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Objective: Coronary heart disease (CHD), emerging as a common chronic disease, is threatening the lives of middle-aged and
older people in China, with a gradual increase in morbidity and mortality. However, the metabolic mechanism of CHD remains
unclear, necessitating a comprehensive elucidation. Therefore, this study aimed to examine the underlying regulatory mechanism
of epicardial lipid metabolism in CHD.

Methods: This study collected epicardial adipose tissue samples (n = 40), including 20 patients with CHD and 20 non-CHD. 3T3L1
was induced to differentiate into mature adipocytes in vitro and subsequently treated with different concentrations of oxidized low-
density lipoprotein (ox-LDL), glucose, and lipopolysaccharide (LPS). The contents of glycerol and triglyceride were determined
using corresponding kits. Moreover, the concentrations of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA)
were assessed utilizing ELISA. Furthermore, western blotting analysis and RT-PCR were employed to determine protein and
mRNA expression levels. Additionally, immunofluorescence analysis was utilized to assess the expression of lipid droplet coating
protein perilipin A. The morphology and count of lipid droplets were observed using a confocal microscope.

Results: Compared to the non-CHD group, the level of triglyceride and perilipin A increased significantly, while the content
of glycerol, PKA, cAMP, adipose triglyceride lipase (ATGL), and hormone-sensitive lipase (HSL) decreased in the CHD group.
Furthermore, high ox-LDL and glucose significantly decreased small lipid droplets, glycerol, ATGL, and HSL while substantially
increasing large lipid droplets, triglyceride, cAMP, PKA, and perilipin A in 3T3L1 cells. Additionally, high LPS concentration
significantly increased small lipid droplets, glycerol, cAMP, PKA, ATGL, and HSL, and decreased large lipid droplets, triglyc-
eride, and perilipin A.

Conclusions: In summary, high ox-LDL and glucose levels regulate the lipolysis of 3T3L1 adipocytes by regulating the cAMP-
PKA and perilipin A-ATGL-HSL pathways. However, high LPS can promote the hydrolysis of 3T3L1 adipocytes.
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Introduction are the most critical factors. Indeed, obesity stands as a
significant risk factor in the occurrence and progression of
CHD [4]. Compared to non-obese patients, obese individ-
uals with higher visceral fat levels exhibit faster develop-
ment of CHD, worse prognosis, and higher mortality rates.

Epicardial fat (EAT) holds significant importance among

As scientific and technological advancements in
China continue, the improvement of people’s living stan-
dards has prompted cardiovascular diseases, particularly
coronary heart disease (CHD). This condition emerges as

the most common chronic disease threatening the lives of
middle-aged and older people worldwide [1]. The patho-
logical changes of CHD primarily involve the deposition of
atherosclerotic plaque on the coronary artery wall, leading
to lumen stenosis [2]. As the disease progresses, the origi-
nal plaque may rupture, resulting in bleeding or lipid accu-
mulation, further narrowing the coronary artery and lead-
ing to prolonged ischemia and hypoxia in the correspond-
ing stage of the myocardium. Eventually, this process leads
to myocardial infarction, posing a severe threat to human
life and health [3]. There are many risk factors for CHD,
among which obesity and its associated metabolic diseases

visceral adipose tissues and contributes significantly to the
occurrence and development of CHD [5,6]. However, the
precise mechanism underlying this association remains un-
clear.

The hydrolysis of fat cells generally involves three se-
quential steps. The first and most crucial step is mediated
by adipose triglyceride lipase (ATGL), an enzyme known
as triacylglycerol lipase. The second step is predominantly
conducted by hormone-sensitive lipase (HSL), a hormone-
sensitive lipase, and the third and final step is mediated by
MGL, a monoglyceride lipase [7]. Through the collabora-
tive action of these three crucial enzymes, triglycerides are
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gradually degraded into glycerol and three molecules of free
fatty acids [8]. Under normal physiological conditions, per-
ilipin A and CGI-58 are closely correlated and positioned on
the surface of lipid droplets. However, upon activating the
B adrenoceptor, perilipin A is phosphorylated through the
cyclic adenosine monophosphate (cAMP)-protein kinase A
(PKA) pathway. Subsequently, perilipin A dissociates from
CGI-58, resulting in activation of CGI-58. The activated
CGI-58 interacts with ATGL, significantly improving its
activity and accelerating fat catabolism. Furthermore, a
theory of the fat-vascular regulation axis was proposed by
a Japanese researcher: fat factors secreted by adipocytes
can directly influence vascular endothelial cells and smooth
muscle cells, thereby affecting their functional changes and
consequently impacting arteriosclerosis, thrombosis, and
inflammatory responses [9]. Therefore, visceral adipose
tissue, especially EAT, correlates closely with CHD.

