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Background: Migraine is a prevalent neurovascular headache characterized by recurring pain episodes. Previous research indi-
cates that managing the expression of the cAMP response element-binding protein/Brain-derived neurotrophic factor/Tyrosine
receptor kinase B (CREB/BDNF/TrkB) pain signaling pathway may enhance migraine conditions. This study delves into the
pharmacological effects and analgesic mechanisms of emodin in treating nitroglycerin-induced migraines in animal models, fo-
cusing on the CREB/BDNF/TrkB signaling pathway.

Methods: Sixty-six male Sprague Dawley (SD) rats were randomly divided into six groups: Control, Model, positive control, and
low, medium and high doses of emodin treatment groups. All groups, except the control, underwent the establishment of experi-
mental migraine animal models and received treatment for seven consecutive days. Subsequently, behavioral evaluations and heat
pain threshold assessments were conducted. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels
of Brain-derived neurotrophic factor (BDNF) and calcitonin gene-related peptide (CGRP) in rat serum. Reverse Transcription-
Quantitative Polymerase Chain Reaction (RT-qPCR) was performed to detect the mRNA expression levels of CGRP and cAMP
response element-binding protein (CREB). Western blot analysis was utilized to assess the protein expression levels of Tyrosine
receptor kinase B (TrkB) and Cyclooxygenase-2 (COX-2).

Results: Behavioral assessment, measurement of thermal pain threshold, and mechanical pain thresholds indicated that, in com-
parison to the Model group, the emodin treatment group exhibited a significant improvement in abnormal behavior in migraine
rats (p < 0.05, p < 0.01, p < 0.001, p < 0.0001). Moreover, there was an increase in thermal pain threshold and mechanical pain
thresholds in the emodin treatment group (p < 0.05, p < 0.01, p < 0.0001). ELISA experiments revealed that, when compared to
the Model group, the emodin-high-dose (emodin-H) treatment group exhibited reduced serum levels of BDNF and CGRP (p <
0.01). Additionally, RT-qPCR and Western blot (WB) experiments demonstrated the downregulation of CGRP (p < 0.001) and
CREB (p < 0.05) mRNA expression levels. Furthermore, there were decreased expression levels of TrkB and COX-2 proteins in
the rat brainstem (p < 0.05, p < 0.01).

Conclusion: This study confirms that emodin can markedly enhance abnormal behavioral activities and elevate the thermal pain
threshold in the migraine rat model. Its effects appear to be mediated by the downregulation of upstream COX-2 and CGRP,
along with the inhibition of the CREB/BDNF/TrkB pain signaling pathway.
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Introduction

Migraine stands as the most prevalent form of primary
headache. Studies underscore its significance, ranking mi-
graines as the sixth leading cause of disability-adjusted life
years (DALYs) globally among all diseases and injuries
[1,2]. Epidemiological data reveal a global migraine preva-
lence of approximately 15%, with China reporting a preva-
lence of around 9% [3]. Characterized by moderate to se-
vere throbbing headache attacks lasting from minutes to

days, migraines often come with accompanying symptoms
such as nausea and vomiting, contributing to their high in-
cidence and recurrence rates [4].

The impact of migraines on human health is profound,
affecting normal work and life, diminishing the quality of
life, and imposing a significant mental and economic bur-
den on patients, families, and society at large. Despite ex-
tensive research, the causes and mechanisms of migraines
remain subjects of debate. Current understanding suggests
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that the etiology may be linked to genetic factors, environ-
mental influences, metabolism, hormones, and drug-related
factors [5,0]. Meanwhile, various theories, including vas-
cular theory [7], neuronal theory [8], and inflammatory me-
diator theory [9], contribute to the understanding of mi-
graine pathogenesis. Clinical prevention and treatment of
migraines face challenges due to the unclear etiology and
pathogenesis. Mainstream western medicine relies on anal-
gesics for migraine treatment, yet their toxic side effects and
contraindications limit their suitability for many patients.
Thus, the pressing research question revolves around iden-
tifying a safer and more effective method among the mul-
titude of treatment options that can target the underlying
etiology of migraines.

