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Background: Loganein, the primary active ingredient of Cornus officinalis, has been recognized for its anti-tumor effects in
many cancer types, exerting an inhibitory effect on the Wnt/β-catenin pathway. However, its precise impact and underlying
mechanism in lymphoma progression are still unclear. This study aimed to investigate whether loganetin regulated lymphoma
progression through the Wnt/β-catenin pathway.
Methods: To explore the regulatory impact of loganetin on lymphoma progression, we divided lymphoma cells (Jurkat) into three
groups: the Control group (treated with 0 µmol/L loganetin), the Loganetin group (treated with 40, 80, 160 µmol/L loganetin), and
the Loganetin+LiCl group (treated with 20mMWnt/β-catenin signal activator LiCl and 160 µmol/L loganetin). Subsequently, we
assessed Jurkat cell viability, cell cycle, and apoptosis rate to reveal the effect of loganetin and Wnt/β-catenin pathway activator
on lymphoma cell growth using cell counting kit-8 (CCK-8) assay, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining
assay, and flow cytometry. Moreover, the protein levels of CyclinD1, P21, C-Caspase-3, β-catenin, and c-myc were examined
employing RT-qPCR and western blot analysis.
Results: With the increasing of loganetin concentration, Jurkat cell viability, CyclinD1, Bcl-2, β-catenin, and c-myc levels were
gradually decreased (p < 0.05), while the G0/G1 ratio, P21 level, cell apoptosis rate, TUNEL positive cell rate, as well as the
levels of Fas, FASL, Bax and C-Caspase-3/total-caspase 3 were gradually improved (p < 0.05). Compared to the Loganetin
group, Jurkat cell viability, CyclinD1, Bcl-2, β-catenin and c-myc levels were enhanced (p < 0.05), while the G0/G1 ratio, P21
level, cell apoptosis rate, TUNEL positive cell rate, Fas, FASL, Bax and C-Caspase-3/total-caspase 3 levels were reduced in the
Loganetin+LiCl group (p < 0.05).
Conclusions: Loganetin inactivated the Wnt/β-catenin pathway to restrain lymphoma cell proliferation and promote apoptosis.
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Introduction
Lymphoma is the most common malignant tumor in

China [1,2], with the new cases of Hodgkin lymphoma and
non-Hodgkin lymphoma reaching 6984 and 97,788, respec-
tively, according to the WHO GLOBOCAN 2020 data [3].
Current treatment approaches including chemotherapy, lo-
cal radiotherapy, and hematopoietic stem cell transplanta-
tion are insufficient in addressing the demands [4,5]. There-
fore, identifying novel and effective therapeutic drugs is
necessary to improve the survival rate of lymphoma pa-
tients.

Traditional Chinese medicine (TCM) has been used
for treating various human diseases [6,7]. Cornus offici-
nalis, a widely used TCM in China, is rich in nutrients and
functional components [8,9]. Among the TCM, Loganein,
an iridoid glycoside compound, serves as the main active
ingredient in Cornus officinalis, demonstrating significant
anti-tumor and anti-kidney injury effects [10,11]. However,
the effect and mechanism of loganetin on lymphoma pro-
gression are unknown.

The Wnt/β-catenin pathway, a classical Wnt signal-
ing cascade, exhibits a wide range of functions such as
cell proliferation, apoptosis, and metabolism [12]. In tu-
mor tissues, the Wnt/β-catenin pathway is over-activated,
resulting in the malignant phenotype of cancer cells. How-
ever, inhibiting this pathway can ameliorate adverse pheno-
types [13]. Zhou et al. [11] found that loganetin repressed
the progression of gastric cancer by inhibiting the Wnt/β-
catenin pathway. Therefore, we hypothesized and explored
whether loganetin regulates lymphoma progression through
the Wnt/β-catenin pathway. This study aimed to provide
comprehensive insights into the development of therapeu-
tic options for lymphoma.

Materials and Methods

Cell Culture and Grouping

Lymphoma cells (Jurkat; CBP60520, Cobioer, Nan-
jing, China) were cultured in RPMI-1640 (11875119,
Gibco, Carlsbad, CA, USA) medium supplemented with
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Fig. 1. Effect of loganetin on Jurkat cell cycle. (A) Cell cycle was analyzed using flow cytometry (n = 3). (B) CyclinD1 and P21
protein levels were assessed employing western blot analysis (n = 3). **p < 0.01, ***p < 0.001.

