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Tuberculosis remains the leading cause of death among global infectious diseases with increasing challenges of antimicrobial re-
sistance. Conventional anti-tuberculosis chemotherapy is aggravated by a limited success rate, a long course of treatment, and
numerous side effects. Once again, we highlighted the significance of immuno-therapy. In this review, we focus on assessing the
efficacy and safety of thymosin alpha 1 (Tα1) as a valuable adjunctive therapy for tuberculosis. We aim to examine the potential
mechanism through which Tα1 influences the immune system of tuberculosis patients, intending to provide a theoretical foun-
dation for its clinical applications. After reviewing the articles published in PubMed, Web of Science, Embase, BIOSIS Library,
and China-national-knowledge-internet, we identified 21 clinical cohort studies investigating Tα1 as an auxiliary treatment for
tuberculosis. These studies included 11 articles on pulmonary tuberculosis, 2 articles on tuberculous pleurisy, and 8 articles on
intestinal tuberculosis. These studies have demonstrated the safety and effectiveness of Tα1, an immunomodulator, in the treat-
ment of tuberculosis. The probable immune mechanism of Tα1 might involve the up-regulation of T lymphocyte (CD3+, CD4+),
helper T 17 (Th17), natural killer (NK), interferon-γ (IFN-γ), and interleukin-2 (IL-2) levels. Consequently, Tα1 may be sug-
gested as an effective and safe auxiliary treatment for mycobacterium tuberculosis infection in clinical settings. However, several
key aspects regarding Tα1 remain unclear, including the molecular mechanism involved in Tα1’s upregulation of immune cell
differentiation and cytokine secretion, the synergistic association between Tα1 and anti-tuberculosis drugs, and its therapeutic
dose and treatment duration for tuberculosis. Therefore, there is an urgent need to investigate these aspects and explore more
scientific and effective treatment strategies to provide a reference for the treatment of tuberculosis.
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Introduction

In 2022, tuberculosis ranked as the second most
deadly infectious disease worldwide, just after Corona
Virus Disease 2019 (COVID-19) [1]. It has been recog-
nized as the leading cause of deaths among individuals with
antimicrobial resistance and those infected with human im-
munodeficiency virus (HIV) [2,3]. As per theWHOGlobal
Tuberculosis Report 2023, there were approximately 10.6
million diagnosed tuberculosis cases and 1.3 million deaths
in 2022 [1]. Among tuberculosis patients, the highest global
tuberculosis burden was in Southeast Asia, accounting for
46% of cases, with India contributing 27%, followed by In-
donesia at 10%, China at 7.1%, and Philippines at 7% [1].
Despite this, new anti-tuberculosis drugs were introduced,
such as bedaquilin, delamanid and retomanid [2]. Due to
several adverse reactions (including gastrointestinal symp-
toms, liver function impairment, and renal insufficiency),

as well as challenges like poor adherence, lengthy treatment
time, and substantial antimicrobial resistance [3,4], conven-
tional anti-tuberculosis chemotherapy yields unsatisfactory
outcomes [3,4]. In 2022, approximately 410,000 new tu-
berculosis patients (3.9%) were diagnosed with multidrug-
resistant tuberculosis (MDR-TB) or rifampicin-resistant tu-
berculosis (RR-TB) [1]. Furthermore, a higher antimicro-
bial resistance rate of 54.5% has been observed in retreat-
ment tuberculosis patients [5]. Therefore, conventional
anti-tuberculosis chemotherapy is far away from the phased
goal of global tuberculosis prevention and cure. Hence,
there is an urgent need for new, effective, and comprehen-
sive anti-tuberculosis treatment options.

To solve this dilemma, researchers are committed to
developing new drugs and exploring effective adjuvant
therapy [6], such as traditional Chinese medicine [5], rosu-
vastatin [4], and metformin, to improve tuberculosis treat-
ment outcomes. Thymosin alpha 1 (Tα1), identified as a fa-
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vorable immunomodulator, is widely used for treating var-
ious infections and tumors, such as COVID-19, hepatitis
C, hepatitis B, malignant melanoma, hepatocellular carci-
noma, and DiGeorge’s syndrome [7–12].

