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Background: Chronic obstructive pulmonary disease (COPD) is a respiratory illness, with cellular senescence recognized as
an essential mechanism driving this chronic lung disease. Salidroside (Sal), a natural compound, is recognized for its anti-
aging impacts. Therefore, this study aims to investigate the role and the underlying mechanism of Sal on airway epithelial
cell senescence.

Methods: In vitro experiments were performed by treating BEAS-2B cells with cigarette smoke extract (CSE), AG490 (Janus
kinase 2 (JAK2) inhibitor), or Sal (40 pM, 80 pM, 160 pM). Moreover, senescence-associated -galactosidase (SA-(-gal) staining
and the manifestation of senescence-related genes were used to assess cellular senescence. The mRNA levels of cyclin-dependent
kinase inhibitor 2a (p16) and cyclin-dependent kinase inhibitor 1a (p21) were evaluated. Furthermore, Western blot analysis
was employed to determine the expression levels of p16, p21, Janus kinase 2 (JAK2), phosphorylated-JAK2 (p-JAK2), signal
transducer and activator of transcription 3 (STAT3), and phosphorylated-STAT3 (p-STAT3). Additionally, the cytokine levels
associated with the senescence-associated secretory phenotype (SASP) were evaluated utilizing corresponding enzyme-linked
immunosorbent assay Kits.

Results: In vitro, cellular experiments demonstrated that Human bronchial epithelial cells underwent senescence in response to
CSE, as evidenced by elevated expression of p16 (p < 0.05) and p21 (p < 0.05), and promotion of senescence-associated secretory
phenotype (SASP), as well as up-regulation of JAK2/STAT3 signaling pathway activity. AG490 treatment significantly amelio-
rated CSE-induced cellular senescence, resulting in down-regulation of the JKA2/STAT3 signaling pathway, alleviation of the
senescence molecules p16 (p < 0.05), p21 (p < 0.05), p-JKA2 (p < 0.01) and p-STAT3 (p < 0.05). The inhibitor decreased the
secretion of SASP cytokines, and decreased the activity of SA-3-gal. Additionally, Sal reduced p16 (p < 0.01) and p21 (p < 0.05)
expression, potentially reversed CSE-induced cellular senescence, and inhibited the JAK2/STATS3 signaling pathway, as well as
decreased SASP secretion and SA-(3-gal activity.

Conclusion: Sal reduces CSE-induced BEAS-2B cellular senescence by inhibiting the JAK2/STAT3 signaling pathway, providing
a novel strategy for COPD treatment.
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Introduction 2a/retinoblastoma (p16/RB) pathways, which induce cell
cycle arrest and aging [6]. However, senescent cells re-
main metabolically active and continue to secrete a spe-

cific set of molecules known as the senescence-associated

Chronic obstructive pulmonary disease (COPD), a
respiratory illness with a significant rate of morbidity and

mortality, imposes a substantial disease burden on individ-
uals [1]. Tt is characterized by persistent low-grade lung
inflammation, progressive airflow constriction, and irre-
versible damage to lung parenchymal tissue [2]. Cigarette
smoke (CS) exposure is a significant risk factor for COPD.
A large body of evidence indicates a strong association be-
tween COPD and lung aging, with cellular senescence rec-
ognized as an essential mechanism driving this chronic lung
disease [3,4]. CS can mediate the release of excess oxidants
and reactive oxygen species (ROS) [5], promoting the ac-
tivation of the tumor protein p53/cyclin-dependent kinase
inhibitor 1a (p53/p21) or cyclin-dependent kinase inhibitor

secretory phenotype (SASP), which includes interleukin-6
(IL-6), interleukin-8 (IL-8) and matrix metalloproteinase
(MMP) [7]. SASP is a hallmark of cellular senescence,
leading to chronic, low-grade inflammation in COPD. This
inflammation exacerbates the deterioration of lung function
and ultimately accelerates lung aging [8]. Therefore, drugs
with anti-aging effects hold great potential to prevent the
development of COPD.

