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Background: Breast-cancer susceptibility gene 1 (BRCA1) associated RING domain 1 (BARDI) expression is upregulated in
colorectal cancer (CRC), and its mutation forms are also related to clinical prognosis of the cancer. The primary focus of this
study is to delineate the mechanism of BARDI underlying the development and progression of CRC.

Methods: BARDI expression pattern in CRC was uncovered by quantitative real-time reverse transcription polymerase chain
reaction (QRT-PCR) with the aid of bioinformatics means. Following transfection of small interfering RNA targeting BARDI
(siBARDI) and short hairpin RNA against slit guidance ligand 3 (SLIT3; shSLIT3), CRC cell viability, proliferation, apoptosis,
migration, and invasion were measured by cell counting kit-8 assay, colony formation assay, flow cytometry, wound healing as-
say, and Transwell assay. To verify how BARDI impacts SLIT3 degradation, CRC cells were treated with cycloheximide (CHX)
for different periods of time (0, 2, 4, 6, 8 h). After administration of siBARDI-transfected CRC cells or blank treatment into
Balb/c nude mice, the tumor volume and weight of the animals were determined, followed by quantification of cyclin D3 (im-
munohistochemistry) and corresponding genes/proteins (QRT-PCR and western blotting).

Results: BARDI expression was upregulated in CRC cells (p < 0.001). SiBARDI reduced cell viability, proliferation, migration
and invasion; increased apoptosis; upregulated E-cadherin level; and downregulated N-cadherin, Snail, and cyclin D3 levels in
CRC cells (p < 0.05). In contrast, shSLIT3 presented an opposite effect on these indexes in CRC cells (p < 0.05). SiBARDI
suppressed the degradation of SLIT3, hampered tumor growth, reduced cyclin D3 expression, and promoted SLIT3 expression
in vivo (p < 0.001). Additionally, shSLIT3 was found to reverse the effects of siBARDI, and vice versa (p < 0.05).

Conclusion: BARDI deletion stifled the progression of CRC in vitro and in vivo by upregulating SLIT3 expression and inhibiting
cyclin D3 expression, corroborating BARDI as a potential biomarker in CRC carcinogenesis.
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Introduction (BRCA1) mutation-negative cancers on the basis of its in-

As a significant health threat to humans, colorectal
cancer (CRC) is currently the third most common malig-
nant tumor of the digestive tract [1]. Central to the life-
threatening traits of this cancer are metastasis and recur-
rence [2,3]. It has been reported that genetic mutations,
unhealthy dietary habits, weakened immune defenses, and
unfavorable lifestyle jointly contribute to the occurrence of
CRC [4]. At present, the mainstay of CRC treatment in-
cludes molecular targeted therapy, surgery, immunother-
apy, and radiotherapy [5,6]. Despite progressive strides be-
ing made, the current therapeutic efforts are grappling with
challenges such as drug resistance and tumor recurrence,
which demand particular clinical attention.

BRCALI associated RING domain 1 (BARDI), which
was discovered in 1996, is considered a promising ther-
apeutic target for breast-cancer susceptibility gene 1

teraction with BRCAI [7]. A prior study has elucidated
that BARDI presents as an oncogene or a tumor inhibitor
in the development of cancers [8]. Also, BRCAI/BARDI
heterodimer restricts ubiquitin ligase from influencing cell
cycle and hormone signaling, and prevents it from causing
DNA damage [9,10]. It has been found that BRCA1/BARD1
achieves tumor inhibition through ubiquitination pathway
[11]. A growing body of research has contributed to deci-
phering the influence of BARDI on an assortment of can-
cers. Abnormal BARD! isoforms play a role in tumorige-
nesis of breast and ovarian cancers, and their expressions
are related to the reduced survival rate of cancer patients
[12]. More importantly, BARD1 expression is upregulated
in CRC, and its mutation forms are linked to the clinical
prognosis [13]. Nevertheless, how BARDI impacts ma-
lignant behaviors of CRC cells and the underlying mech-
anisms remain to be explored.
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BRCAI/BARDI complex functions as E3 ubiquitin
ligase, which can modify the proteins [14]. According to
the Ubibrowser database (http://ubibrowser.bio-it.cn/ubibr
owser_v3/), slit guidance ligand 3 (SLIT3) is one of the
BARDI substrates. SLIT3 is downregulated in CRC [15],
and can hinder the development of breast cancer [16]. Re-
pression of SLIT3 induces chemoresistance in hepatocel-
lular carcinoma (HCC) through upregulation of cyclin D3
[17], which has been underlined to accelerate the progres-
sion of CRC [18].

