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Background: Angiopoietin-2 (Ang-2), a significant chemokine influencing monocyte chemotactic migration, was investigated un-
der conditions of intermittent hypoxia and in obstructive sleep apnea (OSA) patients. This study aimed to elucidate the chemo-
tactic impact of Ang-2 on monocytes during intermittent hypoxic conditions and to assess changes in the circadian concentration
of Ang-2 in individuals with OSA.
Methods: The OSA dataset GSE135917 was downloaded, and the Gene Set Enrichment Analysis (GSEA) method was employed
to investigate the association between Ang-2 expression and potential signaling pathways in OSA. Monocytic THP-1 cells were
utilized to examine the modulation of Ang-2 under intermittent hypoxia. Subsequently, the chemotactic motility of THP-1 cells
was evaluated using a Transwell migration assay, and the number of migrating cells was quantified through flow cytometry.
Monocyte RNA was isolated from peripheral venous blood obtained from 60 adult OSA patients and 60 healthy controls to con-
duct an Ang-2 mRNA expression study.
Results: Bioinformatic analysis indicated that pathways significantly associated with high Ang-2 expression were predominantly
enriched in extracellular regulated protein kinases (ERKs), phosphatidylinositol 3 kinase/serine-threonine kinase (PI3K/AKT),
and nuclear factor kappa-B (NF-κB) signaling pathways. Experimental results demonstrated that intermittent hypoxia actively
enhanced the expression of Ang-2 in monocytic THP-1 cells and facilitated the migration of THP-1 cells. Evidence suggested
intermittent hypoxia induced the upregulation of Ang-2 expression via PI3K, ERKs, and NF-κB pathways. Additionally, Ang-2
expression in peripheral blood mononuclear cells was elevated in OSA patients, correlating with disease severity. Furthermore,
Ang-2 mRNA expression in the OSA group was higher than in the control group.
Conclusion: Ang-2 levels are elevated in OSA patients and are correlated with disease severity. Increased monocytic expression
of Ang-2 is closely associated with intermittent hypoxia induced by OSA.
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Introduction

Obstructive sleep apnea (OSA) is a prevalent clinical
condition affecting over 10% of adults [1]. Its pathogen-
esis is characterized by recurrent partial or complete upper
airway obstruction during sleep, resulting in sleep fragmen-
tation and intermittent hypoxia [2]. Growing research in-
dicates that OSA is a significant and independent risk fac-
tor for cardiovascular diseases (CVDs), including nocturnal
arrhythmias, heart failure, myocardial infarction, and pul-
monary hypertension [3]. Current treatments for OSA en-
compass drug therapy, oral appliances, nerve stimulation,
oxygen therapy, and ventilator therapy. Surgical interven-
tion becomes an option when patients are unsuitable or un-
responsive to these treatments [4,5]. Pharyngoplasty, a sur-
gical procedure tailored for OSA patients, has been shown

to regulate the autonomic function of the heart, providing
potential therapeutic benefits. Süslü et al. [6] reported that
OSA patients undergoing pharyngoplasty exhibited signif-
icantly reduced sympathetic activity, correlating with im-
proved surgical outcomes and lower apnea-hypopnea index
(AHI).

Current evidence suggests that intermittent hypoxia
activates inflammatory pathways in circulating monocytes,
a pivotal step leading to endothelial damage [7,8]. Dur-
ing inflammation, the inflammatory region is infiltrated
with mononuclear cells such as monocytes, macrophages,
and lymphocytes, producing diverse inflammatory medi-
ators, including pro-inflammatory cytokines [9]. One of
the most extensively studied signaling pathways related to
monocyte-endothelial adherence is the mitogen-activated
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protein kinase (MAPK) signaling pathway, which consis-
tently triggers inflammatory reactions and the production
of adhesion molecules. Oxidative stress activates the in-
flammatory gene promoter of monocytes through the nu-
clear factor κB pathway, activating related mRNA to pro-
duce inflammatory factors subsequently [10].

Numerous studies have reported elevated levels of
angiopoietin-2 (Ang-2) in OSA patients, supporting the no-
tion that endothelial dysfunction plays a pivotal role in OSA
pathogenesis [11]. Ang-2 is primarily secreted by endothe-
lial cells and plays a crucial role in vascular development,
stabilization, and monocyte activation [12]. Acting as an
inhibitor of Ang-1, Ang-2 competitively binds to the Tie-2
receptor, blocking the effects of Ang-1, thereby promoting
inflammatory responses and capillary leakage [13]. While
Ang-2 is typically expressed at lower levels in normal ves-
sels, its expression is significantly upregulated in various
inflammatory and angiogenic settings [14].

An increasing number of clinical studies have shown
significantly elevated serum levels of inflammatory media-
tors in OSA patients, which positively correlate with OSA
severity, indicating the presence of local and systemic in-
flammation [15]. Carvalheiro et al. [12] proposed that
Ang-2 induces the synthesis of Interleukin-6 (IL-6) and
Interleukin-8 (IL-8) in monocytes in patients with systemic
sclerosis. Chuang et al. [16] revealed that intermittent hy-
poxia enhances the active expression of IL-8 by monocytic
TPH-1 cells at the secreted protein and mRNA levels, sub-
sequently increasing monocyte migration potential towards
IL-8. Thus, it is pertinent to investigate whether Ang-2 can
direct the chemotactic migration of monocytes.

