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Background: Ovarian cancer is frequently associated with chemoresistance, which is the major cause of treatment failure. In this
study, we utilized relative expression ordering (REQ) of gene pairs to develop a novel model to predict chemotherapy response
and prognosis in ovarian cancer. Moreover, we attempted to explore the mechanisms underlying ovarian cancer chemoresistance.
Methods: Datasets were downloaded from publicly available databases, and differentially expressed gene pairs were filtered
using Wilcoxon signed-rank test, Cox proportional hazards regression and Fisher’s test to develop the model. Subsequently,
the efficacy was validated by Kaplan—Meier analysis in training and validation sets. Comprehensive investigations were per-
formed to investigate pathway variation, immune infiltration, and single-cell analysis. Next, gene expression was measured in
chemoresistant ovarian cancer cells and their parent cells, and risk scores were calculated. Finally, a series of experiments were
conducted to evaluate the regulatory impacts on chemosensitivity of lysyl oxidase-like 4 (LOXL4), one of the upregulated genes
in chemoresistant cells.

Results: The developed model, comprising 19 genes for predicting chemoresistance and prognosis, demonstrated robust perfor-
mance in training and five validation sets. Chemoresistant samples identified by this model exhibited enrichment of genes in four
pathways and downregulation of genes in one pathway. Besides, chemoresistant samples displayed a lower abundance of various
immune cell types, indicating immune suppression within the tumor microenvironment. Single-cell analysis indicated hetero-
geneity within samples, revealing cell populations that may survive after chemotherapy. Chemoresistant ovarian cells exhibited
higher risk scores compared to their parent cells, and LOXL4 was found to modulate cisplatin sensitivity in ovarian cancer cells.
Conclusions: This study presents a novel prognostic model and provides possible therapeutic targets for further research in
ovarian cancer.
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Introduction sistance for prognosis stratification and tailored treatment

strategies.

Ovarian cancer represents a major global health chal- Chemoresistance in ovarian cancer can be attributed

lenge and ranks among the leading causes of cancer deaths
in women worldwide. It is frequently diagnosed at ad-
vanced stages and is associated with poor prognosis [1,2].
The standard treatment approach for ovarian cancer is pri-
mary cytoreductive surgery, followed by platinum-based
chemotherapy. About 20% of patients exhibit initial re-
sistance to platinum-based regimens, and those who ini-
tially respond well to the treatment may develop acquired
chemoresistance and experience recurrence eventually [3].
The development of chemoresistance poses a significant
hurdle in the management of ovarian cancer, underscoring
the critical need for identifying patients at risk of chemore-

to a multitude of factors, such as reduced uptake and ac-
celerated elimination of chemotherapeutic drugs, increased
DNA repair, inhibition of apoptosis, metabolic remodeling
of cancer cells, and interactions with the tumor microenvi-
ronment (TME) [4,5]. Genes involved in these pathways,
such as BRCA1/2, CCNEI and ABCB1, were acknowledged
as markers of responsiveness to chemotherapy. It has been
discovered that dysfunction of more than one of these genes
usually coincides with the development of chemoresistance
[6]. Currently, various gene panels are available to pre-
dict chemotherapy response and prognosis in patients with
ovarian cancer. Nevertheless, signatures based on quanti-
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tative transcriptional data often show low stability, which
can be attributed to factors such as tumor cell proportion
in samples, RNA degradation, amplification bias, batch ef-
fects, and cross-sample normalization method [7,8]. In con-
trast, within-sample relative expression ordering (REO) of
genes, which represents qualitative characteristics of indi-
vidual samples, is robust against these disturbances [9—11].
Consequently, REOs have been utilized in disease classi-
fication. Herein, we aimed to develop a prognostic model
for ovarian cancer based on REOs in samples exhibiting dis-
parate responses to chemotherapy. Furthermore, we inves-
tigated the biological features of patients with chemoresis-
tant ovarian cancer and sought to identify biomarkers and
potential therapeutic targets of platinum resistance.