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is
an ancient natural hydroxyanthraquinone sourced from the
roots and rhizomes of various medicinal plants like Platy-
codon grandiflorum, Rheum officinale, Lilium brownii, and
Polygonaceae [10,11]. Notably, emodin demonstrates pro-
tective effects on the central nervous system [12]. In re-
cent years, researchers have conducted extensive studies
elucidating the pharmacological mechanisms of emodin.
It shows potential activity against cardiovascular diseases
and various neurological disorders, in addition to possess-
ing anti-inflammatory and smooth muscle contractile phar-
macological effects [13—15]. Moreover, Xiong et al. [16]
observed that emodin could reduce the release of calci-
tonin gene-related peptide (CGRP) in the trigeminal gan-
glion, thereby inhibiting orofacial pain. Another study
by Sun ef al. [17] discovered that emodin has the capa-
bility to alleviate nitroglycerin-induced migraines through
the cyclic guanosine monophosphate-protein kinase G-
dependent (cGMP-PKG) pathway.

The periaqueductal gray (PAG) is a pivotal structure
implicated in the transmission and modulation of pain, sym-
pathetic responses, as well as the learning and execution of
defensive and aversive behaviors. Functionally, the PAG
plays a substantial role in the descending regulation of pain
perception and may act as an initiator of migraine attacks
[18]. Research underscores the significance of the PAG in
central endogenous pain modulation, housing a diverse ar-
ray of inflammatory factors, neuropeptides, neurotransmit-
ters, estrogen, and related receptors closely linked to mi-
graine attacks. Additionally, it serves as a critical com-
ponent of the descending inhibitory system, exerting in-
hibitory or excitatory control over the transmission of noci-
ceptive sensations [19,20].

Moreover, the PAG serves as a vital neural center for
autonomic regulation [21]. Within the PAG region, the
dorsolateral area receives extensive input from other brain
regions and sends descending neuronal projections to the
medulla to regulate autonomic activity. Activation of the
PAG contributes to the integration of sympathetic nerve ac-
tivity, controlling vasoconstriction to regulate arterial blood
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pressure [22]. Accumulating evidence from human studies
suggests a crucial role for the PAG in regulating migraines
and medication-overuse headaches [23].

Furthermore, both domestic and foreign studies have
reported that Cyclooxygenase-2 (COX-2) and calcitonin
gene-related peptide (CGRP) are key proteins involved in
migraine analgesia [24-26]. They mediate the expres-
sion of the cAMP response element-binding protein/Brain-
derived neurotrophic factor/Tyrosine receptor kinase B
(CREB/BDNF/TrkB) pain signaling pathway, thereby in-
fluencing migraine regulation. The severity of migraines
is positively correlated with the serum levels of BDNF and
CGRP in patients. Additionally, studies indicate a signifi-
cant increase in COX-2-positive nerve cells in the PAG area
during migraine attacks [27]. These clinical indicators hold
substantial diagnostic and therapeutic value for evaluating
the condition and efficacy of patients with neuropathic pain.

Hence, we hypothesize that the mechanism under-
lying the efficacy of rhein in treating migraines may en-
tail the modulation of vasoactive peptides and neuro-
genic inflammation. This modulation, in turn, regulates
the CREB/BDNF/TrkB pain signaling pathway, ultimately
leading to analgesic effects in migraine model rats. Conse-
quently, this experiment seeks to investigate the analgesic
effects of rhein on migraine model rats from various angles,
examining both tissue and molecular levels. The findings
aim to establish a theoretical foundation for the effective
treatment of migraines.

Materials and Methods

Experimental Materials
Experimental Animals

The experimental animals, comprising 66 healthy
male rats of SPF grade, were procured from Liaoning
Changsheng Biotechnology Co., Ltd. (Shenyang, Liaon-
ing, China), with individual weights falling within the range
0f 160-210 g. The purchase license number is SCXK (Liao)
2020-0001. Throughout the experiment, the animals were
housed in the Central Laboratory Animal Room at our uni-
versity, situated on the 5th floor of the library building in
the Jiaxiu Campus of Guizhou University of Traditional
Chinese Medicine. The animal facility maintained an SPF-
level environment with a temperature set at 23 + 2 °C, and
humidity ranged between 40% and 70%. The light cycle
followed a 12-hour pattern of light and darkness, with each
cage accommodating 3—4 rats. Daily, the bedding was re-
placed, and the provided food and water underwent steril-
ization.