Thymosin Alpha 1 (Tα1) may be a Valid
Auxiliary Treatment for Tuberculosis

The standard treatment regimen for drug-susceptible
tuberculosis, which includes a combination of isoniazid, ri-
fampicin, ethambutol, and pyrazinamide for 2 months fol-
lowed by isoniazid and rifampicin for 4 months, is com-
monly used to inhibit or eradicate Mycobacterium tuber-
culosis (MTB) [13]. Despite being a curable disease, the
success rate of anti-tuberculosis treatment is only 82%
for drug-susceptible tuberculosis and 55% for multidrug-
resistant tuberculosis (MDR-TB) [1]. The longer the course
of tuberculosis treatment, the higher the occurrence of side
effects. However, numerous studies have reported that pa-
tients died of liver failure or allergy reactions due to the
limitations of these drugs [14–16].

Previously, research has indicated that the combina-
tion of Tα1 with multi-modality chemotherapy yields a sig-
nificant curative effect on tuberculosis patients. This com-
bination therapy effectively regulates immune function and
reduces the levels of inflammatory cytokines, indicating its
potential as a safe therapeutic option for further use in clin-
ical practice [12]. We performed a comprehensive search
across various databases such as PubMed, Web of Science,
Embase, BIOSIS Library, and China-national-knowledge-
internet for original case reports and cohort studies on Tα1
treatment in tuberculosis patients published between Jan-
uary 1, 1979, and December 31, 2023. After reviewing the
abstracts of these manuscripts, we found 21 clinical cohort
studies exploring the efficacy of Tα1 as an auxiliary treat-
ment for tuberculosis, including 11 articles on pulmonary
tuberculosis, 2 articles on tuberculous pleurisy, and 8 arti-
cles on intestinal tuberculosis (Table 1) [12,17–36].

A total of 1100 tuberculosis cases received combined
treatment with Tα1 and anti-tuberculosis medications, in-
cluding 588 pulmonary tuberculosis, 408 intestinal tuber-
culosis, and 104 tuberculosis pleurisy patients [12,17–36].
The outcomes of these studies suggest that the ultimate neg-
ative conversion rate of sputum smear among the Tα1 com-
bined with anti-tuberculosis treatment ranged from 73.3%
to 100%, exceeding the rate observed in those only un-
dergoing anti-tuberculosis treatment, which ranged from
44.3% to 86.0%. The ultimate rate of lesion absorption
among the patients undergoing Tα1 combined with anti-
tuberculosis treatment ranged from 66.0% to 100%, exceed-
ing those patients only receiving anti-tuberculosis treat-
ment, which ranged from 50.0% to 90.5%. In addition,
the ultimate rate of cavity closure among those receiv-
ing Tα1 combined with anti-tuberculosis treatment ranged
from 47.7% to 95.0%, surpassing those only receiving

anti-tuberculosis treatment, ranging from 50.0% to 95.0%
[12,17–36]. In specific populations, including elderly peo-
ple, individuals with diabetes, and patients with multidrug-
resistant tuberculosis, we found the effectiveness of Tα1 in
improving the sputum negative conversion rates, lesion ab-
sorption rates, and cavity closure rates. Furthermore, Tα1
does not increase the adverse reactions in these patients. In
summary, combining Tα1 with anti-tuberculosis drugs can
improve clinical symptoms, promote cavity reduction and
closure, increase the negative conversion rates of sputum
smears, and exhibit no visible side effects [12]. Thus, due
to its efficacy, safety, and economic benefits, Tα1 may play
a vital role in the treatment of tuberculosis, offering a new
valuable adjunctive therapy. However, there is a lack of
clinical understanding regarding this issue.