While some literature indicates elevated circulating
Ang-2 levels in OSA patients [17,18], the underlying rea-
sons and mechanisms underlying this phenomenon re-
main elusive. Furthermore, no existing research has ad-
dressed whether “intermittent hypoxia” activates mono-
cytes to produce more Ang-2, potentially promoting sub-
sequent atherosclerosis formation. Therefore, we con-
ducted this research to investigate the influence of inter-
mittent hypoxia (IH) on Ang-2 expression in monocytes
and the associated signaling pathways implicated in Ang-
2 modulation. Additionally, to evaluate the diurnal vari-
ation of sleep apnea effects, we evaluated the concentra-
tion of Ang-2 in monocytes extracted from the blood of pa-
tients with OSA. We hypothesize that OSA patients exhibit
elevated plasma Ang-2 levels due to intermittent hypoxia-
induced activation of monocytes, leading to increased Ang-
2 production.

Materials and Methods

Bioinformatics Analysis
Dataset Collection

The GSE135917 dataset, comprising mRNA ex-
pression profiles [19] and boasting the largest sample

size, was obtained from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). This
dataset offers insights into the dynamic nature of gene ex-
pression in OSA. Among the subcutaneous adipose tissue
samples in the GSE135917 dataset, 66 were initially in-
cluded. However, 24 patients treated with continuous posi-
tive airway pressure (CPAP) therapy, which might have in-
fluenced transcriptomic profiles, were excluded. Addition-
ally, ten individuals with undetermined OSA severity were
also excluded. Consequently, 24 patients with severe OSA
and 8 healthy controls were retained for this study. The R
software (Auckland, New Zealand, R Project for Statistical
Computing, http://www.r-project.org/, version 3.6.1) was
used to annotate probes with gene symbols based on the mi-
croarray platform (GPL6244). Subsequently, we employed
the “normalizeBetweenArrays” command in the “limma”
package to standardize the data following the first normal-
ization of the expression profiles.

Gene Set Enrichment Analysis (GSEA)
Gene sets fromGSEA and REACTOME (http://www.

gsea-msigdb.org/gsea/msigdb/) were utilized to elucidate
the molecular mechanisms underlying the relationship be-
tween Ang-2 expression and OSA. The median value of
Ang-2 expression served as the cutoff point. The 24 patients
with severe OSA were divided into two groups based on
their Ang-2 expression levels (high- and low-expression).
Given the evaluation of an entire gene set database, we
adjusted the significance level estimation to accommodate
multiple hypothesis testing [20]. A maximum of 1000 per-
mutations was selected. The top five terms from pathway
and REACTOME analyses were presented. Cutoff values
were determined based on clinical relevance and previous
studies. Gene sets with |NES|>1, NOM p< 0.05, and false
discovery rate (FDR) q< 0.25 were considered to be signif-
icantly enriched [21]. GSEA plots were generated using the
“plyr”, “ggplot2”, and “grid” packages in R version 3.6.1.

Materials
The anti-Ang-2 blocking antibody used in this study

was provided by Adipogen Life Science (Liestal, Switzer-
land). The human angiopoietin-2 enzyme-linked im-
munosorbent assay (ELISA) kit (ab99971, Range: 4.12
pg/mL–3000 pg/mL, Product specification: 1× 96 tests)
and angiopoietin-2 antibody (ab155106) were procured
from Abcam PLC (Cambridge, UK). Extracellular reg-
ulated protein kinases (ERKs) inhibitor PD98059, nu-
clear factor kappa-B (NF-κB) inhibitor Bay11-7082, and
phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002
were obtained from Sigma Inc. (St. Louis, MO, USA).
For control experiments, the nonspecific antibody mouse
IgG1, Kappa Monoclonal (NCG01)-Isotype Control-BSA
and Azide free, was purchased from Abcam PLC (Cam-
bridge, UK).
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Monocyte Culture
THP-1, a human monocytic leukemia cell line, was

procured from the American Type Culture Collection (Pro-
cell Life Science & Technology Co., Ltd., Wuhan, China)
with the catalog number CL-0233. The cells were authen-
ticated by short tandem repeat (STR) analysis, and my-
coplasma testing yielded negative results. THP-1 cells were
cultured in RPMI 1640 medium supplemented with antibi-
otics and 10% fetal bovine serum (FBS). Cultures were
maintained in a humidified condition with 5% CO2 and
95% air at 37 °C. Passaging was performed using fresh
medium at a dilution ratio of 1:4.