Researcher has suggested that lipopolysaccharides can
activate inflammatory pathways and induce the release of
several inflammatory factors, playing an essential role in
the progression of atherosclerosis [10]. Moreover, abnor-
mal oxidized low-density lipoprotein within the intima of
blood vessels can lead to the rupture of unstable atheroscle-
rotic plaque, eventually posing threats to human health [11].
Additionally, vascular dysfunction resulting from glucose
abnormalities, particularly prevalent in diabetes patients, is
closely linked to aggravated atherosclerosis and elevated
myocardial infarction risk [12]. Therefore, investigating
the underlying regulatory mechanism of epicardial lipid
metabolism in CHD holds immense physiological signifi-
cance and warrants further study. However, there has been
limited investigation into the regulatory mechanism medi-
ating epicardial lipid metabolism in CHD. Therefore, un-
derstanding how it affects EAT metabolism needs a thor-
ough study. Hence, this study aimed to investigate the
mechanisms underlying the lipocatabolism pathway in EAT
of both CHD and non-CHD individuals. Additionally, we
aimed to elucidate the impact of varying concentrations
of glucose, lipopolysaccharide (LPS), and oxidized low-
density lipoprotein (ox-LDL) on the hydrolysis pathway
mechanism of 3T3L1 adipocytes. This study sought to es-
tablish a theoretical foundation for identifying the potential
inhibitory effects of these pathways and their effective roles
in preventing and treating obesity and CHD.

Materials and Methods

Collection of Tissue Specimens

This study included epicardial adipose tissue samples
from 20 patients with CHD and 20 without CHD who un-
derwent thoracotomy (non-CHD) between December 2021
and December 2022. The inclusion and exclusion criteria
of the study participants were set as per [13]. The patients
meeting the diagnostic criteria of CHD outlined in the Joint
Report of the International Society of Cardiology and As-
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sociation/World Health Organization Clinical Nomencla-
ture Standardization Task Group, those having no severe
diseases of liver, kidney, and other organ impairment and,
patients with no history of mental illness were enrolled in
this study. Exclusion criteria consisted of (1) patients with
a medical history including congenital heart disease, car-
diomyopathy, and other relevant diseases, (2) patients pre-
sented with diseases such as pericardial tamponade and ab-
normal sternum, which could affect the ultrasound mea-
surement of EAT, (3) and those presented with cardiac dys-
function diseases such as arrhythmia and organic valvular
heart disease. The CHD group of patients included eight
males and twelve females with an average age of 58.32 £+
7.23.

Moreover, the non-CHD group consisted of nine
males and eleven females with an average age of 55.21 +
7.17. After collection, the tissue samples were washed with
PBS to remove blood stains on the surface and stored at —
80 °C for subsequent analysis. Approval for this study was
obtained from the Medical Ethics Committee of Union Hos-
pital Tongji Medical College, Huazhong University of Sci-
ence and Technology (2018-S007). The study protocol ad-
hered to the guidelines of the Declaration of Helsinki. The
clinical information of the patients is shown in Supplemen-
tary Table 1.