However, the optimal therapeutic dose and dose cycle
of Tα1 for tuberculosis remain unclear. Among these 21
studies, the therapeutic dose cycle of Tα1 varied from 1.5
months to 24 months, with a significant emphasis on a 6-
month treatment regimen [12,17–36]. Among them, eight
studies specifically evaluated the impact of different thera-
peutic cycle doses of Tα1. They found a significant corre-
lation between the effectiveness of Tα1 and the duration of
treatment [22,28]. Long-term regular treatment may help
improve the prognosis of tuberculosis patients. Among the
analyzed manuscripts, the subcutaneous injection was the
most used form of treatment (17/21 articles), followed by
intravenous injection (3/21 articles) and oral administration
(11/21 articles). The most common therapeutic dosage of
Tα1 for tuberculosis was subcutaneous injections of 1.6 mg
Tα1 twice a week. The therapeutic dose of Tα1 for intra-
venous injection ranged from 40 to 80 mg. However, there
is a lack of research focusing on the relationship between
the therapeutic dose and efficacy of Tα1 for tuberculosis.
In addition, except for intestinal tuberculosis and tubercu-
losis pleurisy, there has been limited research on the treat-
ment of other forms of extra-pulmonary tuberculosis utiliz-
ing Tα1. Therefore, there is an urgent need to investigate
this aspect and explore more scientific and effective treat-
ment strategies to provide a reference for the management
of Mycobacterium tuberculosis infection.

The Immune System Plays an Important Role in
the Progress of Tuberculosis

MTB remains one of the most challenging pathogenic
bacteria, with prognosis decided by the balance between the
host immune system and the bacteria. The mucosal barriers
within the respiratory tract constitute the first line of defense
against MTB, utilizing various mucosal immune responses
[37]. After reaching the alveoli, survivingmycobacteria en-
counter a set of innate immune cells from the host, which
exert multiple cellular bactericidal functions. Adaptive im-
munity, predominantly mediated by a range of different T
cell and B cell subsets, is subsequently activated, and
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Table 1. The effective of clinical studies of thymosin alpha 1 as an effective adjuvant therapy for tuberculosis (TB).

Studies Treatment
Patients enrolled Primary outcome (AT vs AT+T)

Number Type of tuberculosis Negative conversion ratio of sputum smear Lesion absorption rate Cavity closure rate