Janus kinase 2/signal transducer and activator of tran-
scription 3 (JAK2/STAT3), an essential signaling pathway
in the JAK/STAT pathway, plays a pivotal role in cell
growth, differentiation, proliferation, and apoptosis and is
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implicated in the expansion of many diseases [9]. Within
the cytoplasm, activated phosphorylated tyrosine kinase
2 (p-JAK2) phosphorylates Tyr1007 and Tyr1008 formed
STAT3 docking sites, leading to the aggregation of STAT3
binding sites [10]. STAT3 translocates as a dimer from
the cytoplasm to the nucleus, which is essential for the
transcription of the proinflammatory cytokine and influ-
ences the expression of associated downstream chemokines
[11]. JAK plays an essential role in the production of
SASP [12—14]. Wu et al. [15] demonstrated that estrogen-
mediated SASP factors promote the senescence of mes-
enchymal stem cells (MSCs) through the JAK2/STAT3 sig-
naling pathway. Zhou et al. [16] found that blocking the
JAK2/STAT pathway could delay the senescence of human
glomerular thylakoid cells. Inhibition of the JAK2/STAT3
signaling pathway decreases the secretion of the SASP fac-
tor in osteoblasts, thereby alleviating osteoporosis [17]. In
Alzheimer disease’s transgenic mice models, baicalin sup-
presses the activation of the JAK2/STAT3 signaling path-
way triggered by AS-induced microglia control [18]. Fur-
thermore, p53/p21 is a direct target of STAT3, and the
reduced level of SASP factor prevents the proliferation
of senescent cells [19]. Therefore, the JAK2/STAT3 sig-
naling pathway is closely linked to senescence. How-
ever, it remains unclear whether JAK2/STAT3 participates
in cigarette smoke extract (CSE)-induced senescence in
bronchial epithelial cells.

Salidroside (Sal) is one of the main components of
rhodiola rosea extract, known for its diverse pharmaco-
logical effects, including anti-aging, anti-inflammatory, an-
tioxidant, and anticancer properties [20]. Sal reduces
age-related cognitive decline in Alzheimer disease (AD)
rats through modulation of the phosphoinositide 3 ki-
nase/protein kinase b (PI3K/AKT) signaling pathway [21].
Additionally, Sal has been shown to improve neuronal
damage in Parkinson’s Disease mice by inhibiting nod-
like receptor thermal protein domain-associated protein 3
(NLRP3)-dependent cellular death [22]. Sun ef al. [23]
reported that Sal treatment reduced the upregulation of
senescence-related genes p53 and p21/ in ox-LDL-treated
EA. hy926 cells, thereby hindering the progression of en-
dothelial cell senescence. Previous report has shown that
Sal inhibits the expression of pl6 and p21 induced by
H505 in human umbilical vein endothelial cells (HUVECS)
and reduces senescence-associated J-galactosidase (SA-(3-
gal) activity [24]. Furthermore, Sal attenuated ultravio-
let radiation B-induced senescence in human dermal fi-
broblasts (HDFS) by decreasing SA-(3-gal activity and hin-
dering cell cycle arrest [25]. However, whether Sal al-
leviates senescence triggered by CSE in BEAS-2B cells
remains unknown. Therefore, this study aims to inves-
tigate whether Sal regulates CSE-induced cellular senes-
cence through modulation of the JAK2/STAT3 signaling
pathway.
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Materials and Methods

Preparation for CSE

CSE’s approach was performed as previously de-
scribed [26], involved using a vacuum pump (GL-802A,
Kylin-Bell, Haimen, China) to gulp smoke from an unfil-
tered cigarette (Red Lanzhou, Gansu Tobacco, Lanzhou,
China). The smoke was drawn into 30 mL of Dulbecco’s
Modified Eagle Medium (DMEM) (BL301A, Biosharp,
Hefei, China) for 1 minute and subsequently underwent
sterilization by passing CSE solution through a 0.22 pm fil-
ter (SLGP033RB, Millipore, Burlington, MA, USA). After
filtration, sodium hydroxide was employed to adjust the pH
to 7.4 within 30 minutes of preparation, establishing a 100%
CSE solution. This solution was diluted to the desired con-
centration with a medium for each experiment.