Cell Culture and Treatment

The 3T3L1 preadipocytes were purchased from the
American Type Culture Collection (FS-0079, Manassas,
VA, USA). The cells were cultured in a DMEM medium
(11965092, Thermo Fisher Scientific, Inc., Waltham, MA,
USA) containing 10% FBS (10091148, Thermo Fisher Sci-
entific, Inc., Waltham, MA, USA) and incubated in a 5%
CO; environment at 37 °C. The cells underwent STR iden-
tification and mycoplasma testing. Once the cells reached
full confluence, they were digested and then evenly in-
oculated into 6-well plates at a density of 1 x 10° cells
per well. After achieving 90% confluence, the induction
medium (bovine insulin 1 mg/L, 1- methyl-3-isobutyl xan-
thine 0.5 mmol/L, dexamethasone 1.0 umol/L) was added
and incubated for 2 days. After this, the induction medium
was replaced with a modified medium containing only
bovine insulin (1 mg/L) and continued for an additional 2
days of incubation. On the fourth day, the medium was
changed to an ordinary basal medium. On the 8th day, cells
were treated with varying concentrations of ox-LDL, glu-
cose and LPS. Based on the concentration of ox-LDL, the
cells were divided into three groups as follows: the low-
ox-LDL group (25 pg/mL ox-LDL), the medium-ox-LDL
group (50 pg/mL ox-LDL), the high-ox-LDL group (100
pg/mL ox-LDL) [14]. Similarly, based on glucose lev-
els, the cells were categorized as the ow-glucose group (0
mmol/L glucose), the medium-glucose group (5.5 mmol/L
glucose), and the high-glucose group (25 mmol/L glucose)
[15]. Moreover, for LPS exposure, three groups of the
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Fig. 1. Expression levels of catabolism-related indexes of triglycerides in epicardial fat in both the non-coronary heart disease
(CHD) and CHD groups. The levels of glycerol (A), cyclic adenosine monophosphate (cAMP) (B), protein kinase A (PKA) (C), adipose
triglyceride lipase (ATGL) (D), hormone-sensitive lipase (HSL) (E), triglyceride (F), and perilipin A (G) in epicardial fat of both the CHD
and non-CHD groups were assessed using corresponding biochemical kits (n = 20). *p < 0.05, **p < 0.01, ***p < 0.001.

cells were as follows: the low-LPS group (25 ng/mL LPS),
the medium-LPS group (50 ng/mL LPS), and the high-LPS
group (100 ng/mL LPS) [16].

The Assay of Glycerol, Triglyceride, cAMP, and PKA
Levels

The levels of glycerol (G0912F, Grace Biotechnol-
ogy, Suzhou, China), triglyceride (G0910F, Grace Biotech-
nology, Suzhou, China), cAMP (ab290713, Abcam, Cam-
bridge, UK), and PKA (ab139435, Abcam, Cambridge,
UK) were evaluated utilizing corresponding detection kits.
After a 2-day maturation induction with different concen-
trations of ox-LDL, LPS, and glucose, 0.1 mL of lysis so-
lution was added to each well containing 1 x 105 cells.
Subsequently, the levels of glycerol, triglyceride, cAMP,
and PKA in 3T3L1 adipocytes were assessed following the
guidelines provided with respective detection Kkits.

RNA Extraction and gRT-PCR

Total RNA was extracted from 3T3L1 cells using Tri-
zol (15596018, Invitrogen, Carlsbad, CA, USA), followed
by reverse transcription into ¢cDNA utilizing the Takara
PrimeScript RT Reagent Kit (RR037A, Takara, Kusatsu,
Japan). Utilizing iScript Reverse Transcription (1708891,
BioRad, Redmond, WA, USA), 2 ng of total RNA under-
went reverse transcription to generate cDNA. Furthermore,

gRT-PCR was conducted employing SsoAdvanced Univer-
sal SYBR Green Supermix (1725270, BioRad, Redmond,
WA, USA). The amplification conditions were set as fol-
lows: initial denaturation at 95 °C for 10 minutes, followed
by 40 cycles of denaturation at 95 °C for 30 seconds, anneal-
ing at 55-57 °C for 30 seconds, and elongation at 72 °C for
30 seconds [17]. Relative expression levels were assessed
using the 2~ 2AC method. The primers used in qPCR are
shown in Supplementary Table 2.