Intermittent Hypoxic Incubation Conditions
THP-1 cells (1 × 106 cells/mL) were suspended in 5

mL of RPMI 1640 medium in a 5 cm diameter culture plate.
Intermittent hypoxia was simulated using the OxyCycler
C42 system (BioSpherix, New York, NY, USA). This sys-
tem, equipped with a dual gas controller (OxyCycler C42,
BioSpherix, New York, NY, USA) connected to a modular
sub-chamber, allowed precise control of oxygen, nitrogen,
and carbon dioxide levels. Oxygen and carbon dioxide con-
centrations were monitored using the sensors of the device,
including fiber optic oxygen sensors employing the fluores-
cence quenching technique [22]. As previously described
[23], the monocytic THP-1 cells were exposed to either nor-
moxic conditions (21% oxygen, 5% carbon dioxide, with
the remaining nitrogen) or intermittent hypoxic conditions
(35 minutes of hypoxic exposure (0.1% oxygen, 5% car-
bon dioxide, with the remaining space filled with nitrogen)
followed by 25 minutes of returned normoxia (21% oxy-
gen, 5% carbon dioxide, and nitrogen) for one cycle) up to
six cycles. Subsequently, cells subjected to intermittent hy-
poxia were transferred to a standard incubator (20220615,
Thermo Inc., Waltham, OH, USA) (21% oxygen, 5% car-
bon dioxide, and nitrogen) at 37 °C for an additional 18
hours before subsequent analyses.

RNA Isolation and Real-Time PCR
Total cellular RNA was isolated by lysing the cells

in a guanidinium isothiocyanate solution by a single-
step extraction using phenol, chloroform, and isoamyl
alcohol. M-MLV reverse transcriptase (20221215,
USB Corporation, Cleveland, OH, USA) was used
to transcribe total RNA into cDNA. The following
sequences below were employed as PCR primers:
Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)
forward primer 5′-GAAGGTGAAGGTCGGAGTC-3′ and
reverse primer 5′-GAAGATGGTGATGGGATTTC-
3′ and angiopoietin-2 forward primer 5′-
GAGATGGACAACTGCCGCTCTTC-3′ and reverse
primer 5′-GTTTGCTCCGCTGTTTGGTTCAAC-3′.
Real-time quantitative PCR (RT-qPCR) was conducted
using standard cycling conditions (95 °C pre-denaturation
30 s; 95 °C denaturation for 5 s; 60 °C annealing/extension

for 30 s; a total of 40 cycles; followed by 1 min at 50 °C
and 30 s at 70 °C). The MxPro program (WG23BK50,
Agilent Technologies, Palo Alto, CA, USA) was utilized to
calculate the cycle threshold (Ct) values. mRNA expres-
sions were analyzed using the 2−∆∆Ct calculation method
after normalization with GAPDH.

Enzyme-Linked Immunosorbent Assay (ELISA)
A human angiopoietin-2 ELISA kit was utilized to as-

sess the concentration of angiopoietin-2 in plasma and cul-
ture medium. The ELISA utilized a fixed plasma dilution
of 1:200. The diluted capture antibody was added to a 96-
well microplate and incubated overnight at room tempera-
ture. Subsequently, the microplate was washed, and block-
ing was performed using 300 µL of a diluent reagent for
one hour. Specimens and standards, diluted with the dilu-
ent reagent, were then added to the microplate and incu-
bated for two hours. After washing, 100 µL of the de-
tection antibody was added, and the mixture was incu-
bated for an additional two hours. Subsequently, 100 µL of
streptavidin- horseradish peroxidase (HRP) was added, and
the mixture was incubated for 20 minutes. The reaction
was stopped by adding 50 µL of stop solution. The ab-
sorbance of the sample was measured at 450 nm using a mi-
croplate reader (20221230, Tecan Sunrise ELISA Reader,
Morrisville, NC, USA) to determine the concentration of
angiopoietin-2 present in the sample.

Western Blot Analysis
The Western blotting procedure was conducted fol-

lowing previously reported methods [24]. A Micro BCA
protein assay reagent kit (Thermo Scientific, Cat No.
23235, Rockford, IL, USA) was used to measure protein
content accurately. Subsequently, protein samples were
electrophoresed on SD-PAGE to separate protein bands.
The proteins were then transferred from the gel onto a
PVDF membrane and blocked with 5% nonfat dry milk for
2 hours. The membrane was incubated overnight at 4 °C
with a primary antibody (Rabbit monoclonal [EPR2891(2)]
to Angiopoietin-2 (Ang-2), ab155106, dilution 1:2000;
Abcam, Cambridge, UK), followed by incubation with
a secondary antibody (Mouse monoclonal [SB62a] Anti-
Rabbit IgG light chain, ab99697, dilution 1:1000; Abcam,
Cambridge, UK) for 2 hours. Immunoreactive proteins
were visualized using enhanced chemiluminescence (ECL;
16946863, GE Healthcare, Chicago, IL, USA) and detected
with an ImageQuant 350 imager (20201230 ,GE Health-
care, Chicago, IL, USA). The relative grey value was cal-
culated by visualizing the bands through the ECL method
and quantifying the overall grey value of the protein bands
(average grey value/grey value area). GAPDH (Rabbit
polyclonal to GAPDH - Loading Control, ab9485, dilution
1:1000; Abcam, Cambridge, UK) served as an internal ref-
erence, with the target protein grey value normalized to the
internal reference overall grey value.
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Fig. 1. The flowchart showing the patients screened and included in the study. OSA, obstructive sleep apnea.