Experimental Drugs

Emodin (E8390, Specification: 1 g, Beijing So-
laibao Technology Co., Ltd., Beijing, China), Nitroglyc-
erin injection (Henan Runhong Pharmaceutical Co., Ltd.,
Zhengzhou, Henan, China, Specification: 1 mL:5 mg,
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Batch Number: 2009142), and Rizatriptan Monobenzoate
Tablets (Olitrans) (Hubei Ouli Pharmaceutical Co., Ltd.,
Wuhan, Hubei, China, Specification: 5 mg (as pizotifen),
Batch Number: 201204).

Animal Grouping and Drug Pretreatment

After 7 days of adaptive feeding, the rats were ran-
domly allocated into six groups: (1) normal Control
group (Control); (2) model control group (Model); (3)
positive drug control group (Rizatriptan Monobenzoate
Tablets (RMT)); (4) low-dose emodin group (emodin-L);
(5) medium-dose emodin group (emodin-M); (6) high-dose
emodin group (emodin-H). The grouping, modeling, and
gavage timings adhered to the protocol outlined by Liang
Wenlin et al. [28].

Methods
Model Preparation and Grouping

Sixty-six male rats were randomly allocated into
six groups: control, model, positive control (Rizatrip-
tan Monobenzoate Tablets (RMT), 0.001 g/kg), and three
emodin treatment groups (low, medium, and high doses of
20, 40, and 60 mg/kg, respectively). All groups, excluding
the Control, received treatment for seven consecutive days,
followed by a subcutaneous injection of niter acid gansu
0il (NTG) (10 mg/kg) in the neck 30 minutes after the last
treatment.

The Control group received a subcutaneous injection
of normal saline (NS). The experimental model for mi-
graine induction in rats was established in all groups, ex-
cept the Control group, following the method outlined by
Tassorelli [29]. This involved subcutaneously injecting ni-
troglycerin at a dose of 10 mg/kg to induce the experimental
migraine animal model.

Behavioral Observation

After the modeling process, each rat was placed in a
cardboard box and divided into the following five-time in-
tervals: 0-30 min, 30-60 min, 60—90 min, 90—-120 min,
and 120-150 min, with each interval lasting for 30 minutes.
The observed behaviors included head scratching, crawl-
ing in the cage, and running back and forth. The number
of scratching movements was recorded by counting the in-
stances of rats scratching their heads with their forelimbs
since modeling, with each 30 minutes as an observation
window, and the count of scratching movements continu-
ously recorded in segments [30].

The behavior of rats crawling on the cage cover with
their forelimbs was observed, and the number of times was
recorded in segments [31]. Running back and forth in the
box in different directions was considered a back-and-forth
movement, and the number of such movements was contin-
uously recorded in segments. All animal experiments in this
study adhered to the requirements and regulations outlined
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in the Guiding Opinions on the Treatment of Experimental
Animals issued by the Ministry of Science and Technology
in 2006.

Thermal Pain Threshold and Mechanical Pain Thresholds
Determination

Following the modeling process, the rat’s thermal
withdrawal latency and mechanical pain thresholds were
measured every 1 hour using a plantar thermal pain me-
ter. Three repeated measurements were taken every 2 min-
utes, and the average value was recorded as the rat’s ther-
mal pain threshold [32]. This measurement was conducted
for a duration of 3 hours. The plantar thermal pain meter
operates on the principle that, upon initiation, the machine
elevates the temperature to induce pain in the rat’s hind foot
center through high-transmittance glass. When the rat per-
ceives the pain, it swiftly lifts its hind leg. At this point,
the fiber optic sensor positioned at the center of the high-
transmittance glass accurately detects the time interval from
the initiation of irradiation to the lifting of the leg (i.e., pain
threshold latency). This experiment effectively gauges the
impact of analgesic drugs on the rat’s reaction time to ex-
ternal thermal stimulation in an unrestrained state.