Cell Culture

BEAS-2B cell line (CL-0496, Procel, Wuhan, China)
is a human epithelial cell transformed with an adenovirus
12-SV 40 virus hybrid, isolated from a normal human
bronchial epithelial cell line obtained during necropsy of
non-cancerous individuals. Cells used in this study were
authenticated using STR profiling, and there was no cross-
contamination between cells following mycoplasma test-
ing. The cells were maintained in DMEM medium supple-
mented with 10% FBS and 1% penicillin/streptomycin fol-
lowed by incubation at 37 °C in 5% COs. Sal was purchased
from Shanghai Yuanye Biotechnology Co. Ltd (10338-51-
9, Shanghai, China), and BEAS-2B cells were exposed to
varying concentrations (40 uM, 80 uM, and 160 uM) of Sal
for 8 hours or 10 uM of AG490 (S1143, Selleck, Houston,
TX, USA) for 2 hours, before the addition of different con-
centrations of CSE.

Cell Counting Kit-8 (CCK-8) Assay

BEAS-2B cells were inoculated in 96-well plates at a
density of 1 x 10* cells/well and subsequently exposed to
different concentrations of CSE (0, 1%, 3%, 5%, 7%, 9%,
and 11%) for 24 hours. After 24 hours of incubation, 10 pL
of CCK-8 (AR1160, BOSTOR, Wuhan, China) was added
and incubated for 2 hours in the dark. The absorbance value
of each group of cells was assessed at 450nm using an en-
zyme labeling instrument (Multiskan FC, Thermo Fisher,
Waltham, MA, USA). For statistical significance, each ex-
periment was independently repeated three times. Further-
more, the impact of different concentrations of Sal (0, 5
pM, 10 uM, 20 uM, 40 pM, 80 uM, 160 uM, 320 uM) on
the viability of BEAS-2B cells was determined as follows:
Cell Viability = (ODtreatmem - ODblank)/ODcontrol - ODblank)
100%.

SA-(B-gal Staining
The SA-3-gal activity was ascertained using the SA-
[-gal staining kit (C0602, Beyotime, Shanghai, China).
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Table 1. A list of primers used in qRT-PCR.

Genes Sequences (5’-3%)

pl6-human Forward: CTCTGAGAAACCTCGGGAAACT
pl6-human Reverse: AACTACGAAAGCGGGGGTGG
p21-human Forward: TGTCTTGTACCCTTGTGCCT
p21-human Reverse: TGGTAGAAATCTGTCATGCTGGTC

GAPDH-human
GAPDH-human

Forward: CAGGAGGCATTGCTGATGAT
Reverse: GAAGGCTGGGGGCTCATTT

qRT-PCR, quantitative real-time polymerase chain reaction; p/6,

cyclin dependent kinase inhibitor 2a; p21, cyclin dependent kinase
inhibitor 1a; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Initially, BEAS-2B cells were seeded into a 6-well plate
at a density of 2 x 10° cells/well and subsequently treated
with CSE, Sal, or AG490. The cells were then fixed for
15 minutes at room temperature, followed by three times
PBS washes, and underwent treatment with 1 mL of -
galactosidase staining solution. After overnight incubation
at 37 °C without COs, the cells were observed using an or-
dinary light microscope (IX73, Olympus, Tokyo, Japan).
The percentage of SA-/3-gal positive cells was obtained us-
ing imageJ software (version 1.8.0, NIH, Bethesda, MD,
USA) and experiments were averaged in triplicate.

Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR) Assay

Total RNA from the cell samples was extracted em-
ploying a Trizol kit (9108, Takara, Osaka, Japan). Subse-
quently, RNA was converted into cDNA using the Prime-
ScriptTM RT kit (RR047A, Takara, Osaka, Japan). qRT-
PCR was performed utilizing the SYBR premixed Ex
TaqTM II kit (RR820A, Takara, Osaka, Japan) on the ABI
system (QuantStudio 3, ABI, Waltham, MA, USA). The
relative expression of target genes was conducted employ-
ing the 2722C method. The list of primers obtained from
Singke, Beijing, China, is shown in Table 1.