siRNA Transfection
THP-1 cells were seeded in 6-well plates overnight,

and the media were replaced with 1 mL of Opti-MEM
before transfection. siRNA transfections were conducted
using an Oligofectamine reagent (12252011, Invitrogen,
Waltham, MA, USA). Mock control and Ang-2 siRNA
duplexes (J0220, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) were incubated with 5 µL of siRNA transfec-
tion reagent for 5 minutes at room temperature, and these
mixtures were then added to THP-1 cells. The siRNA se-
quences are provided in Supplementary Table 1. After 12
hours of incubation, 1 mL of Opti-MEM containing 20%
FBS was added to each well. At 48 hours after transfection
with siRNA, the cells were treated with vehicle or CompC
for 16 hours. The efficacy of gene silencing was evaluated
using RT-qPCR for the specified time points and transfec-
tions. Each experiment was performed in triplicates and
repeated three times.

Cell Migration Assay
A 24-well plate was equipped with Transwell in-

serts featuring a microporous membrane with an aver-

age pore size of 8 µm (202211062B, ThinCerts; Greiner,
Kremsmünster, Austria). For the chemotaxis assay, Tran-
swell inserts with microporous membranes were utilized; 2
× 105 THP-1 cells in 200 µL of RPMI 1640 were added
to the upper chambers, while the lower chambers contain-
ing the conditioned medium obtained from the THP-1 cell
cultures after different cycles of intermittent hypoxia were
used as attractants. The Transwell plates were then incu-
bated at 37 °C with 5% CO2 for 6 hours. Subsequently,
the cells in the lower chambers were centrifuged, fixed in
500 µL of Fixation Buffer (E22176-101, eBioscience, San
Diego, CA, USA), and counted using a NovoCyte Flow Cy-
tometer (E69512, NovoCyte, Agilent, CA, USA).

Flow Cytometry Assays

Migrating cells from the lower chamber were har-
vested and quantified using flow cytometry. The cells were
collected via centrifugation at 4000 ×g for 5 minutes and
subsequently resuspended in fresh media. The samples
were then aliquoted into individual flow tubes, each con-
taining 30 µL of the suspension. Careful pipetting was em-
ployed to ensure uniform mixing of cells within each tube.

https://www.biolifesas.org/
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Cell counting was conducted using the NovoCyte Flow Cy-
tometry system. Acquisition settings were standardized
with a fixed acquisition time of three accumulations, each
lasting 30 seconds, totaling 90 seconds. Forward scatter
(FSC) and side scatter (SSC) detectors were utilized to as-
sess the light scatter characteristics of the cells. A gating
strategy was applied, wherein SSC-H and FSC-A signals
were plotted to exclude cellular debris from the analysis.

Clinical Study
In this study, we initially enrolled 140 patients (>18

years old) presenting at the Department of Respiratory and
Critical Care Medicine, the First Affiliated Hospital of
Chengdu Medical College, between December 2022 and
June 2023, who were suspected of suffering from OSA.
Inclusion criteria included a diagnosis of OSA confirmed
by polysomnography (PSG) using the SOMNOtouch RESP
system (20191015, SOMNOmedics, Randersacker, Ger-
many), and an apnea-hypopnea index exceeding 5. Exclu-
sion criteria encompassed acute (duration less than amonth)
or chronic (duration exceeding 1 month) severe inflamma-
tory or infectious conditions, such as trauma or recent in-
vasive medical/dental/surgical procedures, as well as co-
morbidities including ischemic heart disease, liver disease,
cerebrovascular disease, hyperlipidemia, diabetes mellitus,
hypertension, or kidney disease. Patients recently (within
the last month) treated with anti-inflammatory drugs or an-
tibiotics were also excluded. Ultimately, 60 participants
were enrolled in the study. Additionally, 60 healthy donors
matched by age and sex were included as the healthy con-
trol group. The patient selection process and research
protocol are illustrated in Fig. 1. The Ethics Commit-
tee of the First Affiliated Hospital of Chengdu Medical
College approved the study (No. 2022CYFYIRB-BA-
Nov05), and all participants provided written informed con-
sent before the commencement of the study. All proce-
dures were conducted following the principles outlined in
the Helsinki Declaration (https://www.wma.net/what-we-
do/medical-ethics/declaration-of-helsinki/).

Overnight Polysomnography (PSG)
All patients underwent evaluation via standard in-

laboratory overnight polysomnography (PSG). The Amer-
ican Academy of Sleep Medicine (AASM) scoring man-
ual version 2.4 was used to diagnose sleep apnea [25].
Specifically, data were recorded using four EEG channels
(C3/A2, C4/A1, O1/A2, O2/A1), bilateral electrooculogra-
phy, airflow (measured by thermistor and flow sensor), ar-
terial oxygen saturation (SpO2) (monitored by finger pulse
oximetry), snoring (quantified via a neck microphone), and
abdominal and chest wall movements (detected using in-
ductive plethysmographic bands). DOMINO (20191020,
SOMNOmedics, Randersacker, Germany) served as the
computer-based sleep system for data capture. Apnea was
defined as a cessation of airflow lasting at least ten seconds.