Western Blotting

After cracking cells or tissues with ice-cold lysate
(P0013B, Beyotime, Shanghai, China), adipose tissue and
treated cell protein were extracted and quantified follow-
ing the manufacturer’s instructions (A045-4-2, BioRad,
Redmond, WA, USA). After this, 10 pg of total proteins
were resolved using 4-12% Bis-Tris polyacrylamide gel
electrophoresis and were transferred onto a polyvinyli-
dene difluoride (PVDF) membrane (03010040001, Mil-
lipore, Bellevue, WA, USA). The PVDF membrane was
blocked with 5% skim milk for 1 hour. The membrane
underwent overnight incubation with monoclonal rabbit
antibodies against perilipin A (ab172907, 1:1000, Ab-
cam, Cambridge, UK), ATGL (ab207799, 1:10000, Ab-
cam, Cambridge, UK), and HSL (ab109400, 1:50000, Ab-
cam, Cambridge, UK) at 4 °C. The next day, the mem-
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Fig. 2. Expression changes in catabolism-related indexes of triglycerides in 3T3L1 cells treated with various concentrations of
oxidized low-density lipoprotein (ox-LDL). The contents of glycerol (A), triglyceride (B), Camp (C), and PKA (D) in 3T3L1 cells
treated with ox-LDL at different concentrations were assessed using corresponding biochemical kits. Western blotting and qRT-PCR

were employed to observe the changes in the protein and mRNA expression of perilipin A, ATGL, and HSL in 3T3L1 cells treated with
diverse concentrations of ox-LDL (E-K), respectively (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001.

brane was washed three times with Tris-buffered saline, and
the blots underwent 1.5-hour incubation with horseradish
peroxidase-conjugated secondary anti-rabbit or anti-mouse
IgG antibodies (515-475-003, Jackson Immuno Research,
Philadelphia, PA, USA) at ambient temperature. The pro-
tein bands were visualized using an enhanced chemilumi-
nescence system (1705061, BioRad, Redmond, WA, USA).
Finally, the protein bands were quantified utilizing Image J
densitometry software (1.49, NIH, Bethesda, MA, USA),
and the findings were expressed as relative fold change
of treatment compared to the internal reference GAPDH
(1:5000), following normalization against a housekeeping
protein.

Immunofluorescence

The cells were exposed to varying concentrations of
ox-LDL, LPS, and glucose for 2 days. After this, the cells
were fixed in 4% paraformaldehyde for 30 minutes, fol-
lowed by three washes with PBS for 5 minutes each. In
the next step, 50 uL of membrane permeabilization solu-
tion was added and incubated at room temperature for 10
minutes, and underwent three additional washes with PBS
for 5 min each. The cells were then incubated overnight
with the primary antibody, perilipin A (LM3789R, LMAI
Bio, Shanghai, China), and the secondary antibody, IgG

(SAB3700885, Sigma-Aldrich, St. Louis, MO, USA). Af-
ter this, the nucleus was stained with 4/,6-Diamidino-2’-
phenylindole (DAPI, D1306, Invitrogen, Carlsbad, CA,
USA), and the samples were sealed with 1% gelatin before
being observed using a laser scanning confocal microscope
(LSM 880 NLO with Airyscan, Carl Zeiss AG, Jena, Ger-
many). Furthermore, the morphology of lipid droplets in
3T3L1 adipocytes following infection with Bodipy493/503
(CAS#:121207-31-6, Sigma-Aldrich, St. Louis, MO, USA)
for 2 days after various treatments was analyzed utilizing a
confocal microscope. Subsequently, the lipid droplets un-
derwent 3D scanning and enumeration.