Taken together, these prior findings contributed to a
hypothesis that BARD1 promotes CRC progression through
regulation of SLIT3/cyclin D3. Therefore, the current study
aimed to explore the effect of BARDI on the progression of
CRC and its regulatory relationship with SL/T3/cyclin D3
by means of in vivo and in vitro analyses.

Materials and Methods

Bioinformatics

BARDI expression pattern in CRC was retrieved from
University of Alabama at Birmingham Cancer Data Analy-
sis Portal (UALCAN) database (https://ualcan.path.uab.ed
u/index.html). The correlation between BARD! and cell
cycle or DNA replication was analyzed by Gene Set En-
richment Analysis (GSEA, https://www.gsea-msigdb.org/).
BARDI expression across different cancers was analyzed
using Tumor Immune Estimation Resource (TIMER; https:
//cistrome.shinyapps.io/timer/).

Cell Culture and Transfection

Human CRC cell lines (Lovo [CCL-229], HCT116
[CCL-247EMT], SW480 [CCL-228], HCT15 [CCL-225])),
human intestinal epithelial cell line (HIEC-6 [CRL-3266]),
and human colon tissue cells (CCD-18Co [CRL-1459])
were all obtained from American Type Culture Collec-
tion (Manassas, VA, USA). These cells were incubated in
Roswell Park Memorial Institute-1640 medium (12633012,
Thermo Fisher Scientific, Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (FBS; C0235, Bey-
otime, Shanghai, China) at the environment of 5% CO, and
37 °C.

Small interfering RNA targeting BARDI (siBARDI,

forward, 5'-AGAUUUGAAAAGAUUCUGCCG-3/;
reverse, 5'-GCAGAAUCUUUUCAAAUCUUC-
3’) and its negative control (siNC, forward, 5’'-

CCTAAGGTTAAGTCGCCCTCG-3/; reverse, 5-
GGATTCCAATTCAGCGGGAGC-3’) were constructed
using GenePharma (A10001, Shanghai, China). Also,
short hairpin RNA against SLIT3 (shSLIT3, sense:
5'-GCAGGAAGAGTTCAGTTAA-3’;  antisense, 5'-
TTAACTGAACTCTTCCTGC-3")  was  synthetized
by GenePharma (China) using plasmids pGPU60
(C01001), while its negative control (shNC, forward,
5'-CAACAAGATGAAGAGCACCAA-3'; reverse, 5'-
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GTTGTTCTACTTCTCGTGGTT-3') was also prepared.
Transfection was performed, using Lipofectamine™ 3000
reagent (L3000015, Thermo Fisher Scientific, Waltham,
MA, USA), on HCT116 and SW480 cells upon reaching
90% confluence in a 96-well plate. Lipofectamine™ 3000
reagent, sSiRNA, and shRNA were diluted in Opti-MEM™
medium (31985062, Thermo Fisher Scientific, Waltham,
MA, USA), respectively. Next, sShRNA was mixed with
P3000 reagent, and then siRNA/shRNA was transferred
into the tubes containing diluted Lipofectamine™ 3000
reagent, after which the mixtures were incubated for 10 min
at room temperature. Finally, upon addition of gene-lipid
complexes to each well, the cells were subjected to 48-h
incubation at 37 °C. All cell samples were routinely tested
for STR identification and mycoplasma contamination and
were confirmed to be mycoplasma-free.

