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Background: Melanoma is the deadliest form of skin malignant tumor, with NFE2 like bZIP transcription factor 2 (VNRF2) and
glutathione peroxidase 2 (GPX2) implicated in its progression. In this report, we explored the interplay of NRF2 and GPX2 in
melanoma using both in vitro and in vivo approaches.

Methods: B16 cells were transfected with NRF2 overexpression plasmid and/or small interfering RNA against GPX2 (Si-GPX2)
plasmid and treated with erastin to induce ferroptosis. Quantitative real-time polymerase chain reaction (QRT-PCR) was used
to determine transfection efficiency. To investigate immune escape, B16 cells were co-cultured with CD8" T cells, and mice
bearing subcutaneous xenograft tumor were established and injected with programmed cell death 1 (PD-1) or CD274 molecule
(PD-L1) antibody. Cell viability, colony formation, and expressions of GPX2 and PD-L1 were analyzed by Cell Counting Kit-
8, colony formation, and western blot assays. Levels of ferrous iron (Fe’>"), malondialdehyde (MDA), lipid peroxidation, and
reactive oxygen species (ROS) were measured. CD8" T cell apoptosis and infiltration were determined by flow cytometry and
immunohistochemistry.

Results: NRF2 overexpression increased viability, colony formation, and GPX2/PD-L1 expression (p < 0.05), but reduced levels
of Fe2+, MDA, lipid peroxidation, and ROS in erastin-treated B16 cells, while GPX2 knockdown decreased colony formation and
PD-L1 expression, but increased levels of Fe>" and lipid peroxidation (p < 0.01). Following co-culture, CD8™ T cell apoptosis
was promoted by VRF2 overexpression, but inhibited by GPX2 knockdown (p < 0.01). GPX2 knockdown reversed the effects
of NRF2 overexpression on the above indices (p < 0.01). In mice with subcutaneous xenograft tumor, NRF2 overexpression
decreased CD8™ T cell infiltration, which was restored by blocking PD-1 and PD-L1 (p < 0.01).

Conclusion: NRF2 upregulates GPX2 to inhibit ferroptosis and enhance immune escape of melanoma, unveiling a previously
unknown therapeutic target to improve the efficacy of melanoma immunotherapy.
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Introduction sis [5]. Immunotherapy enhances lipid peroxidation and
activates ferroptosis as a cytotoxic pathway in melanoma
cells via activation of CD8™ T cells [6]. Moreover, DNA
damage regulates ferroptosis in melanoma cells. For exam-
ple, overexpressed TYRO3 is involved in anti- programmed
cell death 1 (PD-1)/CD274 molecule (PD-L1) resistance
through inhibition of tumor ferroptosis [7,8]. Overall, it has
been found that higher effectiveness in immunotherapy can

be achieved by triggering ferroptosis in cells.

Melanoma is the deadliest type of skin malignant tu-
mor. It is caused by malignant transformation of epider-
mal melanocytes and has the ability to spread and metasta-
size to distant sites [1], with increasing trends of morbid-
ity and mortality worldwide. As predicted by the Interna-
tional Agency for Research on Cancer (IARC), melanoma
morbidity and mortality will increase by 78% and 73%

[2]. In clinical practice, even though surgery has high ef-
ficacy in treating many melanoma patients with localized
lesions, it fails to cure patients with metastatic melanoma
[3]. Of note, improvement in melanoma outcomes has been
observed through recent advances in targeted therapy and
immunotherapy [4]. The activation of CD8T T cells to
suppress immune checkpoints causes melanoma ferropto-

NFE2 like bZIP transcription factor 2 (NRF2) encodes
a transcription factor which mediates antioxidant response
elements (ARE)-containing genes [9]. The importance of
NRF?2 in the oxidative stress response has been reported in
considerable studies [10—12]. In addition, NRF2 is a vi-
tal regulatory factor in the immune response [13,14]. For
example, immune-responsive gene 1 protects against liver
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injury via NRF2 activation and reactive oxygen species
(ROS) inhibition [15]. It is also worth mentioning that
NRF2 mediates tumor immune escape [16,17]. Immune es-
cape occurs when tumor cells evade the detection and attack
of immune system through antigenic deletion, immunolog-
ical suppression, tumor cell leakage, the absence of costim-
ulatory signals on the tumor cell surface, or the antiapop-
totic properties of tumor cells, allowing them to survive and
proliferate [18,19]. However, the impact of NRF'2 upon im-
mune escape in melanoma has not been reported.