Statistical Analysis

Statistical analyses were conducted using SPSS 22.0
(IBM, Armonk, NY, USA). Each experiment was per-
formed in triplicates. The data were expressed as the mean
=+ standard error of the mean (SEM). Comparison between
the two groups was achieved using a ¢-test. Moreover, mul-
tiple group comparisons were conducted utilizing One-way
ANOVA, followed by Dunnett’s test. Statistical signifi-
cance was considered at a p-value < 0.05. Additionally,
the figures were plotted through the GraphPad Prism (ver-
sion 5.0, GraphPad Software Inc, San Diego, CA, USA).
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Fig. 3. Expression levels of catabolism-related indexes of triglycerides in 3T3L1 cells treated with varying concentrations of
glucose. The contents of glycerol (A), triglyceride (B), cAMP (C), and PKA (D) in 3T3L1 cells exposed to various concentrations
of glucose were determined utilizing corresponding biochemical kits. Western blotting and qRT-PCR were used to assess the protein
and mRNA expression levels of perilipin A, ATGL, and HSL in 3T3L1 cells treated with different concentrations of glucose (E-K),
respectively (n = 3). ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001.

Results

Expression Levels of Glycerol, Triglyceride, Perilipin
A, cAMP, PKA, ATGL, and HSL in the CHD Group

The expression levels of glycerol (p < 0.01), cAMP
(» < 0.001), PKA (p < 0.001), ATGL (p < 0.05), and HSL
(» < 0.05) in EAT were significantly decreased in the CHD
group compared to the non-CHD group (Fig. 1A—E). Con-
versely, the triglyceride content and perilipin A expression
were significantly increased (p < 0.05, Fig. 1F,G). These
findings indicate abnormal metabolism of EAT in the CHD

group.

Expression Levels of Glycerol, Triglyceride, Perilipin
A, cAMP, PKA, ATGL, and HSL in 3T3L1 Cells
Treated with Different Concentrations of ox-LDL

The findings of the biochemical test demonstrated that
compared to the low-ox-LDL group, the glycerol content
in both the medium-ox-LDL and high-ox-LDL groups of
cells was significantly reduced, accompanied by a substan-
tial increase in triglyceride, cAMP, and PKA content (p <
0.001). Moreover, relative to the medium-ox-LDL group,
the triglyceride, cAMP, and PKA levels were elevated in
the high-ox-LDL group, accompanied by a substantial re-
duction in glycerol level (Fig. 2A—D). The findings from

gRT-PCR and western blotting revealed that compared to
the low-ox-LDL group, the medium-ox-LDL and high-ox-
LDL groups of cells exhibited significantly increased levels
of perilipin A mRNA and protein expression (p < 0.001),
while the expression levels of HSL and ATGL mRNA and
protein were substantially reduced (p < 0.001). Further-
more, the expression level of perilipin A was significantly
higher in the high-ox-LDL group of cells compared to the
medium-ox-LDL group; the expression levels of ATGL and
HSL were substantially reduced (Fig. 2E—K). These find-
ings indicate that high concentrations of 0x-LDL can inhibit
the lipolysis process in 3T3L1 adipocytes.

Expression Levels of Glycerol, Triglyceride, Perilipin
A, cAMP, PKA, ATGL, and HSL in 3T3L1 Cells
Treated with Various Glucose Concentrations

The findings from the biochemical analysis revealed
that compared to the low-glucose group, there was a signif-
icant reduction in the levels of glycerol, cAMP, and PKA
in high-glucose-treated 3T3L1 cells (p < 0.05). In con-
trast, the triglyceride level showed a substantial increase
(p < 0.05). Additionally, triglyceride level in the high-
glucose group was significantly increased relative to the
middle-glucose group, while the levels of glycerol, cAMP,
and PKA were significantly reduced (Fig. 3A-D).
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Fig. 4. Expression levels of catabolism-related indexes of triglycerides in 3T3L1 cells treated with various concentrations of
lipopolysaccharide (LPS). The contents of glycerol (A), triglyceride (B), cAMP (C), and PKA (D) in 3T3L1 cells induced with varying
concentrations of LPS were assessed using biochemical kits. Western blotting and qRT-PCR analyses were utilized to observe the
expression levels of protein and mRNA of perilipin A, ATGL, and HSL in 3T3L1 cells after treatment with LPS at varying concentrations
(E-K), respectively (n = 3). ns, no significance, **p < 0.01, ***p < 0.001.