Cell Treatment

To verify the effects of BARDI on SLIT3 degradation,
HCT116 and SW480 cells were reacted with cycloheximide
(CHX, 0.2 mg/mL; HY-12320, MedChemExpress, Mon-
mouth Junction, NJ, USA), an inhibitor of protein synthesis,
for different periods of time (0, 2, 4, 6, 8 h) at 37 °C. SLIT3
expression in these cells was evaluated by western blotting
at the indicated time points.

Cell Counting Kit-8 Assay

HCT116 and SW480 cell viability was evaluated
utilizing cell counting kit-8 (CCK-8) assay kit (Nan-
jing Jiancheng Bioengineering Institute, Nanjing, China).
Briefly, 100 pL HCT116 and SW480 cell suspensions (5
x 103 cells/well) were cultured in a 96-well plate for 24,
48 and 72 h, followed by another 4 h incubation with 10
pL CCK-8 solution. Finally, absorbance (450 nm) reading
was accomplished with Infinite M200 Microplate Reader
(Tecan, Ménnedorf, Switzerland).

Colony Formation Assay

HCT116 and SW480 cells (1 x 103 cells/well) culti-
vated in 6-well plates for 14 days were fixed with methanol
(A506806, Sangon Biotech, Shanghai, China) at room tem-
perature for 15 min and subsequently stained by crystal vi-
olet staining solution (G1063, Solarbio, Beijing, China) for
3 min. Finally, the colonies were visualized using DSC-
H300 compact camera (SONY, Tokyo, Japan), and the rate
was calculated using ColonyArea plugin of ImagelJ (v. 5.0,
Bio-Rad, Hercules, CA, USA). The data in the experimen-
tal groups were normalized to the data in the control group.

Flow Cytometry

HCT116 and SW480 cell apoptosis was measured us-
ing flow cytometry coupled with Annexin V-FITC Apop-
tosis Detection Kit (CA1020, Solarbio, Beijing, China).
In detail, 100 pL cell suspension (2 x 10? cells/mL) ac-
quired by centrifugation and suspension in binding buffer
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was mixed with 5 pL Annexin V-fluorescein isothiocyanate
(V-FITC), after which the mixture was incubated for 5 min
in the dark at room temperature. 5 uL propidium iodide and
400 pL of phosphate-buffered solution (PBS; P1022, So-
larbio, Beijing, China) were added to the cell suspension.
Finally, the cells were detected and analyzed by BD FAC-
SAria™ Fusion flow cytometer and BD FACSDiva™ soft-
ware (BD Biosicences, San Diego, CA, USA), respectively.

Wound Healing Assay

When the HCT116 and SW480 cells in 6-well plates
reached nearly 100% confluence, a scratch was made across
cell monolayer using a pipette tip. After 48-h incubation in
serum-free medium, the gap closure was visualized using a
microscope (x 100 magnification; CX43, Olympus, Tokyo,
Japan). The cell migration rate was determined using for-
mula in the following:

Cell migration rate (%) = (Scratch width at 0 h —
Scratch width at 24 h)/Scratch width at 0 h x 100

The data in the experimental groups were normalized
to the data in the blank group.

Transwell Assay

Transference of HCT116 and SW480 cells to the up-
per Transwell chamber (8 pm; 3422, Corning, Inc., Corn-
ing, NY, USA) in a 24-well plate was performed where
200 pL serum-free medium was added and Matrigel ma-
trix (354234, Corning, Inc., USA) was coated. Meanwhile,
the lower Transwell chamber contained 700 pL serum-
supplemented medium (chemoattractant). Following a
48-h incubation, only invasive cells were fixed with 4%
paraformaldehyde (MM1504, Shanghai Maokang Biotech-
nology Co., Ltd., Shanghai, China) at 4 °C for 10 min and
stained with crystal violet for 30 min. Finally, the invasive
cells were observed under a CX43 microscope (x250 mag-
nification). The cell invasion rate was calculated using the
formula in the following:

Cell invasion rate (%) = (Invasive cell number at 24 h
— Invasive cell number at 0 h)/Total cell number x 100

The data in the experimental groups were normalized
to the data in the blank group.