Glutathione peroxidase 2 (GPX2) belongs to the glu-
tathione peroxidase family, where members inhibit oxida-
tive damage in cells through catalyzing the reduction of
organic hydroperoxides and hydrogen peroxide via glu-
tathione [20]. Ferroptosis, a type of programmed cell death,
results from iron-induced lipid ROS accumulation which
incurs intracellular oxidative stress [21]. GPX2 displays an-
tioxidant activity in ferroptosis to protect the cell against ox-
idative damage and has been acknowledged as a ferroptosis-
related gene [22]. Ferroptosis escape is a determinant of
melanoma metastasis and immune escape [23]. Addition-
ally, GPX2 is a metabolic driver for immune checkpoint in-
hibitor responses in tumors [24]. Though an intimate corre-
lation between GPX2 expression and NRF?2 activation ex-
ists in a variety of cancers [25], the relationship between
NRF2 and GPX2 is obscure in melanoma, which is the core
of this study.

Therefore, we investigated the involvement of NRF2
and GPX2 in ferroptosis and melanoma immune escape us-
ing in vivo and in vitro assays.

Materials and Methods

Cell Culture and Transfection

The mouse melanoma cell line B16 (191731, Zhongke
Quality Inspection Biotechnology Co., Ltd., Beijing,
China) and CD8T T cells (BFN60810807, Bluefcell,
Shanghai, China) supplemented with RPMI-1640 medium
(R8758, Sigma-Aldrich, St. Louis, MO, USA), 10% fetal
bovine serum (FBS, F2442, Sigma-Aldrich, St. Louis, MO,
USA) and 1% penicillin/streptomycin (V900929, Sigma-
Aldrich, St. Louis, MO, USA) were cultured in an incu-
bator (37 °C, 5% CO3). All cells were free of mycoplasma
contamination.

For transfection, the full sequence of NRF2
(Supplementary material 1) was assembled into
pcDNA3.1 vectors (OE-NRF2, VT1001, YouBio, Chang-
sha, China), with empty vectors as negative control
(OE-NC). All sequences of small interfering RNA
against GPX2 (small interfering RNA against GPX2 (Si-
GPX2), sense: 5'-CCUCAGCAUUCCCUUGAUATT-3;
antisense, 5'-UAUCAAGGGAAUGCUGAGGTT-3')
and its negative control siRNA (Si-NC, sense: 5'-
UUCUCCGAACGUGUCACGUTT-3’; antisense: 5'-
AGCUGACACGUUCGGAGAATT-3’) were obtained
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from GenePharma (A04001, Shanghai, China). Lipofec-
tamine 3000 Reagent (L3000001, ThermoFisher, Waltham,
MA, USA) was used to transfect the above plasmids
into B16 cells (1 x 10* cells/well in 96-well plates) at
70-90% confluence. After dilution of Lipofectamine 3000
Reagent and vectors/siRNAs in Opti-MEM™ (31985062,
ThermoFisher, Waltham, MA, USA), the mixture of
vectors with 0.2 uL. P3000 Reagent and vectors/siRNAs
was incubated in diluted Lipofectamine 3000 Reagent at
room temperature (RT) for 10 min. Then, cell culture
(96-well plates) with the complexes was performed at 37
°C for 48 h. Finally, transfection efficiency was deter-
mined by quantitative real-time polymerase chain reaction
(qRT-PCR).