The gqRT-PCR and western blotting results demon-
strated a substantial increase in perilipin A expression lev-
els in 3T3L1 cells exposed to high-glucose conditions rel-
ative to those in the low-glucose group (p < 0.001). Con-
versely, the expression levels of ATGL and HSL were sub-
stantially diminished in the high-glucose group compared
to the low-glucose group (p < 0.001). A significant eleva-
tion in perilipin A expression levels was observed in 3T3L1
cells treated with the high-glucose group compared to those
in the medium-glucose group (p < 0.001). Furthermore, the
high-glucose group exhibited significantly lower expres-
sion levels of ATGL and HSL compared to the medium-
glucose group (p < 0.001, Fig. 3E-K). These observations
suggest that high glucose concentration inhibits the lipoly-
sis process in 3T3L1 adipocytes.

Expression Levels of Glycerol, Triglyceride, Perilipin
A, cAMP, PKA, ATGL, and HSL in 3T3L1 Cells
Exposed to Different Concentrations of LPS

Biochemical analysis demonstrated that compared to
the low-LPS group, the levels of glycerol and PKA were
significantly increased in 3T3L1 cells induced by medium-
LPS and high-LPS (p < 0.001), while the triglyceride con-
tent notably decreased (p < 0.001). Furthermore, in com-

parison with the medium-LPS group, the triglyceride levels
decreased significantly in the high-glucose group, while the
glycerol, cAMP, and PKA levels increased significantly (p
< 0.001, Fig. 4A-D). The qRT-PCR and western blotting
analyses indicated that compared to the low-LPS group,
the expression levels of perilipin A were substantially al-
leviated in 3T3L1 cells mediated with the medium-LPS
and high-LPS (p < 0.01), while the expression levels of
ATGL and HSL were increased (p < 0.01). Additionally,
relative to the medium-LPS group, the perilipin A expres-
sion level in 3T3L1 cells within the high-glucose group
decreased considerably, whereas the ATGL and HSL ex-
pression levels increased (p < 0.01, Fig. 4E-K). Conse-
quently, a high concentration of LPS promoted the lipolysis
of 3T3L1 adipocytes.

The Expression Levels of Perilipin A in 3T3L1
Adipocytes Following Various Treatments

As illustrated in Fig. 5A, the immunofluorescence
analysis revealed a significant upregulation in perilipin A
levels in 3T3L1 cells treated with both the medium-ox-
LDL and high-ox-LDL relative to the low-ox-LDL group
(» < 0.05). Moreover, there was a significant increase in
perilipin A levels in the high-ox-LDL group compared to
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used to assess the expression levels of perilipin A in 3T3L1 cells induced by different concentrations of ox-LDL (A), glucose (B), and
LPS (C). Scale bar =20 um (n = 3). ns, no significance, *p < 0.05, **p < 0.01.

the medium-ox-LDL group (p < 0.05). Furthermore, rel-
ative to the low-glucose group, the intermediate-glucose
and high-glucose groups exhibited a substantial elevation
in the perilipin A levels (p < 0.05). Additionally, a signifi-
cant increase in perilipin A expression levels within 3T3L1
cells was found in the high-glucose group relative to the
intermediate-glucose group (p < 0.05, Fig. 5B). Further-
more, a considerable reduction was observed in the levels
of perilipin A within the high-LPS group compared to the
low-LPS group (p < 0.01). Additionally, there was a con-
siderable alleviation in perilipin A levels within the high-
glucose group compared to those within the intermediate-
glucose group (p < 0.01, Fig. 5C).

Changes in the Lipid Droplets within 3T3L1
Adipocytes under Different Treatment Conditions

The immunofluorescence analysis revealed that com-
pared to the low-ox-LDL group, the total number of lipid
droplets was significantly increased in the high-ox-LDL
group of cells, with a substantial reduction in small lipid
droplets and a substantial increase in large lipid droplets (p
< 0.05). Moreover, compared to the intermediate-ox-LDL
group, the total number of lipid droplets increased in 3T3L1
cells after high ox-LDL treatment, along with the allevia-
tion in small lipid droplets (Fig. 6A).