Western Blotting

Total protein isolation (from HCT116 and SW480
cells) and protein concentration quantification were ac-
complished using RIPA Lysis Buffer (R0020, Solarbio,
Beijing, China) and bicinchoninic acid (BCA) protein as-
say kit (23225, Thermo Fisher Scientific, Waltham, MA,
USA), respectively. Isolated proteins (20 pg) were sep-
arated by 6-8% sodium dodecyl sulfate polyacrylamide
gel electrophoresis (P0012A, Beyotime, Shanghai, China)
and subsequently transferred from gel onto polyvinylidene
fluoride membranes (FFP24, Beyotime, Shanghai, China).
The membranes were then subjected to blocking using 5%
bovine serum albumin (SW3015, Solarbio, Beijing, China)
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in Tris-buffered saline containing Tween-20 (ST671, Bey-
otime, Shanghai, China) at room temperature for 2 h. Next,
the membranes were incubated with primary antibodies in-
cluding SLIT3 (1:1000, 168 kDa, ab151724), E-cadherin
(E-Cad; 1:1000, 135 kDa, #14472), N-cadherin (N-Cad;
1:1000, 140 kDa, #14215), Snail (1:500, 68 kDa, ab53519),
cyclin D3 (1:100, 33 kDa, ab183338), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (1:10000, 36 kDa,
ab8245) at 4 °C overnight. Afterward, the membranes
were subjected to incubation with secondary antibodies,
either horseradish peroxidase-conjugated goat anti-rabbit
IgG (1:2000, ab205718) or rabbit anti-mouse IgG (1:2000,
ab6728) at room temperature for 2 h. Immunoblot sig-
nals were visualized by ECL Plus kit (P0018S, Beyotime,
Shanghai, China) on an imaging system (5200 Multi,
Tanon, Shanghai, China), and the gray scale value was cal-
culated using ImageJ software version 1.8.0 (National Insti-
tutes of Health, Bethesda, MD, USA). The above antibod-
ies were available from Abcam (Cambridge, UK), except
for E-Cad and N-Cad, which were procured from Cell Sig-
nalingTechnology (Beverly, MA, USA).

Mouse Tumor Xenograft

Balb/c nude mice (male, 20 £ 2 g, 6-week-old, n =
6) obtained from Vital River (Beijing, China) were bred
in cages (22 + 2 °C, 50 £ 10% humidity, 12-h cir-
cadian rhythm), and divided into negative control (NC)
and siBARDI groups (n = 3/group), in which the mice
underwent subcutaneous injection of siNC- or siBARDI-
transfected HCT116 cells (5 x 10%) in the flank regions
[17], respectively. The total tumor volumes were evaluated
at days 5, 10, 15, 20, 25 and 30 and calculated using the
formula in the following:

Tumor volume (mm?) = Length (L) x width (W)?/2

Finally, 2% pentobarbital sodium (50 mg/kg;
P3761, Haoran Biological Technology, Shanghai, China)-
anesthetized mice were euthanized by cervical dislocation,
after which the tumors were acquired, photographed, and
weighed.