Materials and Methods

Data Acquisition and Preprocessing

Datasets used in this study were procured from the fol-
lowing publicly available databases: The Cancer Genome
Atlas (TCGA), International Cancer Genome Consortium
(ICGC), and Gene Expression Omnibus (GEO). Processed
TCGA data were downloaded from Xena (http://xena.ucs
c.edu/). The OV-AU dataset was retrieved from the ICGC
data portal (https://dcc.icgc.org/). GSE102073, GSE26193,
and GSE51088 were downloaded from GEO (https://www.
ncbi.nlm.nih.gov/geo/).

The training set “GSE102073-response” was derived
from GSE102073, which included 70 samples annotated
with platinum response information. Validation datasets en-
compassed GSE102073 (all 84 samples), TCGA-OV, OV-
AU, GSE26193, and GSE51088. Patient characteristics of
datasets are shown in Supplementary Tables 1,2.

Construction of REO-Based Prognostic Model

Samples within the training set were classified into
two groups: chemoresistant (n = 11) or chemosensitive (n =
59) group. Chemoresistance was defined as relapse occur-
ring within 6 months after completing primary chemother-
apy, and chemosensitivity was defined as relapse occurring
over 6 months after completing primary chemotherapy.

The model was developed as per the process described
by Liu ef al. [11] under R environment (Ver. 3.6.3,
University of Auckland, Auckland, New Zealand). Dif-
ferentially expressed genes (DEGs) between the groups
were identified using Wilcoxon signed-rank test. Subse-
quently, univariate Cox proportional hazards regression test
was employed to identify DEGs associated with prognosis.
Fisher’s test was then applied to assess whether the pattern
of Gi > Gj or Gi < Gj (for a gene pair composed of two
DEGs, Gi and Gj) occurred more frequently in chemoresis-
tant samples than in chemosensitive ones. The final model
comprised gene pairs identified through the aforementioned
processes, and the risk score for each sample was increased
by 1 if one of these gene pairs was present. R package
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‘pPROC’ (Ver. 1. 18. 0, https://xrobin.github.io/pROC/)
was used to plot receiver operating characteristic (ROC)
curve and determine optimal classification threshold for the
model [12].

Verification of Prognostic Prediction Efficacy

The risk scores calculated for all samples in a dataset
were stratified based on the established threshold to classify
the samples into chemoresistant or chemosensitive group.
Kaplan—Meier survival curves were generated and sub-
jected to log-rank test to assess overall survival (OS) dif-
ferences. In validation sets, if gene expression data in the
model were missing, corresponding DEG pairs were not
scored, but the threshold remained unchanged.

Gene Set Variation Analysis (GSVA)

Fifty ‘Hallmark’ gene sets covering the basic bio-
logical processes for human, obtained from the Molec-
ular Signature Database (MSigDB, http:/www.gsea-m
sigdb.org/gsea/msigdb/index.jsp), were widely used in
the gene set enrichment analysis [13]. Here, we
employed these gene sets to investigate perturbations
of pathways leading to chemoresistance. R packages
‘GSVA’ (Ver. 1.46.0, https://bioconductor.org/packages/
3.16/bioc/html/GSVA.html) [14] and ‘GSEABase’ (Ver.
1.60.0, https://bioconductor.org/packages/3.16/bioc/html/
GSEABase.html) [15] were used to process expression data
and perform gene set variation analysis (GSVA). R package
‘ggplot2’ (Ver. 3.4.2, https://ggplot2.tidyverse.org/) [16]
was employed to draw boxplots for comparison of gene set
enrichment between the groups.

Immune Infiltration Analysis

Transcriptome-based immune cell infiltration data of
TCGA samples were downloaded from xCell (https://xcel
l.ucsf.edu/), including data calculated using the CIBER-
SORT, EPIC, quanTIseq, TIMER, and xCell algorithms.
These samples were categorized into chemoresistant or
chemosensitive group, as previously described, and differ-
ences in immune cell infiltration between these groups were
assessed using student’s ¢-test.