Hypopnea was characterized by a decrease in airflow of at
least 30% from baseline, lasting for a minimum of 10 sec-
onds, accompanied by desaturation of at least 3% and/or
arousal. The apnea-hyponea index (AHI) quantifies the to-
tal number of apnea and hypopnea events per hour of sleep.
Oxygen desaturation index (ODI) was recorded as the fre-
quency per hour at which blood oxygen level decreased by
3% or more from the baseline during sleep [26].

Methods for Isolating Monocytes from Blood
Under supine and fasting conditions, peripheral ve-

nous blood was drawn at a volume of 20 milliliters at 10
PM, shortly before the PSG test, and again at 6 AM the
following morning, after patients had awakened following
the completion of PSG. Peripheral blood specimens were
collected in heparin-washed tubes and promptly centrifu-
gated at 3000 ×g for 20 minutes. Plasma obtained from
this process was utilized for the study of Ang-2. Subse-
quently, mononuclear cells in the blood were separated us-
ing Ficoll-Hypaque centrifugation, and CD14+ monocytes
were sorted using an autoMACS magnetic cell sorting ma-
chine (5S2215E, Miltenyi Biotec, Bergisch Gladbach, Ger-
many), as described in a previous study [27].

Statistical Analysis
Mean Ang-2 protein or gene expression levels were

compared across the two groups using either a paired t-
test (for comparing morning and night Ang-2 levels within
the same group) or student’s t-test (for comparing the
OSA group with the control group). Differences in non-
normally distributed numerical data were assessed using the
Wilcoxon Rank sum test. The p-value reported is from the
nonparametric Wilcoxon rank sum test based on Z statis-
tic. Correlation between Ang-2 protein or gene expression
and AHI was examined using Pearson correlation analy-
sis. Statistical analyses were conducted using R software
(Auckland, New Zealand, R Project for Statistical Comput-
ing, http://www.r-project.org/, version 3.6.1) and Graph-
Pad Prism 8 (Prism 8, GraphPad Software, La Jolla, CA,
USA). Statistical significance was considered at a proba-
bility value of <0.05 (p < 0.05).

Results

Gene Set Enrichment Analysis (GSEA)
Significant pathways for the Ang-2 high-expression

group were predominantly enriched in the ERKs,
PI3K/serine-threonine kinase (AKT), and NF-κB sig-
naling pathways. Notable pathways with a false discovery
rate (FDR)-corrected p-value less than 0.25 are shown in
Fig. 2.
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Fig. 2. Enrich plots from the Gene Set Enrichment Analysis (GSEA) in the high Angiopoietin-2 (Ang-2) group. PI3K/AKT,
phosphatidylinositol 3 kinase/serine-threonine kinase; NF-κB, nuclear factor kappa-B; FDR, false discovery rate.

Fig. 3. Intermittent hypoxia affects the expression of Ang-2 in monocytes. (A) Ang-2 protein levels determined using enzyme-linked
immunosorbent assay (ELISA). (B) Ang-2 protein levels evaluated through Western blot. (C) Ang-2 gene expression levels examined
by real-time quantitative PCR (RT-qPCR) using the extracted RNA. Note: Results from three independent experiments are presented as
means ± standard errors. *p < 0.05 vs. normoxia; #p < 0.05 vs. one IH cycle; & p < 0.05 vs. three IH cycles. Abbreviations: IH,
intermittent hypoxia; Ang-2, angiopoietin-2; GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase.

Intermittent Hypoxia Promotes Ang-2 Protein and
mRNA Expression in Monocyte THP-1 Cells

Monocyte THP-1 cells were subjected to normoxic or
intermittent hypoxia (IH) conditions for 1, 3, and 6 cycles.
ELISA analysis of proteins in the culture supernatants of
THP-1 cells under intermittent hypoxic and normoxic con-

ditions indicated that IH elevated the level of angiopoietin-2
protein (Fig. 3A). Furthermore, Western blot (WB) results
demonstrated that intermittent hypoxic conditions of THP-
1 cells led to increased production of angiopoietin-2 protein
(Fig. 3B). Additionally, as illustrated in Fig. 3C, mRNA
expression of angiopoietin-2 was upregulated in monocyte

https://www.biolifesas.org/
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Fig. 4. A bar graph showing the number of cells migrating into the lower chamber. Note: Data are presented as the mean± SEM of
three independent experiments. * p < 0.05 vs. normoxia; # p < 0.05 vs. six IH cycles with Anti-Ang-2; & p < 0.05 vs. one IH cycle; $
p < 0.05 vs. three IH cycles. Abbreviations: IH, intermittent hypoxia; Ang-2, angiopoietin-2.