Immunohistochemistry

Tumors were fixed by 4% paraformaldehyde at room
temperature for 20 min, followed by dehydration with al-
cohol (64-17-5, Sigma Aldrich, Darmstadt, Germany) and
permeabilization with xylene (X112054, Aladdin, Shang-
hai, China). Thereafter, paraffin-embedded (YA0012, So-
larbio, Beijing, China) sections, with a thickness of 6
pm each, were acquired, After being treated with xy-
lene and alcohol, the sections were permeabilized with
0.1% Triton X-100 (P1080, Solarbio, Beijing, China) for
5 min, and immersed in Citrate Antigen Retrieval Solu-
tion (P0081, Beyotime, Shanghai, China) pre-heated at 95—
100 °C for 20 min. Next, the sections were blocked with
goat serum (C0265, Beyotime, Shanghai, China), and suc-
cessively incubated with primary antibody targeting cy-
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Fig. 1. BARDI expression in CRC cells, and effects of siBARDI on CRC cell viability, proliferation, and apoptosis. (A) BARDI
expression in COAD (source: data retrieved from UALCAN database). (B) BARDI expression in HIEC-6, Lovo, HCT116, SW480,
HCTI15, and CCD-18Co cells (detected by qRT-PCR, using GAPDH as the internal control). (C) BARDI expression in HCT116 and
SW480 cells transfected with siBARD1 (detected by qRT-PCR, using GAPDH as the internal control). (D-F) Viability (D), proliferation
(E) and apoptosis (F) of HCT116 and SW480 cells transfected with siBARDI detected by cell counting kit-8 assay, colony formation
assay, and flow cytometry. n = 3. T7p < 0.01, T p < 0.001, vs. Normal or HIEC-6; ***p < 0.001, vs. CCD-18Co (N); "p < 0.05,
Mp < 0.01, AMp < 0.001, vs. siNC. Abbreviations: BARDI, BRCA1 associated RING domain 1; CRC, colorectal cancer; siBARDI,
small interfering RNA targeting BARD1; COAD, colon adenocarcinoma; UALCAN, University of Alabama at Birmingham Cancer Data
Analysis Portal; qRT-PCR, quantitative real-time reverse transcription polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; siNC, small interfering RNA of negative control.
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Fig. 2. Effects of siBARDI transfection on migration, invasion, and EMT activation in CRC cells. (A—F) Migration ((A,B), x 100
magnification, scale bar: 50 um), invasion ((C,D), x250 magnification, scale bar: 50 pm), and expression of EMT-associated proteins
such as E-Cad, N-Cad, and Snail (E,F) in HCT116 and SW480 cells after the interference of siBARDI. GAPDH was employed as the
internal control. n = 3. Ap < 0.05, Mp < 0.01, MAp < 0.001, vs. siNC. Abbreviations: BARDI, BRCA1 associated RING domain 1;
siBARD1, small interfering RNA targeting BARD1; CRC, colorectal cancer; EMT, epithelial mesenchymal transition; E-Cad, E-cadherin;
N-Cad, N-cadherin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; siNC, small interfering RNA of negative control.
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clin D3 (ab289546, 1:5000, Abcam, Cambridge, UK) at
4 °C overnight, and secondary antibodies against mouse
IgG (VCO001-125, 1:1000, Novus Biologicals, Littelton,
CO, USA) at 37 °C for 1 h. Later, the sections were
incubated with 3,3’-diaminobenzidine tetrahydrochloride
(DAB; G1212, Servicebio, Wuhan, China) for 10 min,
and counterstained with hematoxylin (C0107, Beyotime,
Shanghai, China) for 2 min. Finally, the sections were
dehydrated, cleared with xylene, and sealed with neutral
gum (96949-21-2, Solarbio, Beijing, China). The slides
were observed under CX31 microscope (x 100 magnifica-
tion; Olympus, Tokyo, Japan).

Quantitative Real-Time Reverse Transcription
Polymerase Chain Reaction

Total RNA extraction (tumor tissues and
HCT116/SW480 cells) and concentration detection were
accomplished using TRIzol (15596026) and ND-2000
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA), respectively. cDNA synthesis was performed
using primeScript™ RT reagent kit (RR037A, TaKaRa,
Beijing, China). Afterwards, PCR was conducted using
SYBR Green qPCR mix (D7260, Beyotime, Shanghai,
China) at designated thermal cycling conditions: 95 °C (2
min), and 40 cycles 0of 95 °C (15 s for each cycle) and 60 °C
(15 s). Relative gene expression was calculated by 2~ 24Ct
method [19], using GAPDH as the internal control.

All primer sequences (5'-3') are listed below: BARD!
(human): forward, GAGCCTGTGTGTTTAGGAGGA,
reverse, ACTTCGAGGGCTAAACCACA; SLIT3 (hu-
man): forward, TGACATTTCCAGCGTTCCTGA, re-
verse, GAGTACTTTGCACTGGAAGCG; cyclin D3 (hu-
man): forward, CTGTGCATCTACACCGACCA, re-
verse, AGAGGGCCAAAAAGGTCTGG; glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (human): forward,
CAGCCTCAAGATCATCAGCA, reverse, TGTGGTCAT-
GAGTCCTTCCA.