gRT-PCR

Total RNA extraction and reverse transcription into
the first-strand complementary DNA (cDNA) were ac-
complished by Trizol Reagent (T9424, Sigma-Aldrich, St.
Louis, MO, USA) and the Revert Aid cDNA synthesis kit
(K1622, Solarbio, Beijing, China), respectively. cDNA
was submitted to QRT-PCR by Fast SYBR™ Green Mas-
ter Mix (4385612, ThermoFisher, Waltham, MA, USA) in
a real-time PCR instrument (CFX96 Touch, Bio-Rad Lab-
oratories, Inc., Hercules, CA, USA) under the conditions:
95 °C for 2 min, then 40 cycles at 95 °C for 3 s and 60 °C
for 30 s. Data were processed by the 2~ 22t method [26],
and glyceraldehyde-phosphate dehydrogenase (GAPDH)
served as the internal control.

The following primer sequences were used
in these experiments: NRF2 forward primer (F),
5'-CTTGGAGTAAGTCGAGAAGTA-3/, reverse
primer (R), 5'-CATCTACAAACGGGAATG-3';
GPX2 F, 5'-AGTCCTTCTATGACCTCAGTG-3’,
R, 5'-GGACGGACATACTTGAGA-3’; GAPDH
F, 5-AGAAGGCTGGGGCTCATTTG-3’, R, 5'-
AGGGGCCATCCACAGTCTTC-3'.

Cell Treatment

Erastin (E7781, Sigma-Aldrich, St. Louis, MO, USA)
in dimethyl sulfoxide (DMSO, D1435, Sigma-Aldrich, St.
Louis, MO, USA) was diluted in medium to 5 uM concen-
tration for treating B16 cells (24 h) as per the previous study
[27].

Cell Counting Kit-8 (CCK-8) Assay

B16 cells in 96-well plates (5 x 103 cells/well) were
cultured for 24/48/72 h following transfection. Next, 10
pL CCK-8 reagent (ab228554, Abcam, Cambridge, UK)
was added to each well for a 4-h incubation in darkness.
Absorbance at 460 nm of each well was measured using an
enzyme-linked immunosorbent assay (ELISA) reader (Bio-
Rad 680, Bio-Rad Laboratories, Inc., Hercules, CA, USA).


https://www.biolifesas.org/

Journal of

BIOLOGICAL REGULATORS

and Homeostatic Agents

Colony Formation Assay

200 uL cells (1 x 103 cells/well) were seeded into 6-
well plates and cultured for two weeks. When the colony
was formed, the medium was discarded. Cell fixation (4%
paraformaldehyde, P1110, Solarbio, Beijing, China) and
staining (Giemsa, G1010, Solarbio, Beijing, China) were
performed for 15 min at RT. After cell washing with phos-
phate buffered solution (PBS, P1020, Solarbio, Beijing,
China), cell colony observation and counting were con-
ducted utilizing a BX53F microscope (Olympus, Tokyo,
Japan). The colony formation rate was calculated by the
equation [number of cell colonies (>50 per colony)/total
cell number] x 100%, and normalized to the control or the
OE-NC+Si-NC group.

Iron Assay

An iron assay kit (ab83366, Abcam, Cambridge, UK)
was employed to measure the ferrous iron (Fe?") level in
B16 cells. Briefly, the supernatant was collected by cen-
trifugation after cell homogenization in cold Iron Assay
Buffer. Thereafter, 2-50 pL samples were added into each
well and left in 5 pL Iron Assay Buffer at 37 °C for 30 min,
followed by 1-h culture with 100 puL Iron Probe in dark-
ness. The absorbance of each well at 593 nm was measured
by an ELISA reader (Bio-Rad 680, Bio-Rad Laboratories,
Inc., Hercules, CA, USA).

Determination of Malondialdehyde (MDA)

A Lipid Peroxidation MDA Assay Kit (S0131S, Bey-
otime, Shanghai, China) was used to detect MDA level in
B16 cells. Cells were first homogenized by PBS. Then, 0.1
mL samples were mixed with 0.2 mL MDA determination
working solution, heated in boiling water for 15 min, cooled
to RT, and centrifuged (1000 x g, 10 min). Supernatant was
collected and absorbance at 532 nm was determined on an
ELISA reader (Bio-Rad 680, Bio-Rad Laboratories, Inc.,
Hercules, CA, USA).