THP-1 cells in response to intermittent hypoxia. The ele-
vated expression of angiopoietin-2 protein and mRNA lev-
els in monocyte THP-1 cells positively correlated with the
number of intermittent hypoxic cycles.

Elevated Levels of Ang-2 Induced by Intermittent
Hypoxia Promote Chemotactic Migration of
Monocytes

Following exposure of THP-1 cells to normoxia or
intermittent hypoxia for 1, 3, or 6 cycles, the culture me-
dia was collected for subsequent chemotactic migration as-
says. A 6-hour Transwell migration assay was conducted
to examine the chemotactic migration of monocytic THP-

1 cells towards the bottom chamber containing the condi-
tioned media from the intermittent hypoxia-treated cells.
Upon introduction of the media from cells exposed to in-
termittent hypoxia into the bottom chamber, a significant
increase in the number of migrating THP-1 cells was ob-
served, with this chemotactic response positively correlat-
ing with the number of IH cycles. Conversely, the impact
of these stimuli on chemotactic migration was attenuated
when Anti-Ang-2 was applied to the conditioned cultures.
Additionally, the knockdown of the Ang-2 gene resulted
in a marked reduction in THP-1 cell migration across the
Transwell filter. The number of migrated cells in the vari-
ous groups is shown in Fig. 4.

https://www.biolifesas.org/
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Intermittent Hypoxia Promotes Ang-2 Synthesis in
THP-1 Cells via the PI3K, ERKs, and NF-κB
Signaling Pathways

To further investigate the potential pathways through
which intermittent hypoxia induces upregulated expression
of Ang-2 in THP-1 cells, we treated THP-1 cells with
Bay11-7082, LY294002, and PD98059 for one hour to in-
hibit NF-κB, PI3K, and ERKs, respectively, before subject-
ing them to intermittent hypoxia stimulation. Our findings
indicated that treatment with 5 µM Bay11-7082, 20 µM
LY294002, or 5 µM PD98059 substantially inhibited the
increase in angiopoietin-2 production by THP-1 cells in re-
sponse to intermittent hypoxia (Fig. 5).

Fig. 5. Activation of extracellular regulated protein kinases
(ERKs), phosphatidylinositol 3 kinase (PI3K), and NF-κB sig-
naling pathways in THP-1 cells under intermittent hypoxia.
The cell culture media was collected for enzyme-linked im-
munosorbent assay (ELISA) after exposure of THP-1 cells to ei-
ther normoxia or six cycles of intermittent hypoxia. Monocytic
THP-1 cells were pretreated with antagonists targeting the NF-
κB, PI3K, and ERKs pathways, notably Bay11-7082, LY294002,
and PD98059, respectively, for one hour before exposure to inter-
mittent hypoxia. Note: Data are presented as the mean± SEM of
three independent experiments. * p< 0.05 compared to normoxia;
# p < 0.05 compared to six IH cycles.

Ang-2 Expression and Protein Levels Increase in
OSA Patients after One Night of Sleep

Table 1 presents demographic information for the 60
OSA patients and 60 healthy controls enrolled in this study.
Blood samples were collected before and after overnight
polysomnographic (PSG) testing for monocyte extraction.
Fig. 6A illustrates Ang-2 levels in plasma samples from
the observation group. The change in plasma Ang-2 lev-
els (∆Ang-2) measured before and after sleep for a single
night was significantly associated with the AHI (p = 0.001,
r = 0.46) (Fig. 6B). Furthermore, monocytes Ang-2 mRNA
expression in the morning was found to increase with the

severity of OSA (p = 0.004, r = 0.44) (Fig. 6C). The re-
sults indicate that in the morning, Ang-2mRNA expression
in peripheral blood mononuclear cells (PBMCs) from the
OSA group was higher than that in PBMCs from the control
group (Fig. 6D). However, at night, the expression levels
of Ang-2mRNA in PBMCs were not significantly different
from those in the control group (Fig. 6E). Our findings sug-
gest that Ang-2 is elevated in OSA patients and is associated
with the severity of OSA.

Discussion

In this study, we demonstrated that intermittent hy-
poxia increases Ang-2 protein and mRNA levels in mono-
cyte THP-1 cells, consequently enhancing Ang-2-mediated
chemotactic migration. Furthermore, we identified the in-
volvement of PI3K, ERKs, and NF-κB pathways in Ang-2
activation of THP-1 cells. Additionally, we observed ele-
vated levels of monocyte Ang-2 protein and mRNA in the
morning in OSA patients, positively correlated with disease
severity.