Single-Cell Data Acquisition and Preprocessing

Single-cell expression matrices data and cell annota-
tion information of the GSE154600 dataset were retrieved
using TISCH (http://tisch.comp-genomics.org/). R pack-
age ‘Seurat’ (Ver. 4.1.1, https://satijalab.org/seurat/) [17]
was used to process single-cell data, while ‘ggplot2’ was
used for plotting. The cells were clustered using princi-
pal component analysis, followed by t-distributed stochas-
tic neighbor embedding (t-SNE) dimension reduction. The
cell populations were annotated based on the information
file of TISCH. Expression for all genes in the panel was
calculated and then visualized via a dot plot. Each single-
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cell was scored and classified as being chemoresistant or
chemosensitive based on the model, and two groups were
presented for each cell cluster and each patient.

Cell Culture

The SKOV3 human ovarian cancer cell line utilized
in this study was obtained from the China Academy of
Medical Science (Beijing, China) and was authenticated
prior to purchase. The COV504 and HEY human ovar-
ian cancer cell lines were maintained at the Sun Yat-Sun
University Cancer Center and were authenticated by the
China Center for Type Culture Collection (Wuhan, China)
(Supplementary File 2). Mycoplasma testing has been
performed. The cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (SH30243.01, Hyclone, Marlborough,
MA, USA) supplemented with 10% fetal bovine serum
(FSP500, ExCell Bio, Suzhou, China) in a humidified in-
cubator at 37 °C with 5% CO;. Only cells that had been
confirmed as mycoplasma-free were used in the subsequent
experiments (Supplementary Fig. 1).

To establish cisplatin-resistant sublines, cells origi-
nating from SKOV3 and COV504 parent lines were sub-
jected to increasing doses of cisplatin (601231004, Han-
soh Pharma, Lianyungang, China), until they became ac-
customed to stable growth in medium supplemented with 2
UM of cisplatin.

SiRNAs  (sil  targeting  sequence: 5'-
GGTGCAATGTCCCTAACAT-3', si2 targeting sequence:
5'-CCGTGGAGGTGAAGTATGA-3") targeting lysyl
oxidase-like 4 (LOXL4) were transfected into COV504
and HEY cells using Lipofectamine RNAIMAX Reagent
(13778150, Thermo Fisher Scientific, Waltham, MA,
USA) to induce LOXL4 knockdown in these cells. Scram-
ble RNA served as negative control, and expression level
of LOXL4 was verified to be equivalent in wild-type cell
and scramble RNA-transfected cell (Supplementary Fig.
2). Both scramble RNA and siRNAs were synthesized by
RiboBio company (Guangzhou, China).

Cytotoxicity Assay

Cells were seeded in 96-well plates at a density of 2
x 10? cells/well, and the media were replaced with differ-
ent concentrations of cisplatin after 8 hours. After 72 hours
of incubation, cytotoxicity assay was performed using Cell
Counting Kit-8 (CK04, Dojindo, Kumamoto, Japan), as
per manufacturer’s instructions. The absorbance at 450 nm
was measured by BioTek Synergy H1 (20033013, Agilent,
Santa Clara, CA, USA). The half-maximal inhibitory con-
centration (ICso) of cells was calculated using GraphPad
Prism (Ver. 9.0.0, GraphPad Software, San Diego, CA,
USA).
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Reverse-Transcription Real-Time Quantitative
Polymerase Chain Reaction (RT-gPCR)

Total RNA was extracted using TRIzol (15596018,
Thermo Fisher Scientific, Waltham, MA, USA), and com-
plementary DNA was synthesized using PrimeScript™ RT
Reagent Kit with gDNA Eraser (RR047A, Takara, Shiga,
Japan). TB Green® Premix Ex Taq™ (RR420A, Takara,
Shiga, Japan) was used in RT-qPCR, in adherence with
manufacturer’s instructions. Primer sequences are listed in
Supplementary Table 3. Expression of genes was showed
by quantity ratios of target genes to control gene GAPDH.
Risk scores of cells were calculated as previously described
in section Construction of REO-Based Prognostic Model.