1% penicillin/streptomycin and 10% FBS (10099158,
Gibco, Carlsbad, CA, USA). The cell culture was ex-
amined for contamination using the mycoplasma test and
found negative, and was authenticated through STR profil-
ing. The cells were divided into three groups: the Control
group (cells treatedwith 0 µmol/L loganetin), the Loganetin
group (cells treated with 40, 80, and 160 µmol/L loganetin),
and the Loganetin+LiCl group (cells treated with 20 mM
Wnt/β-catenin signal activator LiCl and 160 µmol/L lo-
ganetin).

Cell Counting Kit-8 (CCK-8) Assay
Initially, Jurkat cells were seeded into 96-well plates.

Subsequently, they were treated with different concentra-
tions including 10, 20, 40, 80, and 160 µmol/L of loganetin
(29748-10-5, Mreda, Beijing, China) for 48 hours. The
cells without treatment (0 µmol/L) were used as the control
group. Furthermore, a group of cells was treated with 160
µmol/L loganetin, either with or without the presence of 20
mMLiCl (L9650, Sigma-Aldrich, St. Louis, MO, USA) for
48 hours. After this, the cells were incubated with CCK-8
solution (CK04, Dojindo, Kumamoto, Japan). Finally, ab-
sorbance was assessed at 450 nm using SpectraMax i3x mi-
croplate reader (Molecular Devices, Sunnyvale, CA, USA)
to analyze cell viability.

Flow Cytometry
The treated Jurkat cells were collected, and subse-

quently fixed with 70% ethanol followed by staining with
0.5% PI solution (C1052, Beyotime, Shanghai, China) to
examine the cell cycle. In the next step, the cells underwent
staining with Annexin V-FITC (C1062S, Beyotime, Shang-
hai, China) and PI solutions, and the cell apoptosis rate was
evaluated using a flow cytometer (LSRFortessa TM X-20,
BD Biosciences, San Diego, CA, USA).

TdT-Mediated dUTP Nick-End Labeling (TUNEL)
Staining Assay

The cells were collected and fixed with 4%
paraformaldehyde. Subsequently, they were treated
with 0.3% Triton X-100 followed by co-incubation with
TUNEL reaction solution (C1086, Beyotime, Shanghai,
China). Finally, the cells were observed using a fluores-
cence microscope (SMZ18, Nikon, Tokyo, Japan), and the
TUNEL positive cell rate was analyzed through ImageJ
software (version 1.8.0, NIH, Bethesda, MD, USA).

Western Blot
Total protein was extracted, separated on 10% SDS-

PAGE, and subsequently transferred onto a PVDF mem-
brane. The membrane was incubated overnight with pri-
mary antibodies at 4 °C. The following day, the membrane
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Table 1. Effect of loganetin on Jurkat cell viability (n = 3).
Groups Concentrations (µmol/L) Cell viability (%)

Control 0 100.00 ± 11.23

Loganetin

10 96.36 ± 11.45
20 89.75 ± 10.15
40 75.23 ± 6.66∗

80 60.78 ± 5.19∗#

160 42.69 ± 4.83∗#&

F 19.871
p <0.001
Note: *p < 0.05 to 0 µmol/L; #p < 0.05 to 40 µmol/L; &p <

0.05 to 80 µmol/L.

was thoroughly washed and incubated with secondary anti-
bodies for one hour. After this, the protein bands were visu-
alized utilizing an ECL reagent (P0018S, Beyotime, Shang-
hai, China). The antibodies (Abcam, Cambridge, CA,
USA) used in this assay were as follows: anti-CyclinD1
(1:200, ab16663), anti-P21 (1:1000, ab109520), anti-Fas
(1:1000, ab82419), anti-FASL (1:1000, ab302905), anti-
Bax (1:1000, ab32503), anti-Bcl-2 (1:1000, ab32124),
anti-caspase 3 (1:5000, ab32351), anti-β-catenin (1:4000,
ab16051), anti-c-myc (1:1000, ab32072), anti-GAPDH
(1:2500, ab9485), and secondary antibodies (1:50,000,
ab205718). The Gray values of protein bands were
analyzed through ImageJ software (version 1.8.0, NIH,
Bethesda, MD, USA). The GAPDH was used as an internal
control.