Compared to the low glucose group, the high glu-
cose group exhibited a significant increase in both the to-
tal number of lipid droplets and the number of large lipid
droplets, along with a significant decrease in the small lipid
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at different concentrations. Arrows point to lipid droplets formed by 3T3L1 adipocytes. Scale bar =20 um (n = 3). ns, no significance,

*p < 0.05, **p < 0.01, ***p < 0.001.

droplets (p < 0.01). Compared to the low glucose group,
the intermediate glucose group showed a significant in-
crease in the total number of lipid droplets, with a notable
decrease in both small and large lipid droplets (p < 0.05).
Furthermore, compared to the intermediate glucose group,
high glucose treatment increased the total number of lipid
droplets and large lipid droplets within 3T3L1 cells (p <
0.001, Fig. 6B). When compared to the low-LPS group,
the high-LPS group indicated a significant decrease in total
lipid droplets and large lipid droplets number within 3T3L1
cells, while the number of small lipid droplets was con-
siderably up-regulated (p < 0.05). Conversely, compared
to the intermediate LPS group, the total number of lipid
droplets substantially decreased within 3T3L1 cells treated
with high-LPS (p < 0.05, Fig. 6C).

Discussion

In adipose tissue, about 80% of its composition is fat,
with over 90% of lipids stored as triglycerides [18]. Clas-
sical lipolysis primarily involves the hydrolysis of triglyc-
erides into glycerol and fatty acids, mediated by the ac-
tion of MGL, HSL, and ATGL [7]. Among them, ATGL is
highly expressed in adipose tissue, and its expression sig-
nificantly increases during adipocyte differentiation. Two
phosphorylation sites, Ser 404 and Ser 428, have been iden-
tified within the C-terminal region of ATGL [19]. More-
over, the enzyme’s activity and interaction with CGI-58 de-

pend on the C-terminal domain. High GOS2 expression lev-
els are observed in both adipose tissue and differentiated
adipocytes. Specifically, GOS2 interacts with ATGL, lead-
ing to the inhibition of its TAG hydrolase activity [20]. Fur-
ther evidence has validated the regulatory role of GOS2 in
human lipolysis. GOS2 exerts an impact on both the activity
and intracellular localization of ATGL through the immobi-
lization of lipase to lipid droplets [21]. Moreover, GOS2 has
been found to modulate human lipolysis and affect ATGL
activity and intracellular localization by immobilizing the
lipase to lipid droplets [22].

Under alkaline conditions, nonphosphorylated per-
ilipids interact with CGI 58 (‘«/S hydrolase folding’) and
are located on the surface of lipid droplets, serving to
protect triglycerides from hydrolysis [23]. Upon external
stimulation, the body activates PKA through the cAMP-
PKA signaling pathway, resulting in the phosphorylation
of perilipoproteins. Consequently, CGI 58 will no longer
combine with phosphorylated perilipoproteins. CGI 58
is promptly transferred from the surface of lipid droplets
to the cytoplasm, where it immediately forms a complex
with ATGL. This interaction effectively increases the enzy-
matic hydrolysis activity of ATGL, initiating the first step
of adipocyte decomposition [24]. PKA phosphorylates the
Ser 563, Ser 659, and Ser 660 sites on the HSL enzyme,
improving its hydrolysis activity, thereby further promot-
ing lipolysis. The hydrolysis of adipocytes occurs through


https://www.biolifesas.org/

Journal of

BIOLOGICAL REGULATORS

and Homeostatic Agents

two pathways: the cAMP-PKA pathway and the perilipin
A-ATGL-HSL pathway. Through the interaction of signal
molecules and enzymes within these two pathways, the hy-
drolysis of adipocytes is accomplished collaboratively [25].

In this study, the glycerol expression in EAT was
lower in the CHD group than in the non-CHD group. Con-
versely, the expression of triglyceride was higher, indicat-
ing a potential inhibition of EAT hydrolysis in CHD, result-
ing in fat accumulation. Bhatt ef al. [26] reported that ele-
vated triglyceride levels are correlated with increased mor-
tality from cardiovascular diseases, possibly due to the in-
hibition of fat hydrolysis and subsequent fat accumulation,
aggravating cardiovascular diseases. Assessing the regula-
tion of the expression of enzymes in adipocyte hydrolysis
pathways, particularly cAMP-PKA and perilipin A-ATGL-
HSL pathways, demonstrated that the contents of ATGL,
HSL, PKA, and cAMP in epicardial adipose tissue within
the CHD group were significantly reduced, accompanied
by a significant elevation in the level of perilipin A.