Tissue Collection and Sample Storage

The rats underwent a 12-hour fasting period before tis-
sue collection. Anesthesia and euthanasia procedures in-
volved intraperitoneal injection of 3% pentobarbital sodium
(45 mg/kg) for anesthesia, followed by euthanasia. Blood
samples were collected from the abdominal aorta, cen-
trifuged at 3000 rpm and 4 °C for 10 minutes under sterile
conditions, and the serum was carefully extracted using a
pipette. The collected serum was stored in a —80 °C freezer
for subsequent use.

From each group, three rats were randomly chosen for
further analysis. Following blood collection, the midbrain
tissue was extracted, immersed in a dehydration solution,
and embedded in a 4% paraformaldehyde solution. The re-
maining 48 rats underwent immediate brain removal after
decapitation. The midbrain was swiftly dissected on an ice
bag and evenly divided into two parts, each placed in sterile
centrifuge tubes containing 2 mL of liquid nitrogen. These
tubes were labeled with group numbers and stored in a —
80 °C freezer for subsequent use in Western blot and Re-
verse Transcription-Quantitative Polymerase Chain Reac-
tion (RT-qPCR).

ELISA Testing

The levels of BDNF and CGRP in the serum were
assessed through enzyme-linked immunosorbent assay
(ELISA) following the guidelines provided by the BDNF
ELISA kit (E-EL-R1235, Elabscience, Wuhan, China) and
the CGRP ELISA kit (E-EL-R0135, Elabscience, Wuhan,
China). In summary, the sample was appropriately diluted
and added to an enzyme-labeled plate along with the corre-
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Table 1. The specific information of the primary antibody and secondary antibody in Western blot experiment.
Antibody Source Information

B-actin (Mouse MAB) T0022, Affinity Biosciences, Jiangsu, China
Primary antibody TrkB (Rabbit PAB) R25991, Zenbio, Chengdu, China

COX-2 (Rabbit MAB) R23969, Zenbio, Chengdu, China
Secondary antibody Goat Anti-Rabbit IgG H&L (HRP) A0208, Beyotime Biotechnology, Shanghai, China

Goat Anti-Mouse IgG H&L (HRP)

SA00001-1, Proteintech, Wuhan, China

Note: MAB, Monoclonal Antibody; PAB, Polyclonal Antibody; TrkB, Tyrosine receptor kinase B; COX-2, Cyclooxygenase-2.

sponding antibody. The plate underwent five washes with
a washing solution and subsequent incubation with a color-
ing solution and a stop solution. Finally, the absorbance at
450 nm was measured using a microplate reader.

Western Blot

The Western blot procedure involved lysing the mid-
brain tissue in RIPA buffer (P0013B, Beyotime, Shang-
hai, China) to extract total protein. Subsequently, the pro-
teins were separated on an SDS-PAGE gel (JY300, Bei-
jing Junyi Oriental electrophoresis Equipment Co., Ltd.,
Beijing, China) and transferred onto a PVDF membrane
(IPVH00010, Millipore, Bedford, MA, USA). The mem-
brane was then incubated with a primary antibody (concen-
tration: 1:1000) and blocked with 5% skim milk at 4 °C
overnight. Following five wash cycles, an appropriate sec-
ondary antibody (concentration: 1:600) was applied, and
the cells were incubated at 37 °C for 2 hours. Finally, the
sample was characterized through an ECL system (P1050,
Applygen Technologies Inc., Beijing, China) and quantified
using imaging (BX53, Olympus, Tokyo, Japan). Specific
information regarding the primary and secondary antibod-
ies is provided in the Table 1.

Reverse Transcription-Quantitative Polymerase Chain
Reaction

The total RNA was extracted from the midbrain tis-
sue using Trizol reagent (15596-026, Ambion, Austin, TX,
USA). Subsequently, the cDNA of mRNA was synthesized,
and a RT-qPCR was conducted on the cDNA-SYBR Green
mixture utilizing a real-time fluorescence quantitative PCR
system (QuantStudio6, Applied Biosystems, Foster City,
CA, USA). The obtained results were analyzed using the
2~AACt method, with B-actin serving as an internal refer-
ence for mRNA normalization in each sample. The specific
primers employed for RT-qPCR are detailed in Table 2.