C11-BODIPY Staining

Levels of lipid peroxidation in B16 cells were evalu-
ated by BODIPY™ 581/591 C11 (D3861, ThermoFisher,
Waltham, MA, USA). Briefly, C11-BODIPY was added
to the medium to 2 uM concentration, and incubated with
the cells (30 min, 37 °C). The fluorescence signal was ob-
served under a CX31 microscope (Olympus, Tokyo, Japan)
at X200 magnification using 545/40 nm excitation filter and
620/40 nm emission filter [28].

Measurement of ROS

Reactive Oxygen Species Assay Kit (S0033S, Bey-
otime, Shanghai, China) was used to detect ROS level in
B16 cells. Briefly, 2 uM 2,7-dichlorodihydrofluorescein
diacetate (DCFH-DA) in serum-free medium was co-
incubated with treated B16 cells (20 min, 37 °C). After
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washing three times with serum-free culture medium, cells
were resuspended in PBS, and the cell fluorescence signal
was detected by a CX31 microscope (%200 magnification,
Olympus, Tokyo, Japan).

Western Blot

Proteins from B16 cells were extracted with radioim-
munoprecipitation assay buffer (R0010, Solarbio, Beijing,
China) and then immersed in boiling water for 5 min. Pro-
tein concentration was determined with a bicinchoninic
acid protein assay kit (23227, ThermoFisher, Waltham,
MA, USA). Proteins were separated in 10% separation gel
(P0670, Beyotime, Shanghai, China) by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and transferred
onto the polyvinylidene fluoride membrane (YA1701, So-
larbio, Beijing, China). Following blocking with 5% non-
fat milk (D8340, Solarbio, Beijing, China) diluted by Tris
Buffered Saline and Tween-20 (T1085, Solarbio, Beijing,
China) (1 h, RT), the membrane was incubated with pri-
mary antibodies (overnight, 4 °C), and then cultured with
horseradish peroxidase (HRP)-conjugated secondary anti-
bodies (1 h, RT). After treatment with enhanced chemi-
luminescence (ECL) reagent (FP300, ABP Biosciences,
Rockville, MD, USA), analysis of band signals was per-
formed on 5200 imaging system (Tanon, Shanghai, China),
followed by quantitative analysis with GAPDH as the in-
ternal reference using ImagelJ software (1.52s version, Na-
tional Institutes of Health, Bethesda, MD, USA).

The antibodies used were obtained from Abcam
(Cambridge, UK), including GPX2 (ab137431, 22 kDa,
1:1000), PD-L1 (ab213480, 33 kDa, 1:1000), GAPDH
(ab181602, 36 kDa, 1:10,000), and anti-rabbit Im-
munoglobulin G (IgG) (ab99697, 1:1000).

Flow Cytometry

B16 cells (1 x 10%) and CD8™" T cells (5 x 10°) were
co-cultured at a ratio of 1:5 for 24 h. With CD8" T cells
in the lower chamber of transwell (140620, ThermoFisher,
Waltham, MA, USA) and B16 cells in the upper cham-
ber, CD8*% T cell apoptosis was tested by the Annexin-
V-fluorescein isothiocyanate (FITC) Apoptosis Detection
Kit (K201-100, Biovision, Milpitas, CA, USA). Digested
cells were mixed with Annexin-V-FITC, Propidium lodide
(PD), and 4-(2-hydroxyerhyl) piperazine-1-erhanesulfonic
acid (HEPES) buffer solution (PB180325, Procell, Wuhan,
China) at a ratio of 1:2:50 in Annexin-V-FITC/PI staining
solution. Cells (1 x 10° cells/100 pL) in staining solution
were incubated (15 min, RT) with 1 mL HEPES buffer solu-
tion. FITC and PI fluorescence were detected (525 and 620
nm, respectively) in Attune NxT flow cytometer (Thermo
Fisher, Waltham, MA, USA) to evaluate cell apoptosis, fol-
lowed by data analysis using Cell Quest software (version
5.1, BD Biosicences, San Diego, CA, USA).
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In Vivo Xenograft Assay

All animal experiments were approved by the Zhe-
jiang Province Center for Laboratory Animals, Institutional
of Animal Care and Use Committee (No. ZJCLA-IACUC-
20020175).

