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Inflammatory mediators are important molecules that adjust the inflammatory response and prevent tissue damage. Cytokines
are relevant mediators involved in inflammation. The interleukin-1 (IL-1) family is a well-known cytokine group that regulates
inflammatory responses, in which IL-13 plays a pivotal role in the promotion of inflammation. Although there are several
underlying mechanisms, the nucleotide-binding domain, leucine-rich—containing family, pyrin domain—containing-3 (NLRP3)
pathway is the most studied pathway for the secretion of IL-15. The NLRP3 inflammasome is a protein complex formed after
extracellular adenosine triphosphate (eATP) binds to the P2X family purinergic receptor 7 (P2X7R), and NLRP3 inflammasome
activation results in IL-10 release. The P2X7 receptor plays a crucial role in the immune response, and its modulation may trigger
the development of pathological conditions characterized by inflammation. Therefore, it is important to highlight the P2X7
receptor as a potential therapeutic target in diseases in which an inflammatory profile is observed due to high concentrations of
secreted IL-15. This study aimed to elucidate the mechanism by which the P2X7 receptor may affect IL-15 cytokine release.
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Introduction

Inflammation is a vital physiological process that
combats pathogens and facilitates tissue repair through
pathogen destruction, dilution, or neutralization. As a re-
sult, inflammation plays a pivotal role in maintaining bod-
ily homeostasis. Nonetheless, under certain circumstances,
inflammation may exhibit adverse effects. Excessive ac-
tivation of the inflammatory cascade can lead to dysregu-
lation of proinflammatory cytokines, thereby precipitating
the onset of chronic inflammatory conditions and tissue in-
jury [1].

Cytokines serve as pivotal mediators of cellular com-
munication and constitute a crucial component of the body’s
response against infections and cellular injury. Both proin-
flammatory and anti-inflammatory cytokines collaborate to
maintain physiological equilibrium [2].

Within the interleukin-1 (IL-1) family, a group of
important cytokines orchestrates either anti-inflammatory
or proinflammatory reactions. Notably, IL-15 is a well-
recognized proinflammatory cytokine involved in diverse
pathways wherein the organism mobilizes and amplifies de-
fence mechanisms [3].

In the context of inflammation, IL-15 activates im-
mune cells, triggering CD4+ T-cell polarization into T
helper type (Th1) and Th17 cells. It also promotes leuko-
cyte infiltration at infection sites by increasing the expres-
sion of adhesion receptors on immune system cells and

endothelial cells. However, elevated IL-13 signalling ag-
gravates inflammatory diseases such as Alzheimer’s dis-
ease, stroke, and other neurological disorders, in which neu-
ronal cell death is observed. Additionally, certain heredi-
tary gain-of-function mutations in the inflammasome may
lead to IL-15 overproduction, contributing to the severity
of some autoimmune syndromes [4].

The P2X family purinergic receptor 7 (P2X7R) ini-
tiates the activation of a pathway through which IL-
15 is released. Once activated by adenosine triphos-
phate (ATP), the receptor induces the activation of dif-
ferent signalling cascades, contributing to the inflamma-
tory response. The ionic current induced by P2X7R ac-
tivation leads to nucleotide-binding domain, leucine-rich—
containing family, pyrin domain—containing-3 (NLRP3) as-
sembly, which triggers IL-15 secretion after cleavage [5].
In this scenario, inhibiting P2X7R represents a promising
strategy for reducing the inflammatory process regulated
by IL-1/3. However, current pharmacological therapies for
inflammatory conditions often lack selectivity in targeting
the response and, in many cases, have serious side effects
[6]. Therefore, this work sought to elucidate the interplay
between the P2X7 receptor and the IL-1/5 cytokine release
mechanism, underscoring its pivotal role in inflammatory
disease management.
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P2X7-Induced IL-1/ Release

The P2X7 receptor, part of the P2 receptor family acti-
vated by purines and pyrimidines, functions as an ion chan-
nel with distinct characteristics from other P2X receptors.
Structurally, P2X7R forms a trimer with a distinct carboxy-
terminal domain that is crucial for sustained current and
pore opening. While activated by ATP, similar to other
P2X receptors, P2X7 receptors exhibit unique permeability
to large molecules and evoke two responses to ATP: tran-
sient cation flux and sustained current through a large pore
upon prolonged stimulation [7].