Ang-2 is a glycoprotein with a relative molecular
weight of approximately 70,000 Daltons, comprising 496
amino acids, with approximately 60% amino acid homol-
ogy to Ang-1 [28]. Its amino terminus contains a coiled-
coil domain (CC) mediating homopolymerization between
ligands and monomers and a fibrinogen-like domain (FL)
at the carboxyl terminus, which is responsible for signal
transduction between ligand receptors [29]. Ang-2 is be-
lieved to act as a chemotactic agent for neutrophils, facili-
tating their migration and playing an active role in the pri-
mary defense layer of the immune system [30]. Lee et al.
[31] demonstrated that endothelial andmacrophage-derived
Ang-2 persistently stimulates aberrant vascular remodeling
and polarization of pro-inflammatory macrophages via in-
tegrin α5β1 signaling, exacerbating cardiac hypoxia and
the inflammatory response following myocardial infarc-
tion. Additionally, Ang-2 has been shown to recruit, adhere
to, and facilitate the migration of monocytes, promoting
the aggregation ofM1-typemacrophages within atheroscle-
rotic plaques [32,33]. Furthermore, Ang-2 contributes to
the initial interaction between monocytes and endothelial
cells by synergizing with other chemokines. It stimulates
endothelial expression of monocyte chemokines and adhe-
sion molecules, leading to an increase in the proportion of
Ly6C (low) macrophages in the aorta and an elevation in
the production of the pro-fibrotic cytokine TGF-1 in aortic
endothelial cells [34].

Coffelt et al. [35] illustrated that Ang-2 triggers
the TIE2-expressing monocytes to inhibit T-cell activation
and stimulate the growth of regulatory T-cells, while Lal
et al. [36] demonstrated a substantial elevation in plasma
Ang-2 levels in OSA patients through plasma protein pro-
filing. Consistent with these findings, our study confirmed
elevated plasma Ang-2 levels and Ang-2 mRNA expres-
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Fig. 6. Enhanced Ang-2 expression in plasma and monocytes of OSA patients. (A) Plasma Ang-2 levels of each patient before and
after the night polysomnography (PSG) assessment. (B) Plasma Ang-2 levels measured before and after a single night of sleep, with
the difference between the two represented as ∆Ang-2. A significant association was observed between the AHI and the magnitude of
the difference (p = 0.004, r = 0.46). (C) Correlation between AHI and Ang-2 mRNA expression in monocytes collected in the morning.
(D) Differentially expressed Ang-2mRNA in peripheral blood mononuclear cells from OSA patients compared to healthy controls in the
morning. (E) Differentially expressed Ang-2 mRNA in peripheral blood mononuclear cells from OSA patients compared with healthy
controls at night. Abbreviations: AHI, apnea-hypopnea index.

Table 1. Demographic data and polysomnography parameters of the enrolled OSA patients.
Variables OSA group Control group χ2/t p-value

Number of subjects (male) 60 (38) 60 (30) 2.171 0.141
Age, years 46.9 ± 5.8 45.8 ± 4.7 1.414 0.256
BMI, kg/m² 27.4 ± 4.9 26.4 ± 4.3 1.188 0.237
AHI, events/h 36.2 (20.1–55.3) 2.1 (1.2–3.6) 9.535 <0.001
Sleep efficiency, % 71.4 ± 6.3 85.3 ± 7.8 –10.761 <0.001
ODI, events/h 39.7 (22.5–79.6) 1.9 (1.6–4.1) 9.476 <0.001
Mean SpO2, % 85.8 ± 7.9 98.5 ± 5.3 –10.341 <0.001
Lowest SpO2, % 80.1 ± 12.3 94.5 ± 4.1 –8.603 <0.001
Time with SpO2 <85%, minutes 9.2 (3.5–12.0) 0.0 (0.0–0.0) - <0.001
Note: Normally distributed data are presented as means ± SD, and non-normally distributed data as medians with
25–75th percentiles. BMI, body mass index; AHI, apnea-hypopnea index; ODI, oxygen desaturation index; SpO2,

oxygen saturation.

sion in monocytes fromOSA patients. Moreover, the use of
Ang-2 inhibitors or knockdown of Ang-2 in our study atten-
uated the chemotactic migration of monocytes, a pathologi-
cal feature of early atherosclerosis [37]. Therefore, we pos-
tulate that elevated Ang-2 levels may synergistically pro-
mote the chemotactic migration and adherence of mono-
cytes to vascular endothelial cells, contributing to the pro-
gression of atherosclerosis in OSA patients.

While some research reports have indicated elevated
levels of Ang-2 in the blood of OSA patients, the patho-
physiological mechanisms underlying this phenomenon as-
sociated with intermittent hypoxia have yet to be fully elu-
cidated. A previous study by Moreau et al. [38] observed
upregulated Ang-2 levels in the early stages of intermittent
hypoxemia by assessing the concentration of Ang-2 lev-
els in cerebrospinal fluid samples obtained from individ-
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uals with sporadic amyotrophic lateral sclerosis and cate-
gorized according to the hypoxemic levels of those sam-
ples. Additionally, another study demonstrated that hy-
poxia induces increased secretion of Ang-2 by skin adipose
stem cells [39]. Furthermore, recent research has shown
elevated plasma Ang-2 production in children with severe
OSA, presumably due to sleep-associated chronic intermit-
tent hypoxia [17]. Our study is the first to demonstrate
that intermittent hypoxia in vitro promotes increased pro-
tein and mRNA levels of Ang-2 expression in monocytes.
Moreover, we investigated the promoting effect of inter-
mittent hypoxia on atherosclerosis by examining Ang-2-
induced monocyte chemotactic migration. Additionally,
we explored diurnal fluctuations in Ang-2 expression in
monocytes from OSA patients and discovered that noctur-
nal sleep apnea events might elevate Ang-2 expression in
monocytes.