Western Blotting

Cells were lysed in RIPA lysis buffer (P0013B, Be-
yotime, Shanghai, China) containing 1 mM PMSF on ice.
The protein products were separated by 7.5% SDS-PAGE
and transferred onto polyvinylidene difluoride (PVDF)
membranes according to standard procedures. The mem-
branes were blocked with 5% non-fat milk in 0.05%
Tween20/PBS, and then incubated with primary antibodies
at4 °C overnight. The antibody against LOXL4 (ab313797)
was obtained from Abcam (Cambridge, UK), and the an-
tibody against GAPDH (2118) was obtained from Cell
Signaling Technology (Danvers, MA, USA). The dilution
rate of anti-GAPDH and anti-LOXL4 is 1:1000. Protein
bands were then incubated with an HRP-conjugated sec-
ondary antibody (1:5000, W4011/ W4021, Promega, Madi-
son, WI, USA). The signals were detected using ECL de-
tection reagents (K-12045, advansta, San Jose, CA, USA)
by ChemiDoc Touch (733BR3655, Biorad, Hercules, CA,
USA).

Cell Apoptosis Assay

Cells were seeded into 6-well plates at a density of 1.5
x 10° cells/well and incubated overnight. Then, medium
with 2 uM cisplatin or control medium was added to each
well. After 48 hours, the cells were collected for apop-
tosis assay using Annexin V-FITC/PI Apoptosis Detection
Kit (FXP018, 4A Biotech, Suzhou, China). Data were col-
lected using CytoFLEX LX (AD11023, Beckman Coulter,
Brea, CA, USA) and processed using FlowJo (Ver. 10.8.1,
BD Life Science, Ashland, OR, USA). The Annexin V+/PI-
and Annexin V+/PI+ populations were summed to obtain
the total proportion of apoptotic cells.

Statistical Analysis

Experimental data were presented as mean =+ standard
deviation. Significance between 2 groups was assessed by
two-tailed student’s z-test and two-way analysis of variance
(ANOVA) using GraphPad Prism (Ver. 9.0.0, GraphPad
Software, San Diego, CA, USA). p < 0.05 was considered
statistically significant.
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Fig. 1. Efficacy of the REO-based model for chemoresistance

and prognosis prediction. (A) ROC curve of the model for the

training set (GSE102073-response, n = 70). (B) Kaplan—Meier plot of OS for chemoresistant and chemosensitive samples in the training
set. (C—G) Kaplan—Meier plots of OS for chemoresistant and chemosensitive samples in the validation sets: (C) GSE102073 (n = 84),
(D) TCGA-OV (n =307), (E) OV-AU (n = 93), (F) GSE26193 (n = 79), and (G) GSE51088 (n = 120). Abbreviations: ROC, receiver

operating characteristic; OS, overall survival; TCGA, The Cancer Genome Atlas.

Results

Chemotherapy-Related Prognostic Model for
Ovarian Cancer Based on REO

The 70 samples in the training set were categorized
into two groups based on their responses to platinum-based
chemotherapy: chemoresistant (n = 11) or chemosensitive
(n = 59) group. After conducting the Wilcoxon signed-
rank test, 141 DEGs were identified; these genes were
subsequently filtered using the univariate Cox proportional
hazards regression test, which resulted in 231 prognosis-
related gene pairs. Further screening was performed uti-
lizing the Fisher’s test to assess the stability of REO pat-
terns within each group, yielding 29 gene pairs consist-
ing of 19 genes, which were eventually integrated into a
chemotherapy-related prognostic model (Table 1). All sam-
ples in the training set were assigned scores based on this
model, resulting in a ROC curve with an area under the
curve of 0.990. The threshold for classification was set at
18 (Fig. 1A).