Statistical Analyses

Analyses of all data were performed on GraphPad
Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA).
Quantitative data are expressed as mean =+ standard devia-
tion. Two-group or multi-group data were compared using
independent samples ¢ test or one-way analysis of variance,
followed by the post-hoc Tukey test. p-value < 0.05 was
perceived to be of statistical significance.

Results

BARDI1 Expression was Upregulated in CRC Cells

According to the gene expression data of colon adeno-
carcinoma (COAD) retrieved from UALCAN database and
TIMER database, we found that BARD! expression is up-
regulated in CRC (Fig. 1A and Supplementary Fig. 1). In
addition, BARD1 was correlated with cell cycle and DNA
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Fig. 4. Effects of siBARDI and shSLIT3 on SLIT3 expression, viability, proliferation, and apoptosis of CRC cells. (A-F) SLIT3
expression (A), viability (B), proliferation (C,D), and apoptosis (E,F) of CRC cells transfected with siBARDI and shSLIT3. n=3. *p
< 0.05, ***p < 0.001, vs. siNC; "p < 0.05, “p < 0.01, ™'p < 0.001, vs. shNC; Tp < 0.05, Ttp < 0.01, T7p < 0.001, vs. shSLIT3;
#p < 0.05, #p < 0.001, vs. siBARDI. Abbreviations: BARDI, BRCAI associated RING domain 1; siBARDI, small interfering RNA
targeting BARD1; SLIT3, slit guidance ligand 3; shSLIT3, short hairpin RNA against SL/73; shNC, short hairpin RNA of negative control;
CRC, colorectal cancer; qRT-PCR, quantitative real-time reverse transcription polymerase chain reaction; GAPDH, glyceraldehyde-3-
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Fig. 5. Effects of siBARDI1 and shSLIT3 on migration and invasiveness of CRC cells. (A—D) Migration ((A,B), x 100 magnification,
scale bar: 50 pm) and invasiveness ((C,D), x250 magnification, scale bar: 50 pm) of CRC cells transfected with siBARDI and shSLIT3.
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slit guidance ligand 3; shSLI/T3, short hairpin RNA against SL/T3; shNC, short hairpin RNA of negative control; CRC, colorectal cancer.

replication, based on GSEA (Supplementary Figs. 2,3).  highest BARDI expression detected in HCT116 and SW480
Besides, higher level of BARDI expression was detected in ~ cells, these two cell lines were selected to conduct subse-
Lovo, HCT116, SW480, and HCT15 cells relative to CCD- quent experiments.

18Co and HIEC-6 cells (Fig. 1B, p < 0.01). By virtue of the
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GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

SiBARD1 Suppressed Malignant Phenotype and
Epithelial Mesenchymal Transition in CRC Cells

SiBARDI was successfully transfected into HCT116
and SW480 cells, as confirmed by reduced BARDI ex-
pression in cells (Fig. 1C, p < 0.001). The subsequent
CCK-8 (Fig. 1D), colony formation (Fig. 1E), flow cytom-
etry (Fig. 1F), wound healing (Fig. 2A,B), and Transwell
(Fig. 2C,D) assays revealed reduced viability, prolifera-
tion, migration and invasion, and an increase of apoptosis
following the transfection of siBARDI into HCT116 and
SW480 cells (p < 0.05). These results preliminarily con-
firmed that siBARD/ could inhibit malignant phenotype of
CRC cells. Then, we measured the expression of epithe-
lial mesenchymal transition (EMT)-associated protein (E-

Cad, N-Cad, and Snail) in HCT116 and SW480 cells, fur-
ther shedding light on the influences of BARD! deletion on
CRC cells. Fig. 2E,F revealed siBARDI elevated E-Cad
level while diminishing N-Cad and Snail levels in HCT116
and SW480 cells (p < 0.05), confirming that siBARDI sup-
pressed the activation of EMT.