Li XW [17] AT/AT+T 50/50 New PTB patients 62.0% (31/50) vs 80.0% (40/50)* 62.0% (31/50) vs 66.0%(33/50) -
Wu BH [18] AT/AT+T 44/44 Retreatment PTB 65.9% (29/44) vs 90.9% (40/44)* 68.2% (30/44) vs 88.6% (39/44)*
Ma QQ [19] AT/AT+T 88/68 New and retreatment PTB 64.8% (57/88) vs 100.0% (68/68)* 73.3% (72/88) vs 81.8% (66/68)* 70.8% (17/24) vs 91.3% (21/23)*
Tan JM [20] AT/AT+T 32/32 Multidrug-resistant PTB 63.3% (19/30) vs 86.7% (26/30)* - -
Deng B [21] AT/AT+T 41/46 Multidrug-resistant PTB 73.2% (31/41) vs 91.3% (42/46)* 68.3% (28/41) vs 89.1% (41/46)* 63.2% (24/41) vs 84.1% (37/46)*
Wang GH [22] AT/AT+T 50/50 PTB in older patients 76.0% (28/50) vs 90.0% (45/50)* - -
Li X [23] AT/AT+T 105/105 PTB in older patients 86.0% (90/105) vs 98.0% (102/105)* 90.5% (95/105) vs 99.7% (104/105)* 77.5% (31/40) vs 95.0% (38/40)*
Liu C [24] AT/AT+T 38/38 PTB with diabetes 78.9% (30/38) vs 92.1% (35/38)* 86.8% (33/38) vs 100.0%(38/38)* 26.3% (10/38) vs 47.7% (18/38)*
Wu L [12] AT/AT+T 60/60 PTB with diabetes 43.3% (26/60) vs 73.3% (44/60)* 50.0% (30/60) vs 80.0% (48/60)* 46.7% (28/60) vs 76.7% (46/60)*
Yao HJ [25] AT/AT+T 32/32 PTB with diabetes 53.1% (17/32) vs 78.1% (25/32)* 62.5% (20/32) vs 87.5% (28/32)*
Cao Y [26] AT/AT+T 43/43 PTB with diabetes 74.4% (32/43) vs 93.0% (40/43)* - -
Jiao X [27] AT/AT+T 54/54 TB pleurisy - 83.3% (45/54) vs 96.3% (52/54)* -
Xu QF [28] AT/AT+T 50/50 TB pleurisy 60.0% (30/50) vs 82.0% (41/50)* - -
Li H [29] AT/AT+T 51/51 Intestinal TB - 72.6% (37/51) vs 94.1% (48/51)* -
Wang T [30] AT/AT+T 60/60 Intestinal TB - 78.3% (47/60) vs 91.7% (55/60)* -
Liu C [31] AT/AT+T 17/20 Intestinal TB - 76.5% (13/17) vs 95.0% (19/20)* -
Liang XF [32] AT/AT+T 62/66 Intestinal TB - 72.6% (45/62) vs 90.9% (60/66)* -
Han Y [33] AT/AT+T 55/55 Intestinal TB - 69.1% (38/55) vs 94.6% (52/55)* -
Li X [34] AT/AT+T 48/48 Intestinal TB - 75.0% (36/48) vs 91.7% (44/48)* -
Zhu N [35] AT/AT+T 60/60 Intestinal TB - 76.7% (46/60) vs 96.7% (58/60)* -
Shi S [36] AT/AT+T 48/48 Intestinal TB - 77.1% (37/48) vs 91.7% (44/48)* -
*p < 0.05; AT, anti-tuberculosis chemotherapy; PTB, pulmonary tuberculosis; AT+T, anti-tuberculosis chemotherapy combine with thymosin alpha 1.
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Fig. 1. The possible mechanisms through which Tα1 works on immune cells during M. tuberculosis infection. M. tuberculosis
primarily targets innate immune cells, including macrophages, dendritic cells, neutrophils, and natural killer (NK) cells. Tα1 affects
various aspects of macrophage such as polarization, maturation and podosome structure formation, which determines the fate of M.
tuberculosis. In addition, the impact of Tα1 on the manner of death in infected macrophages remains unclear. Neutrophils can release
neutrophil extracellular traps (NETs), facilitating the transfer of human heat shock protein 72 (HSP-72) to adjacent macrophages, thereby
inducing a pro-inflammatory response. Additionally, NK cells can kill M. tuberculosis through perforin, granzyme, and factor-related
apoptosi (FasL). However, the impact of Tα1 on the function of infected neutrophils NK cells is not quite clear (illustration can be
accessed online at https://app.biorender.com/illustrations). TNF-α, tumor necrosis factor α; Tα1, thymosin alpha 1; IL, interleukin.

participates in the host’s anti-mycobacterial defense mech-
anisms [38]. During MTB infection, the host’s bacteri-
cidal immune responses are exquisitely adjusted and bal-
anced through multifaceted mechanisms, including genetic
and epigenetic regulation, metabolic regulation, and neu-
roendocrine modulation. These mechanisms are indispens-
able for maintaining the efficiency of the host immune sys-
tem and avoiding excessive tissue injury [38–40]. The in-
nate immune cell types involved in tuberculosis include
macrophages (Mac), neutrophils, dendritic cells (DCs), and
natural killer (NK) cells [41–43]. Macrophages are acti-
vated to secrete nitric oxide and reactive oxygen species,
effectively eliminating mycobacterium tuberculosis after
phagocytosis. It is facilitated by the abundant expression
of pattern recognition receptors (PRR) and complement re-
ceptors [40]. Moreover, Mac autophagy plays a signifi-
cant role in protecting the host against tuberculosis. Cer-
tain proteins such as ATG7 and ATG14 restrict cytosolic
and phagosomal Mycobacterium tuberculosis replication in
human macrophages [44,45]. However, MTB can suppress
host DNA repair mechanisms to boost its intracellular sur-
vival and hijack host processes such as tripartite motif con-
taining 21 (TRIM21)-dependent and nuclear receptor coac-
tivator 4 (NCOA4)-dependent ferritinophagy, thus enhanc-
ing intracellular growth and leading to the spread of tuber-
culosis while inducing immune tolerance [39,46]. Notably,
the interaction between Mac and T cells plays a core role
in anti-tuberculous immunity. Research has indicated that
apoptosis of Mac caused by Alox5 deficiency leads to a
greater CD4+ and CD8+ T-cell response compared to wild-