After agonist binding and receptor gating, P2X7 pro-
motes the flux of mono- and divalent cations, such as Na™,
K™, and Ca?", causing membrane depolarization and mod-
ulating excitatory synaptic transmission [8].

Macrophages, among other immune cells, express the
P2X7 receptor and can release proinflammatory molecules,
particularly in response to infection and tissue damage.
Within the inflammatory cascade, IL-1 cytokines play a cru-
cial role in both initiating and sustaining the inflammatory
response [9].

ATP, a key molecule in cellular energy transfer, is
tightly regulated by ecto-ATPases. However, under con-
ditions of cellular damage, ATP can be released from
damaged cells at millimolar concentrations. This extra-
cellular ATP acts as a damage-associated molecular pat-
tern (DAMP), serving to signal and amplify the immune
response [10]. Activation of P2X7R induces potassium
efflux, precipitating ionic alterations that trigger a con-
formational shift in the NLRP3 inflammasome complex,
which is composed of apoptosis-associated speck-like pro-
tein containing a CARD (ASC), an adapter protein, and a
pro-caspase-1 effector protein [11]. This conformational
change renders the inflammasome active, initiating a cas-
cade of events culminating in the activation of caspase-1.
Caspase-1, in turn, cleaves and facilitates the maturation of
pro-IL-17 into its biologically active form, IL-13, which
can then be secreted. Consequently, P2X7R functions as a
secondary signal, enabling the conversion of immature cy-
tosolic IL-14 into its active state [12]. Fig. 1 illustrates this
pathway and elucidates the mechanism underlying IL-13
release via this pathway.

A recent study has suggested that P2X7R may trigger
IL-10 release via an NLRP3-independent pathway in hu-
man macrophages. Pharmacological inhibition of P2X7R
or genetic deletion of NLRP3 in the THP-1 cell line re-
sulted in partial IL-17 secretion, and P2X7R cleavage was
not mediated by caspase-1 activity. These findings under-
score the importance of investigating different cell types
due to species heterogeneity and the potential variability in
responses to disease treatment [13].
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Fig. 1. P2X7R-mediated IL-15 release.
lease ATP through pannexin-1 channels, which in turn, acti-
vates P2X7R. P2X7R induces ion flux, leading to K efflux.
A decrease in K is necessary for NLRP3 assembly, which

Damaged cells re-

activates pro-caspase 1 to caspase-1 and thus triggers pro-IL-
15 cleavage. Once active, IL-13 is secreted into the cytosol
through exocytosis. Figure created via https://www.biorender.co
m/. P2X7R, P2X family purinergic receptor 7; IL-1/, interleukin-
18; ATP, adenosine triphosphate; DAMP, damage-associated
molecular pattern; NLRP3, nucleotide-binding domain, leucine-

rich—containing family, pyrin domain—containing-3.

Role of IL-13 and P2X7R Modulation in
Inflammatory Conditions

High expression of IL-13 has been identified as a
biomarker in some inflammatory diseases, such as rheuma-
toid arthritis (RA) and periodic syndrome associated with
cryopyrin (CAPS). CAPS is a group of inflammatory dis-
eases caused by a mutation in the CIAS-1/NLRP3 gene,
which leads to increased activity. This gain of function
leads to an increase in caspase-1 activity and IL-15 secre-
tion [14]. The role of IL-15 in RA has been widely studied,
and some authors have determined the role of the highly
activated NLRP3 inflammasome in the synovial activity of
patients with RA. Blocking with an NLRP3 inhibitor leads
to less bone degradation in animal models [15]. Thus, the
usual drugs used to treat these pathologies aim to inhibit or
block IL-1R.