C57BL/6 mice (n = 24, 18 £ 2 g, 6 weeks old, male)
were adapted to a specific pathogen-free environment (22—
24 °C, 50-60% humidity, circadian cycle) for a week,
and divided into four groups: OE-NC, OE-NRF2, OE-
NRF2+anti-PD-1, and OE-NRF2+anti-PD-L1. For estab-
lishing subcutaneous xenograft tumor model, as described
in a previous study [29], 5 x 10° B16 cells transfected
with OE-NC or OE-NRF2 were resuspended in PBS and
injected subcutaneously into the left flank subscapular of
mice. Afterwards, mice in OE-NRF2+anti-PD-1 and OE-
NRF2+anti-PD-L1 groups were injected with PD-1 anti-
body (ab52587, Abcam, Cambridge, UK), or PD-L1 anti-
body (ab205921, Abcam, Cambridge, UK). Finally, tumor
size was measured sequentially in each mouse by a digital
caliper and calculated as per the formula: 0.5 x length x
width?. When the mice tumor volumes are <2000 mm?
and d <20 mm, mice were anesthetized by 0.9% sodium
pentobarbital (50 mg/kg body weight, P3761, Haoran Bio-
Pharma, Shanghai, China). After collecting tumors from
xenografts, mice were euthanized by cervical dislocation.

Immunohistochemistry (IHC)

After fixing with 4% paraformaldehyde for 48 h, tu-
mor tissue was dehydrated and permeabilized with alco-
hol and xylene (E809063, X820585, MACKLIN, Shang-
hai, China). Paraffin-embedded tissues were sliced into 6
pum-thick sections. The sections were dewaxed, and soaked
in different concentrations of alcohol and then stained.

For THC staining, the sections were immersed in PBS
containing Triton X-100 and 30% H2O, (T8787, 323381,
Sigma-Aldrich, St. Louis, MO, USA) (30 min, darkness,
RT), treated with antigen repair buffer (C1031, Solarbio,
Beijing, China) (20 min, 37 °C), soaked in 5% goat serum
(SL038, Solarbio, Beijing, China) (30 min, RT), and in-
cubated with CD8 primary antibody (MAS5-17006, Ther-
moFisher, Waltham, MA, USA) (overnight, 4 °C) and HRP-
conjugated secondary antibody goat anti-rat IgG (PAl-
84710, 1:200, ThermoFisher, Waltham, MA, USA) (30
min, 37 °C). DAB Horseradish Peroxidase Color Devel-
opment Kit (P0203, Beyotime, Shanghai, China) was em-
ployed to develop the sections. After hematoxylin stain-
ing, dehydration, and blockage, the sections were observed
under a CX31 microscope (x 100 magnification, Olympus,
Tokyo, Japan).

Statistical Analysis

All data were analyzed by GraphPad (version 8.0,
GraphPad Software, San Diego, CA, USA). Data were pre-
sented as mean =+ standard deviation. Two-group and multi-
group comparisons were performed by paired #-test and
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one-way analysis of variance (Tukey test for post-hoc anal-
ysis), respectively. Significant variance was indicated at p
< 0.05.

Results

NRF?2 Overexpression Elevated Viability and Colony
Formation in Erastin-Treated B16 Cells

To assess the influence of NRF2 on B16 cells, NRF2-
overexpressing cells were successfully constructed, as
shown by increased expression of NRF2 following transfec-
tion (Fig. 1A, p < 0.001). In addition, erastin was applied to
induce ferroptosis in B16 cells. NRF2-overexpressing cells
had higher viability at 24/48/72 h (Fig. 1B, p < 0.05) and
stronger colony formation ability (Fig. 1C,D, p < 0.001),
compared to OE-NC-transfected cells. Thus, these results
demonstrated that NRF2 overexpression increased viability
and colony formation in erastin-treated B16 cells.