Western Blot Analysis

Total cellular protein was extracted using radio-
immunoprecipitation Assay (RIPA) lysis buffer (R0010,
Solarbio, Beijing, China). The proteins were resolved
through sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) and subsequently transferred onto
a polyvinylidene fluoride (PVDF) membrane. The mem-
branes were blocked with 5% skim milk for 1 hour. The
membrane was incubated overnight at 4 °C with primary
antibodies against p16 (10883-1-AP, 1:1000, Proteintech,
Wauhan, China), p21 (#2947, 1:1000, CST, Denver, MA,
USA) and JAK2 (ab108596, 1:1000, Abcam, Cambridge,
UK), phosphorylated-JAK2 (p-JAK2) (ab32101, 1:1000,
Abcam, Cambridge, UK), STAT3 (ab68153, 1:2000, Ab-
cam, Cambridge, UK), and phosphorylated-STAT3 (p-
STAT3) (ab76315, 1:2000, Abcam, Cambridge, UK). The
next day, the membrane was washed using tris buffered
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saline and tween 20 (TBST) buffer and incubated with
HRP labeled secondary antibody and goat anti-rabbit IgG
(LF102, 1:8000, EpiZyme, Shanghai, China) at ambi-
ent temperature for one hour. Finally, the immunoblots
were developed using a chemiluminescence kit (SQ201,
EpiZyme, Shanghai, China) and quantitatively analyzed
through ImageJ software. Moreover, glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (LF206, 1:10,000,
EpiZyme, Shanghai, China) served as an internal control.

Cytokine Measurements

The enzyme-linked immunosorbent assay (ELISA)
was utilized to determine the levels of IL-15 (HJ064,
EpiZyme, Shanghai, China), IL-8 (HP-Elisa, Hepenbio,
Suzhou, China), and MMP2 (ml058669-2, Mibio, Beijing,
China) in the supernatant of cell cultures, following the
guidelines provided with the corresponding ELISA Kkits.
The absorbance was assessed at 450 nm and compared with
the enzyme marker.

Bioinformatics Analysis

COPD gene expression data were collected from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
The GPL4133 platform-based GSE38974 dataset included
mRNA expression data from 23 COPD samples and 9 con-
trol samples. The dataset was used to explore the differ-
ential expression levels of certain genes. Furthermore, a
nomogram of the differentially expressed genes was con-
structed using the “Rms” R [27], where the “Points” corre-
spond to the scores assigned to the candidate genes, while
the “Total Points” represent the sum of each person’s points
for all these genes. Additionally, the diagnostic signifi-
cance was evaluated by computing the area under the curve
(AUC) and 95% confidence interval (CI) using receiver op-
erating characteristic (ROC) curves and line plots. AUC
>(0.7 indicates an effective diagnostic criterion.