The role of IL-15 in the pathogenesis of neurologi-
cal diseases such as depression has already been discussed.
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Through chronic stress, numerous mechanisms are acti-
vated, including the activation of the immune response in
the central and peripheral nervous systems, triggering the
activation of caspase-1 by the NLRP3 inflammasome and
resulting in a large-scale inflammatory response [16]. In-
creasing evidence indicates that increased IL-17 secretion
in the hippocampus can lead to depressive symptoms [17].

In addition, the authors reported a close association
between IL-173 and the development of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2)-induced hy-
perinflammation and inflammatory cell death. The virus
can rapidly lead to NLRP3 assembly, which in turn pro-
motes IL-1/3 processing via caspase-1 and secretion. This
response is abolished when NLRP3 is silenced or caspase-
1 is inhibited. Interestingly, IL-15 is released through a
nonclassical pathway that depends on caspase-1, caspase-
8, autophagy, and K™ efflux [18]. Other research groups
have correlated this nonclassical pathway with the activa-
tion of the purinergic receptor P2X7, which requires extra-
cellular K™ to ensure NLRP3 assembly [19]. IL-173 plays
an important role in the development of a wide range of in-
flammatory diseases. Thus, its inhibition is a fundamental
strategy for the treatment of inflammation-associated dis-
eases. Table 1 (Ref. [15,20-31]) summarizes IL-13-related
diseases. Table 1 summarizes the role of IL-3 in some in-
flammatory conditions (Table 1). The involvement of the
P2X7 receptor in inflammatory conditions has garnered in-
creasing attention due to its ability to promote and enhance
inflammation. The P2X7 receptor has been shown to serve
as a cancer driver and is implicated in tumour aggressive-
ness and the induction of proinflammatory cytokines in var-
ious cancer types. In bone cancer, P2X7 receptor activation
stimulates pathways associated with primary bone tumours
and osteoblastic metastasis [32]. P2X7 receptor antago-
nists are effective at alleviating cancer-induced bone pain
by suppressing the release of proinflammatory cytokines in
the tumour microenvironment. This receptor is implicated
in both inflammatory and neuropathic bone pain [33,34].
In addition, the P2X7 receptor has been implicated in sev-
eral autoimmune disorders, including rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), and multiple
sclerosis. The activation of the P2X7 receptor by extracel-
lular ATP triggers the production of inflammatory media-
tors such as cytokines (IL-13, IL-6, IL-18, and tumor necro-
sis factor-alpha (TNF-«)) and the shedding of the lympho-
cyte homing receptor CD62L, disrupting the immune sys-
tem balance [35]. Oxidized ATP (oxATP), an inhibitor of
the P2X7 receptor, can suppress T-cell activity, potentially
mitigating autoimmune responses [36]. In SLE, P2X7 re-
ceptor activity regulates the production of autoantibodies
by Tth cells and is influenced by genetic loci associated
with lupus susceptibility. Restoring P2X7 receptor activity
in SLE patients could control Tth cell generation and au-
toantibody production [37]. In rheumatoid arthritis, P2X7
receptor blockade reduces cytokine release and intracellu-
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Table 1. Inflammatory diseases mediated by the cytokine
IL-15.

IL-18-mediated diseases Reference
Rheumatoid arthritis [15]
Periodic fever, aphthous stomatitis, [20]
pharyngitis, adenitis syndrome

Type 2 diabetes [21]
Postmyocardial infarction heart failure [22]
Osteoarthritis [23]
Familial Mediterranean fever [24]
Cryopyrin-associated periodic syndromes [25]
Depression [26]
Crohn’s disease [27]
Atherosclerosis [28,29]
Smouldering myeloma [30,31]

lar calcium concentration in synoviocytes, inhibiting Th17
cell differentiation and alleviating inflammatory cytokine
release, thereby easing RA symptoms [38].

Therapeutic Approaches Targeting IL-15 and
P2X7R

Therapeutic approaches targeting IL-153 release and
P2X7R modulation hold great promise for the treatment
of inflammatory conditions and offer potential alternatives
or complements to existing therapies. Continued research
into the mechanisms underlying IL-1/ regulation and P2X7
receptor function will further inform the development of
novel therapeutic strategies.