Statistical Analysis
Data were statistically analyzed using SPSS software

(version 21.0, IBM, Armonk, NY, USA) and were pre-
sented as mean ± SD. The differences between the two
groups were compared using Student’s t-test and multiple
group comparisons were performed through ANOVA (one-
way or two-way) followed by Tukey post-hoc test. A p-
value < 0.05 was considered significantly significant.

Results

Loganetin Repressed Jurkat Cell Viability
The cell viability remains unchanged after treatment

with 10 and 20 µmol/L of loganetin compared to the Control
group. However, a gradual decrease was observed in cell
viability at 40, 80, and 160 µmol/L loganetin treatments (p
< 0.05) (Table 1). Therefore, 40, 80, and 160 µmol/L of
loganetin were selected for subsequent experiments.

Loganetin Suppressed the Jurkat Cell Cycle
G0/G1 ratio and P21 protein levels were progressively

increased (p < 0.05), while CyclinD1 protein level was
gradually decreased upon treating the cells with 40, 80, and
160 µmol/L of loganetin (p < 0.05, Fig. 1). The findings
suggest an inhibitory effect of loganetin on the Jurkat cell
cycle.

Table 2. Effect of loganetin and LiCl on Jurkat cell viability
(n = 3).

Groups Viability (%)

Loganetin 100.00 ± 7.81
Loganetin+LiCl 167.23 ± 14.69∗

t 6.999
p 0.002
Note: Compared to the Loganetin group, *p <

0.05.

Loganetin Exposure Induced Jurkat Cell Apoptosis
As shown in Fig. 2, cell apoptosis rate, TUNEL pos-

itive cell rate, as well as the levels of Fas, FASL, Bax,
and C-Caspase-3/total-caspase 3 were gradually enhanced,
whereas Bcl-2 level was gradually reduced in 40, 80, and
160 µmol/L Loganetin-treated groups (p < 0.05).

Loganetin Regulated Wnt/β-Catenin Pathway
β-catenin and c-myc protein levels were significantly

decreased in Jurkat cells treated with 40, 80, and 160
µmol/L of loganetin (p < 0.05, Fig. 3).

Wnt/β-Catenin Pathway was Activated by LiCl in
Loganetin-Treated Jurkat Cells

Protein levels of β-catenin and c-myc were substan-
tially higher in the Loganetin+LiCl group compared to the
Loganetin group (p < 0.05, Fig. 4).

LiCl Regulated Proliferation, Cell Cycle, and
Apoptosis in Loganetin-Treated Jurkat Cells

The cellular viability and the expression levels of Cy-
clinD1 and Bcl-2 proteins were substantially increased (p
< 0.05), while G0/G1 ratio, apoptosis rate, as well as the
expression levels of P21, Fas, FASL, Bax, and C-Caspase-
3/total-caspase 3 proteins were significantly decreased in
the Loganetin+LiCl group (p < 0.05, Fig. 5 and Table 2).

Discussion

Loganin, the main component found in Cornus of-
ficinalis, which belongs to the iridoid glycosides family,
exhibits anti-inflammatory, immune regulation, and hypo-
glycemic effects [14–16]. Loganetin is a light yellow sub-
stance produced from loganin by removing one molecule
of glucose [17]. A previous study has shown that loganetin
could protect against acute kidney injury induced by rhab-
domyolysis [10]. Furthermore, it plays an anti-tumor role in
gastric cancer by inhibiting cancer cell proliferation, metas-
tasis, and stem-like properties [11]. In this, we observed
that loganetin treatment suppresses lymphoma cell viabil-
ity, enhances apoptosis, and induces cell cycle arrest, indi-
cating its role in inhibiting lymphoma cell growth.
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Fig. 2. Effect of loganetin on Jurkat cell apoptosis. (A) Cell apoptosis rate was assessed using flow cytometry (n = 3). (B) TdT-
mediated dUTP Nick-End Labeling (TUNEL) positive cell rate was analyzed employing the TUNEL staining method (n = 3). (C)
Protein levels were examined through western blot analysis (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001.