Statistical Analysis

GraphPad Prism (version 9.5.0, GraphPad Software,
San Diego, CA, USA) was used for statistical analysis.
For statistical significance, each experiment was indepen-
dently repeated three times, and the data were expressed as
the mean =+ standard deviation (SD). The comparison be-
tween the two groups was performed using the indepen-
dent sample #-test. Moreover, the multi-group compari-
son was conducted through a one-way analysis of variance
(ANOVA) followed by Tukey’s test. Statistical significance
was achieved at a p-value < 0.05.
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Fig. 1. Differential analysis of 7 essential genes, nomogram, and evaluation of diagnostic value. (A-G) mRNA expression levels
of cyclin dependent kinase inhibitor 2a (p16), cyclin dependent kinase inhibitor 1a (p27), Janus kinase 2 (JAK?2), signal transducer and
activator of transcription 3 (STAT3), interleukin-13 (IL-17), interleukin-8 (/L-8), and matrix metalloproteinase 2 (MMP2). n > 3. (H)
The nomogram of p16, p21, JAK2, STAT3, IL-13, IL-8, and MMP2. (I-O) The area under the curve of p16, p21, JAK2, STAT3, IL-15,
IL-8, and MMP2. *p < 0.05, **p < 0.01 vs. Control. COPD, Chronic obstructive pulmonary disease.
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Fig. 2. CSE treatment reduced the viability of BEAS-2B cells in a dose-dependent manner and activated the JAK2/STAT3 signal-
ing pathway. (A) The viability of BEAS-2B cells was assessed employing the Cell Counting Kit-8 (CCK-8) assay after 24 hours of CSE
treatments. n = 3. (B-F) Protein expression levels of p16, p21, JAK2, phosphorylated-JAK2 (p-JAK?2), STAT3, and phosphorylated-
STAT3 (p-STAT3) were assessed using Western blot analysis following CSE treatment. GAPDH served as the internal control (n =
3). (G-I) IL-18, IL-8, and MMP2 levels were examined in the supernatants of cell cultures using enzyme-linked immunosorbent assay
(ELISA) (n=3). (J) Images of stimulated BEAS-2B cells after 8-galactosidase staining. n = 3. (K) The percentages of SA-3-gal positive
cells. n=3. *p < 0.05, **p < 0.01, ***p < 0.001 vs. Control. CSE, cigarette smoke extract.
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Results

Bioinformatic Identification of JAK2/STAT3
Signaling Pathway and Diagnostic Value of SASP in
COPD

Using bioinformatics approaches, we investigated
pl6, p21, and the JAK2/STAT3 pathway along with SASP
factors (IL-13, IL-8, MMP2), which are indicative of cel-
lular senescence. Differential expression analysis of these
genes in the GSE38794 COPD dataset revealed substan-
tial differences in p271 (p < 0.01), IL-18 (p < 0.05), and
IL-8 (p < 0.01) between the COPD and control groups
(Fig. 1B,E,F). JAK2 and STAT3 were found to be expressed
at the gene level (Fig. 1C,D), so it was reasonable that there
was no difference. p/6 and MMP2 showed no significant
difference between the 2 groups (Fig. 1A,G). Subsequently,
we constructed the nomogram incorporating these seven es-
sential genes (Fig. 1H). Furthermore, assessing their diag-
nostic significance, we created ROC curves to determine
the AUC and 95% CI for each gene. As depicted in Fig. 11—
O, the outcomes were as follows: p16 (AUC: 0.609, 95%
CI: 0.382-0.807), p21 (AUC: 0.865, 95% CI: 0.647-1.000),
JAK2 (AUC: 0.662, 95% CI: 0.454-0.855), STAT3 (AUC:
0.580, 95% CI: 0.377-0.787), IL-18 (AUC: 0.797, 95% CI:
0.609-0.957), IL-8 (AUC: 0.845, 95% CI: 0.686—0.966)
and MMP2 (AUC: 0.614, 95% CI: 0.420-0.802). Notably,
p21, IL-13, and IL-8 exhibited higher diagnostic values.