Efficacy of the REO-Based Model for Prognosis
Prediction

Kaplan—Meier analysis showed that individuals clas-
sified as chemoresistant in the training set exhibited sig-
nificantly poorer overall survival than those classified as
chemosensitive (p < 0.0001) (Fig. 1B). This trend was con-
sistently observed when testing five independent validation

datasets: GSE102073 (n = 84), TCGA-OV (n = 307), OV-
AU (n = 93), GSE26193 (n = 79), and GSE51088 (n =
120) (Fig. 1C-QG), indicating that the prognostic model per-
formed well among datasets with regards to efficacy and
robustness.

Differential Pathway Enrichment in Chemoresistant
and Chemosensitive Ovarian Cancer Samples

GSVA was employed to assess the enrichment of 50
hallmark gene sets from MSigDB database in samples from
GSE102073-response dataset. Notably, the chemoresis-
tant and chemosensitive groups exhibited different enrich-
ment scores across gene pathways (Fig. 2A). Particularly,
the chemoresistant group demonstrated significant enrich-
ment of genes in the tumor necrosis factor-a (TNF-«) sig-
naling via nuclear factor-kappa B (NF-xB) pathway, hy-
poxia pathway, epithelial-mesenchymal transition (EMT)
pathway, and coagulation pathway, while the chemosensi-
tive group exhibited significant enrichment of genes in the
E2F targets pathway (Fig. 2B).

Suppression of Immune Cell Infiltration in
Chemoresistant Ovarian Cancer Samples

Transcriptome-based immune cell information of
TCGA samples was utilized to compare immune cell in-
filtration status between chemoresistant and chemosensi-
tive groups using five distinct algorithms (Fig. 3). In sum-
mary, four, two, and nine distinct immune cell types exhib-
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ited significant differences between the groups when ana-
lyzed using CIBERSORT, quanTIseq, and xCell, respec-
tively. In contrast, there were no significant differences
in immune cells between the groups when assessed with
EPIC and TIMER. Specifically, according to both CIBER-
SORT and xCell, CD4™ memory T cell abundance was
reduced in chemoresistant samples. Besides, chemoresis-
tant samples showed a decrease in the abundance of nat-
ural killer (NK) cells according to xCell (NK cells) and
CIBERSORT (resting NK cells). quanTIseq and EPIC ex-
hibited the same tendency but without statistical signifi-
cance. Furthermore, reductions in several other kinds of
immune cell types in chemoresistant samples were identi-

fied, with only quanTIseq detecting an enrichment of un-
characterized cells. Collectively, these findings suggested
the emergence of immune suppression in chemoresistant
samples.

Chemotherapy Response Assessment Integrated with
Single-Cell Analysis

GSE154600, encompassing five ovarian cancer sam-
ples with a total of 42,583 cells, was employed for single-
cell analysis. Clustering of cells based on major-lineage an-
notation revealed distinct populations (Fig. 4A,B). Among
the genes in our panel detected in this dataset, thioredoxin
2 (TXN2) displayed noticeable expression in various cell
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Table 1. REO-based gene pairs.