NRF?2 Overexpression Inhibited Ferroptosis and
Upregulated GPX2 Protein Expression in
Erastin-Treated B16 Cells

Based on the above results, we concluded that NRF2
overexpression enhanced the proliferation of erastin-treated
B16 cells, and whether NRF2 was involved in erastin-
induced ferroptosis remained unknown. To evaluate fer-
roptosis level, we measured Fe?t content. NRF2 overex-
pression decreased Fe?* level in erastin-treated B16 cells
(Fig. 1E, p < 0.001). In addition, levels of MDA, lipid per-
oxidation, and ROS were also used to assess ferroptosis.
A reduced MDA level was observed in erastin-treated B16
cells following NRF2-overexpressing vector transfection
(Fig. 1F, p < 0.001), while fluorescence signals labeling
lipid peroxide (Fig. 1G,H, p < 0.001) and ROS (Fig. 2A,B,
p < 0.001) were also lower in erastin-treated B16 cells.
These results indicated that NRF2 overexpression inhib-
ited erastin-induced ferroptosis in B16 cells. Interestingly,
GPX2 expression was upregulated following NRF2 overex-
pression in erastin-treated B16 cells (Fig. 2C,D, p < 0.001),
suggesting a positive relationship of NRF2 and GPX2 in fer-
roptosis of B16 cells.

GPX2 Knockdown Reversed the Effects of NRF2
Overexpression on Proliferation, Ferroptosis, and
PD-L1 Expression in Erastin-Treated B16 Cells

We found that NRF2 overexpression enhanced colony
formation and inhibited ferroptosis in erastin-treated B16
cells. To study the relationship of NRF2 and GPX2, we
successfully knocked down GPX2 in B16 cells, as shown
by decreased GPX2 expression following Si-GPX2 trans-
fection (Fig. 3A, p < 0.001). As shown in Fig. 3B-F,
GPX2 knockdown reduced colony formation (Fig. 3B,C, p
< 0.01), increased Fe?* level (Fig. 3D, p < 0.001), and en-
hanced lipid peroxidation (Fig. 3E,F) in B16 cells following
erastin treatment, which was offset by NRF2 overexpres-
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sion (Fig. 3B-F, p < 0.01). Meanwhile, GPX2 knockdown
also reversed the effects of NRF2 overexpression on pro-
moting colony formation (Fig. 3B,C, p < 0.01), and sup-
pressing Fe?* level (Fig. 3D, p < 0.001) and lipid perox-
idation (Fig. 3E,F, p < 0.001) in erastin-treated B16 cells.
These results demonstrated that NRF2 affects proliferation

and ferroptosis of B16 cells by upregulating GPX2. As fer-
roptosis can mediate the effect of anti-PD-1 immunotherapy
on melanoma [30], we investigated whether NRF2/GPX2
affected PD-1-induced immune escape in B16 cells. First,
PD-L1 was highly expressed in NRF2-overexpressing B16
cells (Fig. 4A,B, p < 0.001) after erastin treatment, which
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was attenuated by GPX2 knockdown (Fig. 4A,B, p < 0.01).
In addition, PD-L1 showed reduced expression in Si-GPX2-
transfected cells (Fig. 4A,B, p < 0.01) after erastin treat-
ment, while NRF2 overexpression counteracted this effect
of GPX2 knockdown (Fig. 4A,B, p < 0.001).

GPX2 Knockdown Restored NRF?2

Overexpression-Promoted Apoptosis in CD8' T
Cells

The transfected B16 cells were then co-cultured with
CD8™ T cells to assess B16 cell immune escape. NRF2
overexpression in B16 cells promoted, while GPX2 knock-
down repressed the apoptosis of CD8™ T cells (Fig. 4C,D,

p < 0.001). The effects of GPX2 knockdown and NRF?2
overexpression on apoptosis of CD8 T cells were mutu-
ally counteracted (Fig. 4C,D, p < 0.001).