CSE Induces Senescence of BEAS-2B

We evaluated the impact of CSE exposure on the via-
bility of BEAS-2B cells. For this purpose, CSE was applied
in varying concentrations (0, 1%, 3%, 5%, 7%, and 11%)
for 24 hours to determine the appropriate concentration of
intervention. Following cellular treatment, their viability
was assessed using CCK-8 assay (Fig. 2A). We observed
that CSE concentrations lower than 5% did not influence the
viability of BEAS-2B cells, however, it was significantly
decreased at concentrations of 7%, 9%, and 11% (p < 0.01).
Therefore, CSE at 1%, 3%, and 5% concentrations was se-
lected for treating cells in the following experiments. To
determine the impact of CSE on the senescence state of ac-
tivated BEAS-2B cells, Western blot was used to assess the
expression levels of senescence-associated chemicals. As
shown in Fig. 2B-F, CSE treatment significantly increased
the expression levels of p16 and p21 compared to the con-
trol. Specifically, treatment with 1%, 3%, and 5% CSE re-
sulted in a significant increase in p16 expression (p < 0.01),
with the highest elevation observed at 5% CSE. Moreover,
CSE increased p21 expression in a concentration-dependent
manner (p < 0.01), with the most prominent elevation at
5% CSE. Furthermore, we evaluated the impact of different
concentrations of CSE on the JAK2/STAT3 signaling path-
way. We observed that CSE at 3% significantly inhibited
the levels of phosphorylated-JAK2 (p-JAK2) (» < 0.01)
and phosphorylated-STAT3 (p-STAT3) (p < 0.01). How-
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ever, CSE at 3% did not affect the total expression levels of
JAK?2 and STAT3. As p-JAK2 activation was found only at
3% CSE stimulation, we used this concentration as the in-
tervention stimulus for subsequent experiments. Addition-
ally, the levels of IL-15 (p < 0.05), IL-8 (p < 0.05), and
MMP2 (p < 0.05) were assessed utilizing ELISA, demon-
strating significantly elevated cytokine levels after CSE ex-
posure compared to the control group (Fig. 2G-I). Further-
more, after 24 hours of 3% CSE stimulation, the cells en-
larged, and SA-3-gal activity increased, leading to a higher
proportion of SA-/3-gal positive cells (p < 0.001, Fig. 2J,K).
These findings further confirm CSE-induced senescence in
BEAS-2B cells.

JAK2/STAT3 Signaling Pathway Regulates
CSE-Induced Senescence in BEAS-2B Cells

To further assess the role of JAK2/STAT3 signaling in
CSE-mediated activation of cellular senescence, we incu-
bated the cells with or without the JAK2/STAT3 pathway
inhibitor AG490 (10 uM) for 2 hours before 3% CSE treat-
ment. Compared to the control group, CSE significantly
elevated the expression of pl6 (p < 0.01) and p21 (p <
0.01) and activated the JAK2/STAT?3 signaling pathway (p
< 0.01). However, treatment with AG490 significantly de-
creased pl6 (p < 0.05) and p21 (p < 0.05) protein lev-
els, as well as p-JAK2 (p < 0.01) and p-STAT3 (p < 0.05)
compared to 3% CSE stimulation (Fig. 3A—E). Moreover,
qRT-PCR revealed a significant reduction in p16 (p < 0.01)
and p21 (p < 0.01) levels within AG490-treated BEAS-
2B cells (Fig. 3F,G). Furthermore, as shown in Fig. 3H-J,
AG490 pretreatment substantially reduced the concentra-
tions of the SASP factors, including IL-15 (p < 0.05), IL-8
(p < 0.05), and MMP2 (p < 0.01). Additionally, SA-{3-gal
activity and the proportion of positive cells were reduced
(» < 0.01) compared to the 3% CSE (Fig. 3K,L). Overall,
these findings suggest that CSE inhibits bronchial epithe-
lial cell senescence by regulating the JAK2/STAT3 signal-
ing pathway.

Sal Reduces CSE-Stimulated Cellular Senescence
and Inhibits JAK2/STAT3 Signaling Pathway within
BEAS-2B Cells

To evaluate the impact of Sal on BEAS-2B cell viabil-
ity, we treated the cells with varying concentrations of Sal
(0,5 pM, 10 puM, 20 uM, 40 uM, 80 uM, 160 uM, and 320
pM) for 24 hours. CCK-8 assay showed that the viability
of BEAS-2B cells reduced below 80% when treated with a
Sal concentration of up to 320 uM (Fig. 4A). Therefore, we
selected Sal concentrations of 40 pM, 80 uM, and 160 uM
for an 8-hour pretreatment of BEAS-2B cells. Sal treat-
ment reduced the protein expression of markers linked to
CSE-induced senescence, including p16 and p21 Fig. 4B—
D. Both 80 uM and 160 uM showed significant differences
(» < 0.01), while 40 uM did not exhibit substantial dif-
ferences (p > 0.05). Furthermore, p-JAK2 and p-STAT3
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protein levels were reduced in a dose-dependent manner
(Fig. 4B,E,F), with 40 uM, 80 uM, and 160 uM concen-
trations exhibiting significant differences compared to the
CSE group (p < 0.05).