Preclinical and Clinical Trials Targeting P2X7R

Due to the importance of P2X7R signalling in patho-
physiological processes, research groups are investigating
the effects of P2X7R hyperactivation and the consequences
of P2X7R inhibition. During the lipopolysaccharide (LPS)
challenge, P2X7R is overexpressed and affects leukocyte
function by inducing an inflammatory response in wild-
type mice, which does not occur in P2X7R knockout mice
[39]. Its inhibition has been shown to exhibit an anti-
inflammatory effect, not only by acting on the release of
IL-10 but also by considerably decreasing the expression
of NLRP3, caspase-1, ROS, and NO [40-43]. Cicko et
al. (2018) [44] demonstrated that prophylactic inhibition
of P2X7R by its antagonist KN62 resulted in a significant
improvement, as demonstrated through reduced levels of
proinflammatory mediators, such as IL-13, ATP and im-
mune system cells.

Several P2X7 receptor antagonists have been devel-
oped to minimize the damage caused by IL-13 release
and the sustained inflammatory response. JNJ-54175446
(ClinicalTrials.gov Identifier: NCTO04116606) inhibited
IL-15 production in a given patient group in a dose-
dependent manner [45]. Additionally, in healthy volun-
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Table 2. Commercial IL-17 inhibitors.
Name Classification Application Reference
Pralnacasan (VX-740) Caspase-1 inhibitor Osteoarthritis [55]
Anakinra IL-1 receptor antagonist (IL-1Ra)  Rheumatoid arthritis [56]
Belnacasan (VX-765) Caspase-1 inhibitor Rheumatoid arthritis and skin inflammation [57]
Rilonacept Soluble IL-1 decoy receptors Cryopyrin-associated periodic syndrome [58]
Canakinumab Anti-IL-12 antibodies Cryopyrin-associated periodic syndrome [59]
Gevokizumab Anti-IL-15 antibodies Familial Cold Autoinflammatory Syndrome [60]
(FCAS) and Muckle-Wells Syndrome (MWS)
MEDI-78998 (AMG108)  IL-1 receptor-blocking antibody Osteoarthritis [61]
MABpl Anti-IL-1« antibodies Type 2 diabetes, advanced cancer, cancer cachexia, [3]
leukaemia, severe psoriasis, occlusive vascular
disease, and scarring acne vulgaris
CYT-013 Vaccine targeting IL-13 Type 2 diabetes [3]

teers, it suppressed peripheral IL-13 release and mitigated
dexamphetamine-induced improvements in mood and (vi-
sual) motor performance. In depression, P2X7R inhibition
may mitigate immune-related mood dysregulation. One
study investigated the effects of JNJ-54175446 in patients
with major depressive disorder (MDD) undergoing total
sleep deprivation (TSD). While JNJ-54175446 was well
tolerated and had mild to moderate adverse effects, it re-
duced IL-1 release from white blood cells and blunted the
acute reduction in anhedonia induced by TSD without sig-
nificantly affecting overall mood. These findings suggest
that P2X7R inhibition may be particularly effective in situ-
ations where mood regulation is disrupted, such as acute
emotional perturbations such as TSD-induced anhedonia
[46].

Tests with the antagonist AZD9056 demonstrated im-
provement in Crohn’s disease symptoms, a disease with
high levels of IL-13, IL-6, and TNF-« in the gut and
bloodstream [47]. AZD9056 (ClinicalTrials.gov Identifier:
NCT00520572) also exhibited promising results in alle-
viating rheumatoid arthritis, in which improvements were
detected against a placebo. A decrease in joint pain and
swelling was reported as one of the most striking features
of the study [48]. The compound CE-224,535 (Clinical-
Trials.gov Identifier: NCT00628095) proved to be a po-
tent P2X7 receptor antagonist. This drug was selected for
a phase II study due to its ability to reduce LPS-induced
IL-13 and IL-18 secretion by leukocytes [49]. Tests with
the compound GSK 1482160 (ClinicalTrials.gov Identifier:
NCTO00849134), which acts as an antagonist of P2X7,
proved highly effective in neuropathic pain tests. The
study reported decreased IL-13 concentrations in a dose-
dependent manner [50]. These findings underscore the ther-
apeutic potential of targeting P2X7R for mitigating inflam-
matory responses and associated pathologies via IL-15.