SiBARDI Suppressed the Degradation of SLIT3

To verify the effects of BARDI on SLIT3 degradation,
HCT116 and SW480 cells were treated with 0.2 mg/mL
CHX for 0, 2, 4, 6, and 8 h. As displayed in Fig. 3A-C,
the abundance of SLIT3 protein was obviously augmented
after the deletion of BARDI in HCT116 and SW480 cells,
hinting at the enhanced stability of SLI73 in BARD I-deleted
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Fig. 7. Effects of siBARDI and shSLIT3 on cyclin D3 expression in CRC cells transfected with siBARDI and shSLIT3. (A) Western
blot of cyclin D3 in CRC cells. (B) Expression levels of cyclin D3 mRNA in CRC cells. (C) Relative cyclin D3 protein expression levels

in CRC cells. GAPDH was treated as the internal control. n = 3. ***p
p < 0.001, vs. siBARDI. Abbreviations: BARDI, BRCAL1 associated RING domain 1; siBARDI, small

vs. shNC; #p < 0.01,

< 0.001, vs. siNC; TTTp < 0.001, vs. shSLIT3; ""p < 0.001,

interfering RNA targeting BARD1; SLIT3, slit guidance ligand 3; shSLI/T3, short hairpin RNA against SLIT3; shNC, short hairpin RNA
of negative control; CRC, colorectal cancer; qRT-PCR, quantitative real-time reverse transcription polymerase chain reaction; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase.

CRC cells. Also, SLIT3 expression was noticed to be up-
regulated after the transfection of siBARD! in HCT116 and
SW480 cells (Fig. 3D, p < 0.001).

ShSLIT3 Led to Malignant Phenotype, EMT
Activation, and Elevated Cyclin D3 Level in CRC
Cells, which Were Reversable by SiBARD1

To further explore the effects of SLIT3 on CRC cells
and its interaction with BARDI, shSLIT3 was transfected
into HCT116 and SW480 cells, resulting in reduced SLIT3
level (Fig. 4A, p < 0.05). From this study, we learned that
the transfection of shSLIT3 and siBARD exerted mutually
antagonistic cellular effects (Fig. 4A, p < 0.001, p < 0.05).

According to Fig. 4B-F, Fig. SA-D and Fig. 6A,B,
shSLIT3 transfection led to increased viability, prolifera-
tion, migration, and invasion; downregulation of E-Cad,;
and upregulation of N-Cad and Snail in HCT116 and
SW480 cells (p < 0.05), but apoptosis was only marginally
reduced. As expected, co-transfection of shSLIT3 and
siBARD] resulted in mutually neutralization of these cel-
lular effects, including apoptosis (Fig. 4B-6B, p < 0.05).
Besides, it was evident that siBARDI suppressed while

shSLIT3 enhanced cyclin D3 mRNA or protein expres-
sion level in HCT116 and SW480 cells, and shSLIT3 and
siBARD] can mutually attenuate their impacts (Fig. 7A—C,
p < 0.001).

SiBARD1 Hindered Tumor Growth, Reduced Cyclin
D3 Level, and Promoted SLIT3 Expression in vivo

Furthermore, we focused on exploring the effects of
BARDI deletion in vivo following tumor formation in nude
mice injected with siBARDI/siNC-transfected cells. In
accordance with the results in Fig. 8A—C, siBARDI re-
duced the tumor volume and weight (p < 0.001), suggest-
ing that BARDI deletion suppressed the tumor growth in
vivo. Meanwhile, siBARD!I was found to diminish cyclin
D3 level and augment SLIT3 expression in vivo (Fig. 8D-F,
p < 0.001).

Discussion

A more profound understanding on how BARD! im-
pacts malignant behaviors of CRC cells and the poten-
tial underlying mechanisms will help us gain clarity about
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the pathogenesis of CRC, inspiring the discovery of new
molecular targets and offering a valid basis for early clin-
ical diagnosis and treatment of CRC. Both the UALCAN
database and our qRT-PCR results confirmed the upregula-
tion of BARD1 expression in CRC. Our in vitro experiments
revealed that BARD deletion significantly suppressed ma-
lignant phenotypes and EMT of CRC cells. Combined with
the effect of BARDI consistently confirmed on CRC tumor
growth in vivo, these findings corroborate BARDI as a po-
tential molecular target for CRC therapy.