Blocking PD-1/PD-L1 Attenuated NRF2

Overexpression-Inhibited Infiltration of CD8T T
Cells in Subcutaneous Xenograft Tumor Mice

To investigate whether the impact of NRF2/GPX2 de-
pended on the mediation of PD-1/PD-L1, we constructed a
subcutaneous xenograft tumor model and injected PD-1 or
PD-L1 antibody into model mice. CD8" T cell infiltration
was irreplaceable for immunoreaction in tumors [31]. By
IHC, we observed that NRF2 overexpression lowered infil-
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Fig. 3. GPX2 knockdown reversed the effects of NRF2 overexpression on colony formation and ferroptosis in erastin-treated B16
cells. (A) Transfection efficiency after B16 cells was transfected with Si-GPX2 (QRT-PCR, GAPDH as internal control). (B—F) In B16
cells receiving 24-h treatment with 5 pM erastin, colony number (colony formation assay) (B,C), Fe>* level (iron assay kit) (D), and
lipid peroxidation (C11-BODIPY staining) were determined (<200 magnification, scale bar: 100 pm) (E,F). n=3. **p < 0.01, ***p <

0.001. Si-GPX2, small interfering RNA against GPX2.

tration of CD8™ T cells into tumor tissues of model mice
(Fig. 4E,F, p < 0.01), which was attenuated following the
injection of PD-1 or PD-L1 antibody (Fig. 4E,F, p < 0.01).
Based on the above findings, we inferred that NRF2/GPX2
was involved in PD-1/PD-L1-mediated immune escape of
B16 cells.

Discussion

NRF?2 has been reported to have carcinogenic or
antitumor activity in different cancer models [32]. In
melanoma, NRF2 was previously confirmed to modulate in-
nate immune responses and oxidative stress [33]. Of note,
oxidative stress and antioxidant responses are conducive to
melanoma development [34]. A previous study showed that
NRF?2 enhances melanoma malignancy via blocking differ-
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cells was transfected with NRF2 overexpression plasmid and/or Si-GPX2 plasmid and treated with 5 uM erastin for 24 h (western blot,
GAPDAH as internal control). (C,D) CD8™ T cell apoptosis following co-culture of B16 cells and CD8™ T cells (flow cytometry). (E,F)
CD8™ T cell infiltration into tumors after subcutaneous xenograft tumors was established and mice were injected with PD-1 or PD-L1

antibody (THC), arrow: the inflammatory infiltration (x 100 magnification, scale bar: 100 um). n=3. **p < 0.01, ***p < 0.001. PD-L1,

CD274 molecule; PD-1, programmed cell death 1; IHC, immunohistochemistry.

entiation and increasing COX2 expression [35]. Further,
NRF?2 participates vigorously in ferroptosis of melanoma
[23,36,37]. Ferroptosis, a form of cell death, results from
massive accumulation of Fe?>* and lipid peroxidation [38].
Erastin is widely applied as a ferroptosis inducer in tu-
mor researches [39,40]. The activated NRF2-dependent
antioxidative mechanism in ferroptosis has been identified
in melanoma [23]. miR-130b-3p may inhibit ferroptosis
in melanoma cells by means of the Dickkopfl (DKK/)-
mediated NRF2/heme oxygenase 1 (HO-1) pathway [37].
In this study, we found that NRF2 overexpression enhanced
proliferation, but inhibited levels of Fe?*, lipid peroxida-
tion, and ROS in erastin-treated B16 cells, indicating that
NRF?2 overexpression reversed erastin-induced ferroptosis
of melanoma and reduced ferroptosis in melanoma.