Statistical Analysis

Data analysis was performed using GraphPad Prism
8.0 statistical software (GraphPad Software, San Diego,
CA, USA). The results are presented as mean + standard
error of the mean (Mean £ SEM). One-way analysis of vari-
ance (ANOVA) was employed, followed by Tukey’s test for
post hoc analysis. The significance level was set at p < 0.05
to indicate statistically significant differences.

Table 2. Primer sequence.

Name Primer Sequence

CGRP Forward 5’-TGGTTGTCAGCATCTTGCTC-3’
Reverse 3’-GCTCCCTGACTTTCATCTGC-5'

CREB Forward  5'-AACATACCAGATTCGCACAGC-3’
Reverse 3’-ACGACATTCTCTTGCTGCTTC-5'

B-actin Forward 5'-AGATGACCCAGATCATGTTTGA-3’
Reverse 3’-ATGAGGGAGCGCGTAACC-5’

Note: CGRP, calcitonin gene-related peptide; CREB, cAMP
response element-binding protein.

Results

Emodin Improves Abnormal Behavior

The results analysis is depicted in Fig. 1A—C. In the
migraine Model group, rats exhibited an increase in the in-
stances of head-scratching, significant cage activity, and
heightened back-and-forth movement within 30150 min-
utes after nitroglycerin induction. These behaviors were
significantly higher than those observed in the Control
group at various time points (p < 0.01, p < 0.0001). Both
the RMT and emodin-H groups demonstrated a signifi-
cant improvement in abnormal behaviors such as head-
scratching, cage activity, and back-and-forth movement in
migraine rats, with statistically significant differences noted
(» <0.05,p <0.01, p < 0.001, p < 0.0001).

Emodin Increases Thermal Pain Threshold and
Mechanical Pain Thresholds

As per Fig. 2A, compared to the Control group, the
pain thresholds of the Model group significantly increased
after 1 hour, 2 hours, and 3 hours of modeling (p < 0.01, p <
0.001). The pain thresholds of rats in the RMT, emodin-M,
and H groups increased significantly after 1 hour, 2 hours,
and 3 hours of modeling (p < 0.05, p < 0.01, p < 0.0001).
There was no significant difference in pain threshold be-
tween the emodin-L group and the Model group after 1 hour
to 3 hours of modeling (p > 0.05).

In accordance with Fig. 2B, in comparison to the Con-
trol group, the mechanical pain threshold of rats in the
Model group significantly decreased at 1 hour, 2 hours,
and 3 hours (p < 0.0001). Relative to the Model group,
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Fig. 1. Emodin improves abnormal behavior. (A) Comparison of the number of head-scratching in rats at different time points (x % s,
times/30 minutes). (B) Comparison of the number of cage activity times in rats at different time periods (x =+ s, times/30 minutes). (C)
Comparison of the number of back-and-forth movements in rats at different time points (x =+ s, times/30 minutes). Compared with the
Control group *p < 0.05, #p < 0.01, *p < 0.001, **p < 0.0001. Compared with the Model group *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001.

the RMT, emodin-L, and emodin-H groups exhibited a sig-
nificant increase in mechanical pain threshold at 1 hour, 2
hours, and 3 hours (p < 0.01, p < 0.0001).

Emodin Reduces Serum Levels of BDNF and CGRP
in Migraine Rats

As depicted in Fig. 3A, following the subcutaneous
injection of nitroglycerin to induce the migraine model for
4 hours, the BDNF level in the serum of the Model group

rats was significantly higher than that in the Control group
rats, showing a significant statistical difference (p < 0.05).
The BDNF expression levels in the serum of RMT and
emodin-H group rats were significantly lower than those in
the Model group rats, exhibiting a significant statistical dif-
ference (p < 0.05). However, the BDNF expression levels
in the serum of emodin-L and M group rats showed no sig-
nificant statistical difference compared to the Model group
rats (p > 0.05).
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Furthermore, as shown in Fig. 3B, following the sub-
cutaneous injection of nitroglycerin to induce the migraine
model for 4 hours, the CGRP expression level in the serum
of the Model group rats was significantly higher than that
in the Control group rats, demonstrating a significant sta-
tistical difference (p < 0.01). The CGRP expression levels
in the serum of RMT, emodin-L, M, and H group rats were
significantly lower than those in the Model group rats, with
a significant statistical difference (p < 0.05).