1L-13 Inhibitors

The pharmaceutical market has effective anti-
inflammatory drugs. However, finding new therapies is

challenging in terms of effectiveness, low cost, and few
or no adverse effects. Nonsteroidal anti-inflammatory
drugs (NSAIDs) and corticosteroids are the most common
classes used for chronic inflammatory disease treatment.
Despite this, they have many side effects, including gastric
irritation and skin manifestations; promotion of oppor-
tunistic infections, metabolic disorders, and bone loss; and
increased risk of cardiovascular events once these enzymes
catalyse prostaglandin biosynthesis [51-54]. Therefore,
drugs for new targets are being developed to reduce these
adverse effects. Thus, compounds targeting IL-15 have
been the focus of several scientific groups (Table 2, Ref.
[3,55-61]).

Two inhibitors of IL-1 are currently approved:
anakinra, an IL-1 receptor antagonist (IL-1Ra) receptor an-
tagonist, and canakinumab, a monoclonal cytokine IL-153
antagonist [62]. Nevertheless, long-term treatment gener-
ates body toxicity, especially at the injection site. This ef-
fect must be related to the treatment time and medication
dosage [63].

Although some details concerning IL-1/ biosynthesis
have already been elucidated, some of the underlying se-
cretion mechanisms remain unknown. In the presence of
external stimuli, cytokines are produced. However, in the
absence of an aseptic stimulus, a portion of IL-1/ ceases to
be secreted, remains in the intracellular environment, and
is subsequently degraded. Extracellular adenosine triphos-
phate (eATP) is considered an essential secondary stimu-
lant for rapid cytokine secretion [64,65]. ATP, which is a
physiological agonist of the P2X7 receptor, can be released
from damaged membrane proteins or cells [5,66]. When
activated by eATP, the P2X7 receptor activates the NLRP3
inflammasome, eliciting IL-15 maturation and secretion.
Therefore, study has focused on P2X7 receptor inhibition
as a potential therapeutic target to decrease the inflamma-
tory response, as observed in a carrageenan-induced acute
inflammatory pain mouse model [67]. At the same time,
many studied antagonists fail to elicit an effective response
due to the lack of selectivity for the P2X7 receptor or, com-
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pared to conventional drugs already used in clinical trials,
lack of clinical efficacy, revealing a need to find new ef-
fective blockers. Thus, inhibiting this signalling pathway
would be a valuable strategy for decreasing IL-1/ secretion
and levels in the inflammatory microenvironment.

Conclusions

IL-17 is a pivotal cytokine that is critical for orches-
trating the intricate processes of an effective immune re-
sponse. Its multifaceted roles span from initiating inflam-
mation to modulating immune cell activities. However, the
unbridled release of IL-17 can instigate a cascade of detri-
mental effects, exacerbating the severity of chronic inflam-
matory and autoimmune diseases. This finding underscores
the urgent need for stringent regulation of IL-1 production
and secretion.

Among the components of these intricate inflamma-
tory pathways, the P2X7 receptor has emerged as a central
player. This receptor, known for its involvement in ATP-
mediated signalling, is involved in the synthesis, matura-
tion, and secretion of cytokines, including IL-13. Through
its intricate signalling cascades, P2X7R influences the ac-
tivation of inflammasomes, which are pivotal for regulat-
ing the release of mature IL-1/3. Thus, targeting P2X7R
represents a promising pathway for therapeutic intervention
aimed at modulating IL-10 levels and mitigating inflamma-
tory responses.

In light of these insights, it has become increasingly
imperative to delve deeper into the complexities surround-
ing IL-1/ regulation. Advances in our understanding of the
mechanisms governing IL-1/ production and release hold
immense potential for the development of novel therapeu-
tic strategies. By revealing the intricate interplay between
IL-18 and P2X7R, researchers can pave the way for the dis-
covery of innovative blockers capable of finely tuning the
immune response, thereby offering hope for more effective
management of inflammatory and autoimmune conditions.
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