAD vs LUSC. While there
were similarities in the overall patterns between LUAD
and LUSC, some differences could be observed, such as a
slightly higher neutrophil infiltration in LUSC compared to
LUAD in both early and advanced stages.

Identification of Immune Cell-Associated Gene
Modules

Immune cell scores were examined using the ssGSEA
algorithm. The study utilized WGCNA to establish a model
of immune-related genes. Fig. 5A,B show the module-
trait cluster dendrogram and soft threshold for the early
NSCLC group. In Fig. 5C, the module-trait cluster cor-
relation heatmap revealed that the blue module exhib-
ited the strongest link to the overall immune cell score.
Fig. 5D,E present the module-trait cluster dendrogram and
soft threshold advanced NSCLC. The module-trait corre-
lation heatmap in Fig. 5F indicated that the turquoise mod-
ule displayed the strongest correlation with the immune cell
score. Finally, 27 “consensus genes” were identified and
selected for further analysis by intersecting genes in the blue
module of early NSCLC and the turquoise module of ad-
vanced NSCLC (Fig. 6A).

The Association between Consensus Genes, Drug
Sensitivity, and Pathway Activity

Fig. 6A,B show a strong correlation between ER-
RFI1 expression and the majority of anti-cancer drugs
among the 27 consensus genes. Conversely, RTN4RL2
yielded contrasting results. In addition, an analysis of gene-
pathway activity among the 27 consensus genes indicated
that certain genes may contribute to the progression of both
early and advanced NSCLC through the RTK, PI3K/AKT,
RAS/MAPK and TSCmTOR signaling pathways (Fig. 6C).

Differences in Gene Expression Depending on the
TP53 Mutation Status

Consensus genes (ARHGAP40, MSTIR, CRIP2,
GADDA45G, ITGA3, NRCAM, RASDI1, RTN4RL2, TOR4A,
melanoma-associated antigen A 4 (MAGEA4), dynein cy-
toplasmic 1 intermediate chain 1 (DYNC1I1) and LYPDG6B)
showed notable variations in gene expression in patients
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Fig. 7. Expression of consensus genes in different TP53 mutation statuses. (A) Expression of consensus genes in different TP53

mutation statuses in early NSCLC. (B) Expression of consensus genes in different TP53 mutation statuses in advanced NSCLC. *p <
0.05, **p < 0.01, ***p < 0.001, 0: TP53 wt, 1: TP53 mut, statistically significant; ns, no statistical difference.

with different TP53 mutant statuses (Fig. 7A,B). The iden-
tified consensus genes play diverse functional roles related
to cancer progression and metastasis. For example, genes
such as ARHGAP40, DYNCI1I1, and ITGA3 are involved in
regulating cell movement, migration, and adhesion to the
extracellular matrix [24-26]. Other genes like MAGEA4
and NRCAM may participate in immune response, neuronal
migration, axon formation, and nervous system develop-
ment. Additionally, GADD45G and MSTIR are pivotal
in regulating cell proliferation, cell cycle progression, and
DNA repair. Consensus genes such as R4SD1 and CRIP2

are involved in modulating cell signaling pathways, cy-
toskeleton dynamics and organelle arrangement. Further-
more, MSTIR and LYPD6B may facilitate tumor growth,
metastasis, and tissue remodeling. Notably, DYNCIII and
MAGEA4 were selected for subsequent survival analysis
due to their increased expression in the mutant group in
early and advanced stages of NSCLC.
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mRNA expression. (C—F) The quantitative polymerase chain reaction (qQPCR) for the expression of MAGEA4 and DYNCII! in NSCLC

patients. ****p < 0.

0001.

Prognostic Potential of Consensus Genes with
Different Correlation Patterns in NSCLC

The Kaplan-Meier survival analysis results revealed a
significant correlation between elevated expression levels
of MAGEA4 and DYNC111 and poor OS in lung cancer pa-

tients (Fig. 8 A,B). The quantitative polymerase chain reac-
tion (qPCR) results indicated a substantial upregulation of
MAGEA4 and DYNCIII in NSCLC patient tumor tissues
compared to normal controls. This suggests that MAGEA4
and DYNC1]1 are highly expressed and activated during the
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onset and progression of NSCLC. These findings demon-
strate their strong correlation with the malignant progres-
sion of NSCLC, making them pivotal biomarkers for as-
sessing prognosis and disease progression (Fig. 8C-F).

Discussion

NSCLC is the leading cause of cancer-related deaths
worldwide, primarily attributed to the accumulation of mul-
tiple genetic alterations. However, the precise mechanisms
governing its tumorigenesis and progression remain poorly
understood. The observed number of DEGs in this study
aligns with the findings of Xiao J et al. [27]. Additionally,
distinguishing between early and advanced NSCLC based
on gene expression profile data was challenging, suggesting
the involvement of distinct mechanisms.

Furthermore, GO and pathway analysis revealed that
DEGs were associated with various immune cell activa-
tions and the human complement system, which are criti-
cal in the tumorigenesis and growth of early and advanced
NSCLC. Additionally, GSEA indicated the significant in-
volvement of DEGs in the “interferon alpha response”
and “interferon gamma response” pathways. Remark-
ably, SLC34A2 exhibited distinct expression patterns in
early-stage NSCLC, while this difference was absent in ad-
vanced stage. Additionally, our study revealed a higher
abundance of dendritic cells (DC), key antigen-presenting
cells, compared to other immune cell types. These findings
collectively suggest that alterations in the immune system
play an important role in the development of both early and
advanced NSCLC.

Next, we identified two consensus gene modules
associated with tumor-infiltrating immune cells in early
and advanced NSCLC through WGCNA. A moderately
strong positive correlation was observed between ERRFII1
expression and the majority of anti-cancer drugs using
GSCALite to measure drug sensitivity. Conversely, an-
other gene, RTN4RL2, yielded contrasting results. Ad-
ditionally, these consensus genes may play a role in ad-
vancing early and advanced NSCLC through the RTK,
PI3K/AKT, RAS/MAPK, and TSCmTOR signaling path-
ways, as indicated by GSCALite’s analysis of gene-
pathway interactions.

In a mutational spectrum analysis, it was found
that the most common sequence mutation in both early
and advanced NSCLC is the TP53 mutation. In dif-
ferent TP53 mutation statuses, the gene expression lev-
els of ARHGAP40, DYNCI111, MAGEA4, MSTIR, CRIP2,
GADD45G, ITGA3, NRCAM, RASD1, RTN4RL2, TOR44,
and LYPD6B showed significant differences based on gene
expression analyses. The elevated expression of MAGEA4
and DYNC1I1 mRNA was linked to a poor prognosis for
NSCLC patients, as revealed by database analysis using
KMplotter.

4835

However, our study does have certain drawbacks.
First, a larger sample size would produce more accurate re-
sults compared to the dataset collected from NSCLC pa-
tients in the TCGA. Second, the majority of findings were
based on bioinformatics calculations without experimental
validation. Therefore, further research using a substantial
cohort and experimental methods is necessary to verify the
findings of the current investigation.

Conclusions

In summary, our study showed that immune cell in-
filtration, particularly dendritic cells, displayed signifi-
cantly high levels of infiltration in both early and advanced
NSCLC, indicating their crucial role in tumor development
and progression. Our research presents potential tumor im-
mune targets for the treatment of NSCLC.
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