The involvement of BARD! in cancers has generated
considerable research interest over the past decade. In light
of published researches, BARD! functions as both tumor
suppressor gene and oncogene in the context of tumorige-
nesis [7,8]. Deficient BARDI expression is a vital factor
for tumorigenesis in breast cancer [20]. Nevertheless, from
the angle of different tumor type, CRC has been verified
to possess upregulated BARD1 expression, and the clinical
prognosis of CRC seems to be associated with BARD1 [13].
While BARDI modulates the predisposition of an individ-

ual toward developing CRC, BARDI variants have been
found to participate in the occurrence of the early onset of
CRC [21]. Also, it has been acknowledged that invasive
phenotype of colon cancer cells is related to the BARDI3
(a BARDI splice variant) [22]. Herein, the results showed
that BARD1 deletion restrained CRC cell malignant pheno-
type, implying the role of BARDI in promoting the aggres-
siveness and progression of CRC. Besides, aberrant activa-
tion of EMT is instrumental in cancer cell metastasis [23],
strengthening the resistance to immunotherapy as well as
immune suppression [24]. E-Cad, N-Cad, and Snail are the
EMT-associated proteins [25,26]. It should be mentioned
that BARDI has a great impact on EMT [27]. Accordingly,
we further demonstrated that siBARD! suppressed EMT in
CRC cells via E-Cad upregulation and downregulation of
N-Cad and Snail. Taken together, these findings portray an
apparent mechanism underlying the suppression of malig-
nant phenotype of CRC cells following BARD1 deletion via
reversal of EMT process.
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Compelling evidence has highlighted that
BRCAI1/BARDI complex can regulate expression of
some proteins [14]. Based on the Ubibrowser database,
SLIT3 is one of the BARD1 substrates. The current set of
results suggested that siBARDI suppressed the degradation
of SLIT3. The downregulation of SLIT3 in CRC has
been reported [15], and the involvement of SLIT3 in the
progression of bladder [28], thyroid [29], and gastric [30]
cancers has been verified. Likewise, it has been validated
that SLIT3 is expressed at low levels in HCC tumor tissues
and other cancers, denoting SLIT3 as a promising target
for HCC treatment [17]. Yet the role of SLIT3 in CRC
remains poorly understood. We additionally confirmed that
BARDI deletion could suppress the malignant phenotype
of CRC cells by blocking SLIT3 degradation, and that
SLIT3 participated in the suppression of EMT mediated by
BARDI deletion. Moreover, it is worth mentioning that
chemoresistance in HCC is induced by SLIT3 repression,
which is achieved by upregulating cyclin D3 level [17],
and that elevated cyclin D3 can facilitate the progression
of CRC [18]. Hence, we evaluated cyclin D3 expression
following the gene expression interference mediated by
siBARD1 and shSLIT3 in CRC cells. In accordance with
prior findings, SLIT3 knockdown can elevate cyclin D3
expression while BARDI deletion leads to an opposite
effect, which has a bearing on CRC progression through
regulation of SLIT3 expression.

Further, the effects of BARDI deletion were also veri-
fied in tumor xenograft performed in animal models. From
the results obtained in this study, the tumor volume and
weight were all apparently diminished following the in-
tervention using siBARDI, reflecting the effect of BARDI
deletion on tumor growth suppression. As for the cyclin D3
expression, immunohistochemistry data showed a reduced
expression of cyclin D3 after the BARDI deletion, which
was in accordance with the results obtained from in vitro
experiment. Additionally, we also elucidated the regulatory
impact of BARD1 deletion on SLIT3 expression, which was
expressed at high levels in vivo after the deletion of BARDI.
Nonetheless, this study is constrained by certain limitations.
For example, whether BARD! can directly target SLIT3 in
CRC cells remains unknown and was not explored in this
study.

Conclusion

In conclusion, BARDI deletion hampers CRC pro-
gression by modulating the SLIT3/cyclin D3 axis. Accord-
ingly, BARD1 holds promise as a new biomarker or a target
of molecular therapy for CRC.
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