Adipocytokines secreted by adipocytes can directly
affect the functions of vascular smooth muscle cells and
vascular endothelial cells, thereby participating in differ-
ent inflammatory processes, including arteriosclerosis and
thrombosis [27]. Conversely, lipids, sugars, inflammatory
factors, or other substances in the blood can also directly af-
fect the metabolism of fat cells [28]. Among them, the pres-
ence of abnormal oxidized low-density lipoprotein within
the intima of blood vessels can induce a cascade of reac-
tions, including the production of foam cells, disruption of
vascular endothelial function, and initiation of inflamma-
tory responses [29].

It has been reported that a significant number of hos-
pitalized coronary artery disease patients possess abnormal
blood sugar levels, resulting in a substantially increased
proportion of abnormal glucose metabolism among indi-
viduals affected with coronary artery disease [30]. Con-
currently, coronary artery disease can affect the progress
of diabetes in affected individuals [31]. Furthermore, a re-
cent study indicates that lipopolysaccharides can activate
inflammatory pathways and induce the release of various
inflammatory factors, directly participating in the forma-
tion of atherosclerotic plaque and, leading to the dysfunc-
tion of multiple cell types [32]. As commonly recognized,
obesity, ox-LDL, lipopolysaccharide, and abnormal glu-
cose metabolism are all regarded as risk factors for coro-
nary atherosclerotic heart disease. Among them, obesity
is an independent contributor to the occurrence and de-
velopment of CHD. However, the precise mechanisms by
which ox-LDL, LPS, and glucose affect the pathway of
triglyceride catabolism in adipocytes remain unclear, par-
ticularly whether they concurrently act on the same path-
way of lipocyte hydrolysis. By comparing protein and large
and small lipid droplets involved in the lipolysis pathway, it
was found that high concentrations of ox-LDL and glucose
inhibited the hydrolysis of adipocytes.
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Conversely, as LPS concentration elevated, glyc-
erol content increased gradually, small lipid droplets in-
creased, large lipid droplets decreased, and the lipolysis of
adipocytes enhanced. Interestingly, there was no obvious
regulatory effect on protein within the lipolysis pathway.
These findings show that high concentrations of ox-LDL
and glucose inhibit the hydrolysis of 3T3L1 adipocytes, po-
tentially inducing CHD, aligning with the previous find-
ings [33,34]. Additionally, this study demonstrated that
high concentrations of ox-LDL and glucose inhibited the
hydrolysis of 3T3L1 adipocytes, with both compounds ex-
erting their impacts through regulation of the cAMP-PKA
and perilipin A-ATGL-HSL pathways. However, high con-
centrations of LPS were observed to promote the hydrol-
ysis of adipocytes through mechanisms not involving the
cAMP-PKA and perilipin A-ATGL-HSL pathways. Hu et
al. [35] have reported that ox-LDL-induced atherosclerosis
can be promoted by regulating the cAMP/PKA axis, indi-
cating the existence of other pathways and substances reg-
ulating the hydrolysis of adipocytes. Consequently, further
study is needed to investigate the specific substance or path-
way through which LPS regulates the hydrolysis of 3T3L1
adipocytes.

Conclusions

In summary, this study reveals that high ox-LDL and
glucose can inhibit the lipolysis of 3T3L1 adipocytes. This
effect is likely medicated by regulating the cAMP-PKA
and adiponectin A-ATGL-HSL pathways. Conversely,
high level of LPS can promote the hydrolysis of 3T3L1
adipocytes. However, the crucial limitations of this study
lie in the lack of elucidation into the specific substance
or pathway through which LPS regulates the hydrolysis of
3T3L1 adipocytes, necessitating further study.
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