Cell proliferation relies on orderly progression of the
cell cycle [18,19], with a crucial regulatory point being the
transition from G0/G1 to the S phase, regulated by multi-
ple genes [20,21]. CyclinD1, a primary regulator expressed
in the G0/G1 phase, promotes entry of the cells to the S
phase, thereby inducing cell cycle progression [22,23]. In
contrast, P21 acts as an inhibitor of the cell cycle, block-
ing the cell cycle process and reducing the cell prolifera-

tion rate [24,25]. The caspase protein family serves as reg-
ulator closely associated with cell apoptosis, and its activa-
tion induces cellular apoptotic process [26,27]. Caspase-3
acts as the primary executing factor of apoptosis within the
Caspase protein family, and the activation of caspase-3 (C-
Caspase-3) is also recognized as a biomarker of apoptosis
[28,29]. Our data revealed that CyclinD1 and Bcl-2 levels
were significantly decreased, while P21, Fas, FASL, Bax,
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Fig. 3. Effect of loganetin on β-catenin and c-myc protein levels. Protein levels were determined in the Loganetin-treated Jurkat cells
using western blot analysis (n = 3). ***p < 0.001.

Fig. 4. Effect of Loganetin+LiCl on β-catenin and c-myc protein levels. Protein levels were evaluated in Loganetin+LiCl-treated
Jurkat cells using western blot analysis (n = 3). ***p < 0.001.

Fig. 5. Effect of loganetin and LiCl on cell apoptosis, C-Caspase-3, CyclinD1, and P21 protein levels. (A,B) Cell cycle and the
number of apoptotic cells were assessed using flow cytometry (n = 3). (C) TUNEL positive cell rate was analyzed utilizing TUNEL
staining (n = 3). (D) Protein levels were detected using western blot analysis (n = 3). **p < 0.01, ***p < 0.001.
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and C-Caspase-3/total-caspase 3 levels were increased in
the lymphoma cells treated with loganetin. These findings
further indicate that loganetin induces both cell cycle arrest
and apoptosis in lymphoma cells.

Traditional Chinese medicine mainly exerts its im-
pact by affecting gene expression in tumor cells or alter-
ing the transduction of signaling pathways [30,31]. The
β-catenin-mediated Wnt pathway is the most classical Wnt
pathway, with c-myc serving as a downstream gene [32,33].
The wnt/β-catenin pathway plays a substantial role in hu-
man cancer, and it is often over-activated in tumor tissues
[34,35]. The Wnt/β-catenin pathway has been found acti-
vated in lymphoma cells, and its inactivation was observed
to suppress lymphoma cell proliferation andmigration [36].
The relevant experimental results revealed that inhibition of
β-catenin can induce apoptosis and cell cycle arrest in lym-
phoma cells [37]. In our study, we confirmed that loganetin
reduced β-catenin and c-myc protein levels in lymphoma
cells, indicating its inhibitory impact on the Wnt/β-catenin
pathway. Moreover, LiCl treatment abolished the regula-
tory impact of loganetin on lymphoma cell proliferation and
apoptosis, providing additional validation that loganetin af-
fects lymphoma cell proliferation and apoptosis through the
Wnt/β-catenin pathway.

However, there are some limitations in our study.
Presently, we conduct experiments involving cell lines.
Due to technical constraints, obtaining primary animal lym-
phocytes has been unfeasible. Our future studies may in-
volve the extraction of primary T lymphocytes from ani-
mals for this purpose. Furthermore, in vivo experiments
are necessary, and we will explore the effect of loganetin
on lymphoma progression using animal experiments. Ad-
ditionally, the specific targeting mechanism through which
loganetin affects lymphoma cell proliferation and apoptosis
is yet to be explored. This will be further explored in future
studies.

Conclusions

In summary, our data showed that loganetin could in-
hibit lymphoma cell proliferation and promote apoptosis
by inactivating the Wnt/β-catenin pathway. These findings
suggest that loganetin may be an effective drug for treating
lymphoma.
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