Genel Gene2 p-value Resistant_frequency  Sensitive frequency Type

CDHI8 ELFN2 0.00738 0.909091 0.457627 genel >gene2
CDHI8 GRIDI 0.006806 0.818182 0.355932 genel >gene2
CDHI8 LRRN4 0.001005 0.818182 0.271186 genel >gene2
CDHI8 NAALADL2 0.006388 0.454545 0.084746 genel >gene2
CDHI8 NME6 7.23 x 1076 0.727273 0.067797 genel >gene2
CDHI8 TXN2 0.000558 0.545455 0.067797 genel >gene2
CDHI18 ZNF441 7.19 x 107 0.636364 0.067797 genel >gene2
CILP DENND64 391 x 1075 0.338983 genel >gene2
CILP NAALADL2 0.001856 0.508475 genel >gene2
CILP SSBP2 0.000485 0.440678 genel >gene2
CILP TXN2 0.000485 0.440678 genel >gene2
CILP ZNF441 0.001856 0.508475 genel >gene2
FGFI8 NAALADL2 0.000163 0.636364 0.084746 genel >gene2
FGF18 NMEG6 0.001827 0.636364 0.152542 genel >gene2
FGF18 ZNF441 0.002911 0.636364 0.169492 genel >gene2
LOXL4 NAALADL?2 0.00124 0.727273 0.20339 genel >gene2
LOXL4 NMEG6 0.000265 0.909091 0.305085 genel >gene2
LOXL4 SSBP2 7.19 x 107 0.636364 0.067797 genel >gene2
LOXL4 TXN2 8.15 x 107 0.727273 0.118644 genel >gene2
LOXL4 ZNF441 0.000668 0.818182 0.254237 genel >gene2
PMP22 SSBP2 0.001478 0.818182 0.288136 genel >gene2
PMP22 TXN2 0.001613 0.909091 0.355932 genel >gene2
PMP22 ZNF441 0.002243 0.525424 genel >gene2
PTPRT ZNF441 0.004518 0.363636 0.033898 genel >gene2
C10orf55 FLG 0.002243 0.525424 genel <gene2
DENNDG6A PMP22 0.001096 0.636364 0.135593 genel <gene2
FAM27E3 TEX26 0.00124 0.727273 0.20339 genel <gene2
NAALADL2 PMP22 8.94 x 107 0.372881 genel <gene2
NMEG6 PMP22 0.004788 0.542373 genel <gene2

Abbreviation: REO, relative expression ordering; CDH18, cadherin 18; ELFN2, extracellular leucine rich re-

peat and fibronectin type Il domain containing 2; GRIDI, glutamate ionotropic receptor delta type subunit 1;
LRRN4, leucine rich repeat neuronal 4; NAALADL?2, N-acetylated alpha-linked acidic dipeptidase like 2; NMEG,
NME/NM23 nucleoside diphosphate kinase 6; TXN2, thioredoxin 2; ZNF441, zinc finger protein 441; CILP,
cartilage intermediate layer protein; DENND6A4, DENN domain containing 6A; SSBP2, single stranded DNA
binding protein 2; FGF18, fibroblast growth factor 18; LOXL4, lysyl oxidase-like 4; PMP22, peripheral myelin
protein 22; PTPRT, protein tyrosine phosphatase receptor type T; C10orf35, chromosome 10 putative open read-

ing frame 55; FLG, filaggrin; FAM27E3, family with sequence similarity 27 member E3; TEX26, testis expressed

26.

populations, particularly malignant cells, whereas periph-
eral myelin protein 22 (PMP22) expression was mainly de-
tected in fibroblasts (Fig. 4C). Utilizing this panel, we clas-
sified 4178 cells as chemoresistant and the remaining as
chemosensitive. Interestingly, chemoresistant cells were
not only in malignant populations but also in other clus-
ters, notably fibroblasts (Fig. 4D). Among the five patient-
derived samples in the cohort, both chemoresistant and
chemosensitive cells were identified in all samples. In
particular, T61 and T90 exhibited the highest proportion
of chemoresistant and chemosensitive cells, respectively
(Fig. 4E).

LOXL4 was Overexpressed in Chemoresistant
Ovarian Cancer Cells and Regulated Sensitivity to
Cisplatin

The ovarian cancer cell lines SKOV3 and COV504
were exposed to low-concentration cisplatin to gener-
ate cisplatin-resistant cell lines, namely SKOV3-cis and
COV504-cis, respectively, which were characterized by
significantly elevated ICjsq to cisplatin (Fig. 5A). Expres-
sion of the 19 genes in our panel was then assessed in
these cells by RT-qPCR, and risk scores were calculated.
SKOV3-cis and COV504-cis cells exhibited higher risk
scores than their corresponding parent cells, although these
scores did not exceed the threshold of 18 (Fig. 5B). Notably,
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Fig. 5. LOXL4 was overexpressed in chemoresistant ovarian cancer cells and regulated sensitivity to cisplatin. (A) Cytotoxicity
assay (Cell Counting Kit-8) in chemoresistant and wild-type ovarian cancer cell lines. (B) Risk scores of chemoresistant and wild-type
ovarian cancer cell lines. Gene pairs containing LOXL4 were marked by the red box. (C) LOXL4 expression levels of ovarian cancer
cells by RT-qPCR. (D) Knockdown of LOXL4 in ovarian cancer cells. (E) Cytotoxicity assay in LOXL4 knocked-down cells and negative
control. (F) Cell apoptosis assay in LOXL4 knocked-down cells and negative control. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <

0.0001. Abbreviations: ICsp, half-maximal inhibitory concentration; RT-qPCR, reverse-transcription real-time quantitative polymerase

chain reaction.
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LOXL4 was significantly upregulated in both SKOV3-cis
and COV504-cis cells as compared to that in wild-type
cells, and gene pairs containing LOXL4 obviously con-
tributed to the increase in risk scores, indicating a potential
role of LOXL4 in cisplatin resistance of ovarian cancer cells
(Fig. 5B,C).

We then generated ovarian cancer cell lines with
LOXL4 knockdown using siRNAs (Fig. 5D). Knockdown
of LOXL4 enhanced sensitivity to cisplatin in COV504 and
HEY ovarian cells, as demonstrated by reduced I1Csy and
an increased rate of cisplatin-induced apoptosis (Fig. SE,F).
Further studies are needed to investigate the mechanism of
cisplatin resistance induced by LOXL4 in ovarian cancer.

Discussion

Ovarian cancer is the most lethal gynecological malig-
nancy and is associated with late-stage diagnoses and high
recurrence rates. In the present study, we built an REO-
based prognostic model using transcriptome signatures for
samples with disparate responses to chemotherapy. The
model demonstarted robust efficacy in our training and vali-
dation sets. However, considering the relatively small sam-
ple size in this study, further validation in clinical practice
is necessary.

Regulation of chemosensitivity is quite complex.
Here, we utilized transcriptomic data to perform compre-
hensive analyses to unravel the underlying mechanism of
chemoresistance in ovarian cancer. As per the findings
of GSVA, genes associated with chemoresistant samples
were enriched in TNF-« signaling via NF-xB pathway,
hypoxia pathway, EMT pathway, and coagulation path-
way, while those associated with chemosensitive samples
were enriched in E2F targets pathway. The activation of
the NF-xB pathway has been confirmed to contribute to
chemoresistance and decreased survival in ovarian cancer
[18-20]. Hypoxia, a typical characteristic of almost all
solid tumors, has also been found to reduce responsiveness
to cisplatin, paclitaxel, and 5-FU in ovarian cancer cells in
previous studies [21-23]. The role of EMT, the E2F tar-
gets and coagulation pathway in chemoresistance remains
controversial. Several studies have suggested that ovar-
ian cancer with an epithelial signature is associated with
better overall and disease-free survival [24]; however, as
reported in several in vitro analyses [24,25], ovarian can-
cer with a mesenchymal signature shows preferential sen-
sitivity to cisplatin. Previous research has shown that the
E2F targets pathway activation is associated with favor-
able chemotherapy responses in prostate [26], colon [27],
and triple-negative breast cancers [28], but it leads to poor
prognosis in ERT/HER2~ breast cancer [29]. A proteoge-
nomic analysis conducted in ovarian cancer has indicated
significantly lower expression of E2F transcription factors
in refractory tumors as compared to that in sensitive tumors,
which aligns with our results [30]. Relatively fewer studies
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have hinted at a role of the coagulation pathway in therapy
resistance. Mousset ef al. [31] found that chemotherapy
induces neutrophil extracellular trap formation, promoting
chemoresistance of breast cancer lung metastases in mice.
In addition, Jeon et al. [32] found that coagulation factor
IIT is induced in senescence-associated glioblastoma cells
in response to radiation, aiding cell evasion of therapeutic
pressure. In light of the current set of findings, additional
research is needed to confirm the role of these three path-
ways in ovarian cancer chemoresistance.