type Mac [42]. Additionally, another study has demon-
strated that the interaction between macrophages and CD8
T cells in bronchoalveolar lavage fluid is associated with
latent tuberculosis infection [47,48].

DCs are specialized antigen-presenting cells that fa-
cilitate the innate and adaptive immunity by decomposing
pathogens into essential components and presenting them
on the cell surface for recognition by T cells [49,50]. How-
ever, MTB blocks the migration of DCs to reach the lymph
gland and inhibits the initiation of the adaptive immune re-
sponse by reducing the expression of integrin on the surface
of infected DCs [50,51]. Furthermore, MTB is supposed to
impair DC maturation by inducing the production of IL-10
[52]. In brief, targeting DC maturation may benefit for de-
creasing the inhibition of T-cell activation byMTB.

Additionally, neutrophils participate in innate
immune-mediated resistance against MTB infection. It has
been reported that healthy people in contact with patients
with pulmonary tuberculosis are less susceptible to MTB
if they have higher neutrophil counts in their peripheral
blood [53]. Neutrophils contribute to clear MTB infection
through various mechanisms, including phagocytosis, de-
granulation, and the formation of neutrophil extracellular
traps (NETs) [54,55]. These cells are supposed to induce
a pro-inflammatory response to kill MTB through coop-
eration with resident macrophages, while also secreting
cytokines (IFN-γ) which serve as an immunomodulator
to promote the pro-inflammatory function of neutrophils
[56,57]. Additionally, NK cells are non-specific immune
cells that possess cytolytic capabilities [53], and directly
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Table 2. The Immune change of clinical studies of Thymosin alpha 1 as an effective adjuvant therapy for tuberculosis.

Studies
Immune change (AT VS AT+T)

T lymphocyte NK cell cytokines

Li XW [17] the number of CD3+ and CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased NK cells decreased -
Ma QQ [19] the number of CD3+ and CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased - -
Tan JM [20] Th17, Treg and Th17/Treg increased - -
Deng B [21] the number of CD3+ and CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased - -
Liu C [24] the number of CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased
Yao HJ [25] the number of CD3+ and CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased NK cells increased IFN-γ, IL-2 increased, IL-4, IL-5 decreased
Cao Y [26] the number of CD3+ and CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased - IFN-γ increased, PCT, sTREM-1 and IL-10 decreased
Xu QF [28] - - IL-6, TNF-α, IL-23 decreased
Li H [29] the number of CD3+ and CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased - -
Wang T [30] the number of CD3+ and CD4+ increased, CD8+ decreased, the ratio of CD4+/CD8+ increased NK cells increased -
Liang XF [32] the number of CD3+, CD4+ and CD8+ increased, the ratio of CD4+/CD8+ increased NK cells increased -
Han Y [33] the number of CD3+, CD4+ and CD8+ increased, the ratio of CD4+/CD8+ increased NK cells increased -
Li X [34] the number of CD3+, CD4+ and CD8+ increased, the ratio of CD4+/CD8+ increased NK cells increased -
Zhu N [35] the number of CD3+, CD4+ and CD8+ increased, the ratio of CD4+/CD8+ increased NK cells increased -
Shi S [36] the number of CD3+, CD4+ and CD8+ increased, the ratio of CD4+/CD8+ increased NK cells increased TNF-α, and IL-10 decreased