The findings from qRT-PCR indicated that p/6 and
p21 mRNA levels were substantially elevated in the Sal
group compared to the CSE group (p < 0.05), with a more
pronounced decrease in p21 (Fig. 4B,G,H). Concurrently,
pretreatment with Sal resulted in a dose-dependent allevia-
tion in the levels of IL-13 (p < 0.01), IL-8 (p < 0.05), and
MMP?2 (p < 0.05) in CSE-treated cells (Fig. 41-K). Further-
more, the proportion of SA-/3-gal positive cells triggered by
CSE was reduced in a dose-dependent manner by all pre-
treatments (p < 0.01) (Supplementary Fig. 1A,B). These
findings imply that Sal protects BEAS-2B cells from cel-
lular senescence induced by CSE. These findings further
indicate that Sal may alleviate CSE-induced senescence in
BEAS-2B cells by inhibiting the JAK2/STAT3 pathway.

Discussion

Due to the advancement of high-throughput technolo-
gies and the rapid development of bioinformatics, there
has been a considerable accumulation and expansion of
biomedical data. Bioinformatics helps us comprehensively
understand the essence of diseases from these massive clin-
ical and experimental datasets [28]. Therefore, combin-
ing bioinformatics with experimental studies holds a prom
to identify potential targets and reveal therapeutic mecha-
nisms. In this study, bioinformatics analysis revealed the
role of the JAK2/STAT3 signaling pathway in regulating
COPD-associated cellular senescence.

The JAK2/STAT3 signaling pathway has been im-
plicated in the development of senescence. JAK2/STAT3
signaling pathway induces cellular senescence by medi-
ating SASP [15,29-31] and increasing the expression of
senescence-associated markers, including p53, p21, pl6,
and SA-(-gal [32]. It has been found that activation
of the interferon gene stimulating factor (STING) re-
sults in the phosphorylation of nuclear factor kB (NF-xB)
through TANK-binding kinase 1 (TBK1) [33]. Further-
more, it has been shown that the NF-xB signaling path-
way is the predominant mechanism for generating the se-
cretory phenotype linked with senescence (SASP) [34].
A specific inhibitor targeting the JAK2/STAT3 signaling
pathway reduces cellular senescence and oxidative DNA
damage in the brains of mice after ischaemic stroke by
blocking ¢cGAS/STING/NF-xBp65 [35]. Overexpression
of the suppressor of cytokine signaling 5 (SOCSS) in-
hibits JAK2/STAT3 signaling-mediated oxidative stress in
a mouse model of COPD [36]. Meanwhile, Sal-B promotes
lung cell proliferation and migration through JAK2/STAT3
pathway [37]. It has been indicated that CSE induces M2
polarization in mouse macrophages through JAK2/STAT3
[38]. Beaulieu et al. [31] found that the JAK2 inhibitor
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rucotinib inhibited emphysema and reduced the expression
of pl16 and p21, as well as senescence of pulmonary artery
smooth muscle cells in (PLA2R1-TG) transgenic mice.
These results are consistent with our study. In the present
study, AG490, an inhibitor targeting the JAK2/STAT3 path-
way, significantly reduced pl6 and p21 expression, /-
galactosidase activity, and SASP (IL-13, IL-8, MMP2) lev-
els in senescent bronchial epithelial cells. These results sug-
gest that the JAK2/STAT3 signaling pathway can induce
senescence in bronchial epithelial cells through SASP pro-
duction.