Emodin Downregulates mRNA Expression Levels of
CGRP and CREB in the Brainstem Tissue of
Migraine Rats

The quantitative analysis results are presented in
Fig. 3C,D. In Fig. 3C, compared with the Control group,
CGRP mRNA expression in the brainstem of rats in the
Model group was significantly up-regulated, and the dif-
ference was statistically highly significant (p < 0.0001).
The mRNA expression levels of CGRP were significantly
down-regulated in the RMT, emodin-L, M, and H groups,
with the differences being statistically significant (p < 0.05,
p <0.01, p <0.001).

As illustrated in Fig. 3D, compared with the Model
group, the mRNA expression of CREB in the brainstem tis-
sue of the Control group was significantly downregulated,
and the difference was statistically significant (p < 0.01).
The mRNA expression levels of CREB were significantly
down-regulated in the RMT, emodin-L, M, and H groups,
with the differences being statistically significant (p < 0.05,
p <0.01).

Emodin Reduces Protein Expression Levels of TrkB
and COX-2 in the Brainstem Tissue of Migraine Rats

As demonstrated in Fig. 4, the TrkB protein expres-
sion in the brainstem of Model group rats was significantly
higher than that in the Control group, and the difference was
statistically significant (p < 0.01). The TrkB protein ex-
pression in the brainstem of RMT and emodin-H group rats
was significantly lower than that in the Model group, and
the difference was statistically significant (»p < 0.05). How-
ever, there was no significant difference in the TrkB protein
expression in the brainstem of emodin-L and M group rats
compared to the Model group (p > 0.05). Additionally, the
COX-2 protein expression in the brainstem of Model group
rats was significantly higher than that in the Control group,
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and the difference was statistically significant (p < 0.01).
The COX-2 protein expression in the brainstem of RMT and
emodin-H group rats was significantly lower than that in the
Model group, and the difference was statistically significant
(» < 0.05, p < 0.01). Again, there was no significant dif-
ference in the COX-2 protein expression in the brainstem of
emodin-L and M group rats compared to the Model group
(» > 0.05).

Discussion

Migraine is a prevalent and disabling neurological dis-
order characterized by moderate to severe headache, nau-

sea, vomiting, and heightened sensitivity to sensory stimuli
[33]. Despite its prevalence, the initial activation site of
the migraine process remains unclear. Western medicine
primarily employs anti-inflammatory and analgesic drugs
for migraine treatment, with sumatriptan tablets being com-
monly used in clinical practice. Sumatriptan functions by
inhibiting CGRP release through action on the 5-HT (1D)
receptor in the perivascular trigeminal nerve, thereby block-
ing neurogenic vasodilation and alleviating headaches [34].
Although clinically effective, triptan drugs are associated
with numerous adverse reactions, contraindications, and a
certain risk of increasing cardiovascular and cerebrovascu-
lar events.
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Fig. 4. Western blot for determination of TrkB and COX-2 protein levels in rat brainstem tissues. (A) Western blot analysis of
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In China, traditional Chinese herbal medicine is fre-
quently prescribed for migraine treatment. Numerous phar-
macological studies have highlighted the potential of the
traditional Chinese medicine monomer emodin in treating
various neurological disorders. Emodin has been shown to
inhibit the aggregation of amyloid-3 peptide 1-42 and im-
prove cognitive deficits in Alzheimer’s disease transgenic
mice [35,36]. The behavioral observations in this study re-
vealed that the emodin-H group significantly ameliorated
abnormal behavioral activities such as head scratching,
cage climbing, and back-and-forth movement in migraine
model rats. Additionally, all doses of emodin significantly

increased the thermal pain threshold in the migraine model
rats. These findings suggest that treatment with the Chinese
herbal monomer emodin can enhance abnormal behavioral
activities in migraine model rats.

Moreover, research indicates that emodin serves as
a neuroprotective agent in an ischemic stroke rat model
by activating the extracellular signal-regulated kinase-1/2
(ERK1/2) signaling pathway [37]. Studies have also
demonstrated emodin’s impact on neuropathic pain in ro-
dent models. For instance, Wang et al. [38] observed that
emodin alleviates neuropathic pain induced by chronic con-
striction injury (CCI) in rats. Early pharmacological inves-
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tigations have suggested that emodin can inhibit pain sig-
nal transmission mediated by the P2X (2/3) receptor [39].
Additionally, emodin inhibits the release of calcitonin gene-
related peptide in the trigeminal ganglia of rats with trigem-
inal neuralgia [16].