IL, interleukin; Th17, helper T 17; IFN-γ, interferon-γ; PCT, procalcitonin; sTREM-1, souble triggering receptor expressed on myeloid cells-1.
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resist MTB growth through cytotoxic mechanisms, includ-
ing the release of perforin, granzyme and expression of
FasL, as well as indirectly through immune activation of
macrophage. In addition, NK cells are capable of produc-
ing interferon-γ (IFN-γ), and interleukin-12 (IL-12) to en-
hance phagolysosomal fusion, ultimately inhibiting intra-
cellularMTB growth [52,58,59]. Furthermore, NK-derived
exosome miR-1249-3p has been found to inhibit Mycobac-
terium tuberculosis survival in macrophages by targeting
SKI family transcriptional corepressor 1 (SKOR1) [60].

The Potential Mechanism of Tα1 in
Tuberculosis

Tα1, widely distributed in various tissues and cells, is
a short peptide consisting of 28 amino acids and can exist
either naturally or in a synthetic form [61,62]. This pep-
tide possesses positive immunomodulatory properties and
plays important roles in the activation and regulation of
various immune cells, particularly Mac and DCs (Fig. 1)
[10,58,63]. The recognition and phagocytosis of microor-
ganisms byMac represents the first step in the destruction of
pathogens through lysosomal enzymes [40]. Macrophages
express different kinds of antigen receptors on their sur-
face, such as Toll-like receptors (TLR), C-type lectin re-
ceptors, and others, helping them to recognizeMTB through
the TLR pathway [63–65]. A previous study showed that
Tα1 increased the phagocytic activity of monocyte–derived
macrophages against non-microbic foreign particles as well
as fungi in a dose-dependent manner [63]. Another study
verified that Tα1 acts as a TLR agonist (especially in TLR-
2 and TLR-9), thereby elevating the host’s phagocytic re-
sponse [64]. Therefore, the TLR pathway may be a key
aspect in elucidating the mechanism of how Tα1 synergis-
tically fights against tuberculosis. In addition, Tα1 stimu-
lation could affect the structure and function of Mac proto-
stomes, a highly dynamic actin-rich adhesion structure in-
volved in Mac adhesion and chemotaxis [66]. Chemotactic
migration of macrophages is critical in the host’s response
to infection. Previously, it has been shown that Tα1 can
significantly upregulate DC biomarkers [67]. Furthermore,
Tα1 treated DCs can promote CD3+ T-cell proliferation
and induce the release of a wide range of cytokines, includ-
ing IFN-γ, IL-5, IL-10, IL-13, and TNF-α [68]. Thus, Tα1
exerts an important role in Mac and DCs differentiation as
well as antigen-presenting function to fight against bacterial
infections. Through the literature review, we found only 15
articles that explored the effect of Tα1 on the human adap-
tive immunity system. The results of these studies suggest
that the levels of CD3+, CD4+, the ratio of CD4+/CD8+,
helper T 17 (Th17), Treg, NK, IFN-γ, IL-2 were increased.
However, the levels of IL-4, IL-5, souble triggering recep-
tor expressed on myeloid cells-1 (sTREM-1), IL-10 IL-6,
and IL-23 were decreased (Table 2, Ref. [17,19–21,24–
26,28–30,32–36]). However, few studies provide insights

into how Tα1 exerts its regulatory activity on Mac, DCs,
and T lymphocytes in conditions of MTB infection, fur-
ther research is needed to fully uncover the mechanisms in-
volved in Tα1-Mac/DCs/T lymphocyte interactions.

Conclusion

Tα1 plays a synergistic role when used in combination
with conventional anti-tuberculosis drugs in clinical set-
tings. When combined with conventional anti-tuberculosis
drugs, Tα1 effectively increases the rate of the negative
conversion and foci absorption during the treatment of var-
ious forms ofMTB infection, such as primary tuberculosis,
secondary tuberculosis, and senile tuberculosis. The inter-
actions between Tα1 and innate immune cells, particularly
macrophages and DCs, may exert a crucial role in the adju-
vant treatment of tuberculosis. Therefore, it needs further
investigations to elucidate the involved immunemechanism
of Tα1 in tuberculosis.
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