Sal, possessing a wide range of pharmacological prop-
erties, holds promise for the prevention and treatment of a
variety of diseases. Hence, its immense clinical applica-
tion in regulating the JAK2/STAT3 has been widely studied
in tumors. Sal inhibits the level of phosphorylation of the
JAK2/STAT3 signaling pathway in tumor cells, thereby in-
hibiting the proliferation of tumor cells [39—42]. Addition-
ally, it inhibits angiogenesis by hindering the DNA-binding
activity of STAT3 and preventing STAT3 binding to the new
binding site of the MMP2 gene promoter [43]. In inflam-
matory diseases, Sal has been shown to have an inhibitory
impact on angiogenesis. During inflammatory responses,
sal have been found to attenuate LPS-induced inflammation
in an ex vivo lung injury model by inhibiting the phospho-
rylation of JAK2/STAT3 and subsequent nuclear translo-
cation of STAT3 [44]. Liu et al. [45] reported that Sal
affects Th17 cell differentiation by inhibiting the nuclear
translocation of STAT3. Additionally, it was shown that
Sal inhibition of JAK2/STAT3 signaling pathway attenu-
ated the release of hypoxia-induced proinflammatory cy-
tokine from the hepatic liver [46]. Previous studies suggest
that Sal has the potential as a protective agent in a variety of
lung diseases, including acute lung injury [47], pulmonary
ischemia-reperfusion [48], and allergic asthma [49], pri-
marily exerting its effects through anti-inflammatory mech-
anisms. However, no studies have revealed Sal’s regu-
lation of senescence through the JAK2/STAT3 signaling
pathway. The results of in vitro experiments were con-
sistent with the expected findings: Sal significantly inhib-
ited the JAK2/STAT3 signaling pathway level in senes-
cent bronchial epithelial cells, showing potential anti-aging
properties.

The current study shows that Sal exhibits a favorable
safety profile and oral bioavailability. The oral bioavail-
ability of Sal in rats was 51.97%, although different condi-
tions may affect the bioavailability of Sal [50]. However,
various conditions may affect the bioavailability of thodiola
rosea. For example, in diabetic rats, the absorption of Sal
was favored by diabetes [51]. In diabetic rats, for example,
the absorption of rhodiola rosea was found to be selected.
In contrast, in rats with myocardial ischemia, the absorption
of Sal was reduced.

Pharmacokinetics showed that multiple administra-
tions could increase the bioavailability of rhodiola rosea
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[52]. Furthermore, Pharmacokinetics findings show that
the efficacy of Sal can be improved through various meth-
ods. Moreover, the absorption of rhodiola rosea can be af-
fected by different drugs [53]. Similarly, the absorption of
Sal can be affected by multiple medications. Moreover,
there are limited studies on the toxicity of Sal, but stud-
ies on rhodiola rosea herbs have shown that Sal displays a
high level of safety in animal models, even with both short-
term and long-term administration [54,55]. Additionally,
a study on rhodiola rosea soft capsules has demonstrated
that these capsules are safe and non-toxic [56]. Study on
Sal using the model of adriamycin-induced cardiotoxicity
by Zhang et al. [57] showed that Sal did not induce clinical
adverse events throughout the treatment period. Addition-
ally, research has indicated that rhodioloside does not show
genotoxicity in mice [58]. Similarly, we observed that Sal
was not genotoxic in mice. These studies reveal that Sal
exhibits low toxicity and high oral utilization.

It is crucial to acknowledge the limitations of this
study. Firstly, in vitro utilization of JAK2 siRNA and in
vivo knockdown of JAK2 in lung tissues could aid in in-
vestigating the role of JAK2/STAT?3 signaling in promoting
CSE-mediated cellular senescence by Sal. Additionally, the
in vivo safety profile of Sal has not been explored. There
is a need to explore strategies to increase the bioavailabil-
ity of Sal in future investigations. Secondly, our study only
explored the protective impact of Sal through the activation
of the JAK2/STAT3 signaling. The therapeutic efficacy of
Sal may involve a series of complex signaling pathways.

Conclusion

In conclusion, our study provides evidence that Sal at-
tenuates CSE-induced senescence in BEAS-2B cells by in-
hibiting the JAK2/STAT3 signaling pathway. These find-
ings offer critical new insights into understanding the pro-
tective role of Sal against cellular senescence and its under-
lying mechanisms.
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