It has been established that signaling pathways, no-
tably ERKs and PI3K, are necessary for Ang-2 activation
in cells [40,41]. This was also confirmed in our bioinfor-
matics analysis. The inhibition of PI3K and ERKs with
LY294002 and PD98059, respectively, has been shown to
reduce the expression of Ang-2 induced by different stim-
uli [42,43]. However, the pathways regulating Ang-2 ex-
pression in monocytes subjected to intermittent hypoxia
have not been explored. In this study, monocytes exposed
to intermittent hypoxia were treated with LY294002 and
PD98059, inhibitors of the PI3K and ERKs pathways, re-
spectively. The results illustrated that overexpression of
Ang-2 in monocytes in response to intermittent hypoxia re-
quires ERKs and PI3K activation.

Additionally, we observed that the NF-κB inhibitor
Bay11-7082 significantly attenuated the increase in Ang-2
induced by IH, suggesting that NF-κB activation is neces-
sary for intermittent hypoxia-induced upregulation of Ang-
2. These results, combined with the activation of ERKs,
suggest that oxidative stress in monocytes may be impli-
cated in this process [44,45]. Patients with OSA experience
alveolar hypoventilation between hypoxia/apnea events,
leading to intermittent hypoxia, reduced arterial oxygen
saturation, and subsequent oxidative imbalance. This im-
balance results in lipid peroxidation, generation of reac-
tive oxygen species, tumor necrosis factors, and inflamma-
tory mediators such as IL-2, IL-4, IL-6, and IL-8. These
molecules serve as markers to assess the severity of OSA
[46]. Consistent with these observations, our study con-
firmed an increase in Ang-2 expression in monocytes from
OSA patients as the disease worsened. Therefore, Ang-
2 may serve as a crucial biological indicator for assess-
ing OSA severity. Importantly, we collected and purified
monocytes from freshly drawn blood immediately before
and after PSG testing. Consequently, we hypothesized that
one night of intermittent hypoxia during sleep may result in
an excessive production of Ang-2 by monocytes.

However, there are several caveats that warrant atten-
tion in this research. Firstly, due to data limitations, our in-
tegrated bioinformatics analysis utilized data derived from
adipose tissue of OSA patients. Secondly, due to the lim-
ited awareness of OSA and the lack of medical resources
at the grassroots level, our study included only 120 OSA
patients from Southwest China. It has been documented
in the literature that ethnic differences can influence Ang-2
levels, with single nucleotide polymorphism alleles signif-
icantly correlating with overnight nocturnal oxygen satu-
ration [47]. Therefore, future studies should encompass a
broader spectrum of nations and races, including patients
from more developed regions.

Nevertheless, confounding factors impacting Ang-2
expressions, such as ischemic heart disease and other in-
flammatory diseases, were excluded during enrollment.
During an inflammatory response, the expression of Ang-2
and its release from Weibel Palade bodies are heightened,
leading to an increased Ang-2:Ang-1 ratio [48]. Some stud-
ies have indicated a correlation between serumAng-2 levels
and the extent of myocardial damage, suggestingAng-2 as a
potential biomarker for disease severity [49]. The inclusion
and exclusion criteria were stringent, and the study duration
was brief, resulting in a relatively small sample size.

Thirdly, Chandel et al. [50] demonstrated that pa-
tients with hyperinsulinemia exhibit higher concentrations
of Ang-2. Moreover, insulin has been implicated in induc-
ing the synthesis and secretion of Ang-2 from human umbil-
ical vein endothelial cells (HUVECs) via the p38 MAPK-
cFOS pathway, promoting atherosclerosis and endothelial
inflammation [50]. However, the precise mechanism by
which Ang-2 contributes to atherosclerosis by promoting
monocyte chemotactic migration in OSA patients requires
further investigation.

Lastly, this study did not employ a blind method, po-
tentially introducing bias into the research findings. There-
fore, future research should incorporate multicenter, large
samples, high-quality, double-blinded, randomized con-
trolled trials to enhance the reliability of the findings.

Conclusion

In summary, this represents the first demonstration
of the role of intermittent hypoxia in augmenting mono-
cyte Ang-2 gene expression, protein production, and sub-
sequent chemotactic migration. The upregulation of mono-
cyte Ang-2 expression induced by intermittent hypoxia is
mediated, at least partially, by the PI3K, ERKs, and NF-κB
signaling pathways. Additionally, our results revealed that
the expression of monocyte Ang-2 in OSA patients was ele-
vated following a single night of sleep and positively corre-
lated with AHI. These findings underscore the critical role
of Ang-2 in facilitating the increased chemotactic migration
of monocytes under intermittent hypoxic conditions.
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