Furthermore, in this study, GPX2 expression was up-
regulated by NRF2 overexpression in erastin-treated B16
cells, suggesting that GPX2 might participate in the regu-
lation of NRF2 on ferroptosis of melanoma cells. GPX2
is regarded as a ferroptosis-related gene and is implicated
in tumor prognosis [41,42]. Intriguingly, the GPX2 gene
demonstrates low expression in melanoma cell lines, and

is a risk factor for overall survival [43]. A previous study
showed that GPX2 expression is regulated by several path-
ways, including NRF2 [44]. The regulation of NRF2 on
GPX2 has been previously identified [45,46]. In addition,
GPX2 is a metabolic driver of the tumor immune check-
point inhibitor response and its expression is intimately cor-
related with NRF?2 activation in assorted cancers [24]. We
constructed GPX2-deficient B16 cells and found that GPX2
knockdown reversed the effects of NRF2 overexpression on
both proliferation and ferroptosis. We then demonstrated
that NRF?2 inhibited ferroptosis by upregulating GPX2 in
melanoma. However, Hiller ef al. [47] showed that in dex-
tran sulfate sodium-treated NRF2 knockout mice, GPX2 ex-
pression remained upregulated during recovery and inde-
pendent of NRF2. More experiments are needed to verify
the regulation between NRF2 and GPX2 in different dis-
eases.

In addition, NRF2 promotes immune escape in liver
hepatocellular carcinoma and glioma [16,17]. GPX2 over-
expression is also regarded as a potential effector of im-
mune escape in tumors [24]. Moreover, the PD-1/PD-L1
axis can contribute to immune escape in various tumors
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through regulation of T-cell activity, activation of antigen-
specific T cell apoptosis, and inhibition of regulatory T cell
apoptosis [48,49]. A previous study showed that in clinical
specimens and animal models, NRF2 mediates PD-L1 ex-
pression [50]. Inhibition of the Nrf2-PD-L1 signaling path-
way can augment the efficacy of oxaliplatin in patients with
colon cancer [51]. Interestingly, recent studies reported that
ferroptosis can mediate the effect of anti-PD-1 immunother-
apy in melanoma [23,30]. In this study, we confirmed in-
creased expression of PD-L1 in NRF2-overexpressing B16
cells following erastin treatment, and such increment was
restored by GPX2 knockdown. Therefore, we speculated
that the NRF2/GPX?2 axis activated PD-1/PD-L1-mediated
immune escape in melanoma.

NRF?2 stimulates PD-L1 transcription, targeting and
inhibition, which is an alternative route to suppress PD-
1/PD-L1, induce tumor infiltration by CD4" and CD8™ T
lymphocytes, consequentially blocking melanoma growth
[52]. CD8T T cells are essential for adoptive immunity
and are vital immune cells for targeting cancer [53]. To
verify our hypothesis, we performed in vitro co-culture
of B16 cells and CD8* T cells to mimic the tumor im-
mune microenvironment in melanoma. Data showed that
NRF?2 overexpression in B16 cells promoted the apoptosis
of CD8™ T cells, while GPX2 knockdown did the opposite.
GPX2 knockdown mitigated the promoting effects of NRF2
overexpression. Further, we observed that NRF2 over-
expression significantly reduced the infiltration of CD8™
T cells into tumor tissues of model mice, suggesting that
NRF?2 overexpression induced an immunosuppressive mi-
croenvironment in tumor tissues, which was relieved by
blocking PD-1 or PD-L1. Thus, it can be concluded that
the NRF2/GPX?2 axis exerts a regulatory effect on mediated
immune escape in melanoma.

We demonstrated that the NRF2/GPX2 axis inhibits
mediated immune escape in melanoma via activating PD-
1/PD-L1 pathway, providing a potential new strategy for
melanoma immunotherapy. However, there are some limi-
tations in this study. (1) B16, a mouse melanoma cell line,
may inaccurately represent human skin cancer biology; (2)
The association between iron-related cell death and tumor
immunity is not fully understood; (3) We purposefully se-
lected a gene which may have excluded other important
genes for melanoma; (4) This study only predicted short-
term outcomes, thereby limiting possible conclusions re-
garding long-term outcomes; (5) Our study results have not
been verified by clinical experiments. Therefore, follow-up
research, long-term animal model studies, and clinical trials
are necessary.

Conclusion

Taken together, this study demonstrates that the
NRF2/GPX2 axis inhibits erastin-induced ferroptosis of
melanoma cells, and enhances immune escape in an im-
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mune microenvironment in melanoma by activating the PD-
1/PD-L1 pathway. These findings may provide references
for targeted therapy against melanoma.
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