The immune suppression network, which attenuates
antitumor immunity, is a primary driver of disease progres-
sion and treatment failure. The activity of immune effec-
tor cells, including CD4™ T, CD8™ T, and NK cells, is in-
hibited by not only tumor cells directly but also immuno-
suppressive T regulatory cells, immature dendritic cells,
myeloid-derived suppressor cells, and tumor-associated
macrophages [5,33]. Previous researches have indicated
that immune cell infiltration status has a potential prog-
nostic value for various cancers, such as gastric cancer
and lung adenocarcinoma [34,35]. In this study, we found
that chemoresistant ovarian cancer samples exhibited sig-
nificantly lower infiltration of NK cells and certain CD4+
T cell types, but not T regulatory cells, in comparison to
chemosensitive ovarian cancer samples. This suggests that
chemoresistant ovarian cancer shows a suppressed immune
status, which aligns with the findings by Verma et al. [36]
on breast cancer. Colletively, these findings suggest that the
interaction of immune cells within the TME impacts treat-
ment outcomes in patients with ovarian cancer, although the
underlying mechanism warrants further investigation.

Single-cell sequencing is a powerful approach for in-
vestigating tumor composition and elucidating cellular het-
erogeneity. Our analysis at single-cell level revealed the
composition of cells exhibiting different chemotherapy re-
sponses within each cluster and patient. Chemoresistant
and chemosensitive ovarian cancer cells were found to co-
exist in every sample, albeit in varying proportions, indica-
tive of heterogeneity within cancer tissues. It is reason-
able to speculate that chemoresistant cells are able to par-
tially survive chemotherapy, potentially causing recurrence
eventually. While this dataset lacks survival information, it
would be intriguing to explore whether chemoresistant cell
percentage correlates with recurrence and poor prognosis.
Notably, fibroblasts, in addition to malignant cells, were
identified as chemoresistant cells, indicating the potential
role of genes expressed among fibroblasts in resistance to
chemotherapeutic agents.

When applying our model to ovarian cancer cell
lines to evaluate their chemoresistant status, we found that
cisplatin-resistant cells had higher risk scores than their par-
ent cells, though these scores did not reach the threshold.
This discrepancy may be due to some genes being expressed
in cells within the TME rather than in tumor cells, as evident
from the single-cell analysis. Among the individual genes
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in our panel, we found that the upregulation of LOXL4 led to
an increase in the risk scores of two cisplatin-resistant ovar-
ian cancer cell lines. LOXL4, as a member of the LOX fam-
ily, mediates collagen and elastin crosslinking in the extra-
cellular matrix [37]. According to previous studies, LOXL4
serves as an oncogene in breast cancer [37], hepatocellular
carcinoma [38], and gastric cancer [39]. However, in blad-
der cancer, LOXL4 repression reportedly induces multidrug
resistance [40]. Besides, LOXL4 splice variants have been
found to exert a positive effect on the metastatic potential of
ovarian cancer cells [41]. The current study identified for
the first time that knockdown of LOXL4 enhanced cisplatin
sensitivity of ovarian cancer cells, as demonstrated by both
cell toxicity and cell apoptosis assays, making contradic-
tory findings compared to the analysis on bladder cancer
as reported by Deng et al. [40]. Thus, further studies are
warranted to elucidate the role of LOXL4 in ovarian cancer
chemoresistance.

Conclusions

In conclusion, we developed a novel model for pre-
dicting chemotherapy response and prognosis with robust
performance. Chemoresistant samples, as defined by our
model, exhibit aberrant activation of pathways and de-
creased immune cell infiltration. At the single-cell level,
we identified heterogeneity within ovarian cancer samples
and the possible existence of residual populations surviv-
ing chemotherapy. We believe that LOXL4, as a prognostic
marker and potential therapeutic target, is worthy of further
research. Taken together, our findings provide insights into
prognosis stratification and mechanisms underlying ovarian
cancer chemoresistance.
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