In the current experimental study, it was observed that
the emodin-H group significantly downregulated the serum
BDNF levels in migraine model rats and significantly de-
creased the expression of TrkB protein in the midbrain tis-
sue of migraine model rats. Emodin-L, M, and H sig-
nificantly downregulated the expression levels of mRNA
CREB in the midbrain tissue of migraine model rats. Fur-
thermore, emodin alleviated inflammation infiltration in
midbrain tissue cells of migraine model rats and reduced
the degree of cellular fibrosis. These findings suggest that
emodin treatment exhibits effectiveness in mitigating mi-
graine symptoms.

An additional study demonstrated that during mi-
graine attacks, there was a significant increase in the num-
ber of COX-2 positive nerve cells in the PAG region [27].
COX-2 serves as a crucial peripheral mediator of inflamma-
tion and pain. Local COX activity in the dura mater can me-
diate peripheral sensitization [40]. The use of extracellular
signal-regulated kinase (ERK) inhibitors has been shown
to alleviate pathological pain and improve pain symptoms
by reducing the expression of inflammatory factors such as
COX-2 [36]. The aforementioned studies indicated a posi-
tive correlation between COX-2 expression and pain sever-
ity. The regulation of peripheral and central COX-2 expres-
sion can potentially alleviate migraine pain sensitization.

As per the results of this experimental study, com-
pared with the Control group, the COX-2 protein expres-
sion in the brainstem of Model group rats was significantly
increased. This suggests that COX-2 protein in the mid-
brain of migraine model rats is involved in the pathogene-
sis of migraine, and its increase is positively correlated with
headache, aligning with previous research findings. More-
over, the COX-2 protein expression in the brainstem of
RMT and emodin-H group rats was significantly lower than
that of the Model group. This suggests that emodin may re-
duce central pain sensitization in the migraine rat model by
decreasing the expression of COX-2 protein in midbrain tis-
sue, thereby improving abnormal behavioral activities and
increasing the thermal pain threshold of the migraine model
rats.

CGREP is a crucial pain signaling factor in the patho-
genesis of migraine, and targeting CGRP represents a novel
therapeutic approach. CGRP, a 37-amino acid neuropep-
tide derived from the gene encoding calcitonin, was identi-
fied approximately 30 years ago [41]. CGRP is expressed in
central and peripheral sites related to migraine [25,26]. In
this experimental study, the expression levels of CGRP in
the serum and midbrain mRNA of Model group rats were
significantly higher than those in the Control group, with
the highest content observed among all groups. This indi-
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cates that CGRP is involved in the pathogenesis of the mi-
graine rat model and is positively correlated with the degree
of headache.

The levels of CGRP expression in the serum and mid-
brain mRNA of the RMT, Hesperetin-L, M, and H group
rats were significantly lower than those in the Model group.
This suggests that Hesperetin may improve abnormal be-
havioral activities in the migraine rat model by downregu-
lating the expression levels of CGRP in the serum and mid-
brain mRNA CGRP levels and increasing the thermal pain
threshold.

However, it’s important to note that a potential limita-
tion of this study is that it was conducted in animal models
and may not necessarily reflect the same effects in humans.
Furthermore, although the study explored the pharmacolog-
ical effects and analgesic mechanism of emodin in treating
nitroglycerin-induced migraine, it did not investigate the
potential side effects or long-term outcomes associated with
the use of emodin as a treatment.

Conclusion

This study successfully demonstrated that emodin
can significantly ameliorate abnormal behavioral activities,
such as head scratching, cage climbing, and back-and-forth
movement, in migraine model rats. Moreover, emodin was
found to increase the thermal pain threshold of the mi-
graine model rats. The mechanism of action appears to
be associated with the downregulation of upstream COX-2
and CGRP expression, inhibition of the CREB/BDNF/TrkB
pain signaling pathway, and relief of neurogenic inflam-
mation. These findings provide support for the efficacy of
emodin in the treatment of migraines.
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