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Background: Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resis-
tance, culminating in right ventricular failure and heightened mortality. Utilizing bioinformatics can aid in unraveling the un-
derlying mechanisms of various diseases. Our study aimed to elucidate the novel pathogenic role of periostin (POSTN) in PAH
through bioinformatics method.
Methods: Gene expression microarray datasets and single-cell RNA sequencing (scRNA-seq) data were retrieved from the Gene
Expression Omnibus. Differential expression analysis and identification of key hub genes were performed to identify crucial
pathogenic genes in PAH. Functional enrichment and Gene Set Enrichment Analysis were employed to elucidate the pertinent
biological functions of these key genes. A comprehensive array of bioinformatics techniques, including locus analysis, transcrip-
tion factor regulation analysis, and cell interaction analysis, were further utilized to conduct an in-depth analysis of the scRNA-seq
dataset. The analyses aimed to explore the association between POSTN, smooth muscle cells, and macrophages, unveiling the
clinical correlation and potential pathogenic mechanisms of POSTN and PAH. Additionally, this association was validated in
animal models.
Results: POSTN expression was significantly elevated in PAH (p< 0.0001), and was closely associated with fibroblast infiltration
(p < 0.0001). In the scRNA-seq dataset, POSTN expression was observed in fibroblasts and smooth muscle cells (SMCs), with
POSTN as the most differentially expressed gene between the SMCs of PAH and donors. POSTN-positive (POSTN+) SMCs were
notably enriched in the microenvironment of PAH. Activation of hypoxia-inducible factor 1-alpha in POSTN+ SMCs potentially
facilitated PAH progression. Furthermore, cell-cell interactions between POSTN+ SMCs and regulator of G protein signaling-2
(RGS2+) macrophages may participate in forming an inflammatory microenvironment.
Conclusions: Our study corroborated the correlation between POSTN and PAH through bioinformatics methods. It unveils that
POSTN+ SMCs and RGS2+ macrophages form a mutually supportive and functionally significant interaction network, possibly
playing a pivotal role in remodeling the extracellularmatrix and promoting an inflammatory environment in PAH. These findings
offer novel insights into PAH pathogenesis.
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Introduction

Pulmonary hypertension (PH) poses a significant
global health concern, affecting approximately 1% of the
world’s population [1]. It is primarily characterized by ele-
vated pulmonary artery pressure and right ventricular dys-
function, culminating in heart failure and death [1]. Indi-
viduals with PH typically exhibit a mean pulmonary artery
pressure exceeding 20 mmHg. PH is classified into five
clinical groups based on its pathophysiology, hemodynam-
ics, clinical presentation, and therapeutic approaches [1,2].

Notably, group 1 PH, known as pulmonary arterial hyper-
tension (PAH), is the most prevalent subtype.

The pathological hallmarks of PAH include progres-
sive pulmonary vascular remodeling and elevated pul-
monary vascular resistance, attributed to the proliferation
and migration of smooth muscle cells (SMCs), endothelial
cell dysfunction, and fibroblast activation [3,4]. Periostin
(POSTN), a matricellular protein, participates in cell migra-
tion, adhesion, and epithelial-mesenchymal transitionwhile
also interacting with various extracellular matrix (ECM)
proteins [5–7]. Recent studies have revealed the function
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of POSTN in cardiovascular diseases. For example, re-
ducing POSTN-expressing (POSTN+) myofibroblasts at-
tenuates collagen production and scar post-myocardial in-
farction [8,9]. Additionally, POSTN-traced myofibroblasts
tend to transition to a low-activation state following lesion
resolution [8,9]. Moreover, exposure of pulmonary arterial
smooth muscle cells (PASMCs) to cigarette smoke extract,
a recognized risk factor for PAH, leads to upregulation of
POSTN expression [10].

This study employed bioinformatics and experimen-
tal methods to explore the association between POSTN and
PAH. Additionally, at the single-cell level, we elucidated
the dynamic evolution of fibroblasts and SMCs, shedding
light on the potential mechanisms through which POSTN+

SMCs regulate the immune microenvironment of PAH. Our
findings offer novel insights into PAH pathogenesis.

Methods

Data Acquisition
GSE113439, GSE15197, andGSE117261were down-

loaded from Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/). These datasets, comprising
freely accessible gene expression microarray data, were
extracted for analysis. The single-cell RNA sequencing
(scRNA-seq) dataset, GSE210248, was also retrieved from
GEO.

Integration of Gene Expression Microarray Datasets
Three microarray-based studies on PAH, available in

the GEO database, were downloaded and normalized to cre-
ate a meta-cohort. The Combat function within the Sva
package (version 3.44.0, Johns Hopkins University, Balti-
more, MD, USA) was employed to mitigate batch effects
across the cohorts.

Differential Gene Expression Analysis
Differential mRNA expression was conducted using

the limma package (version 4.2.2, The University of Mel-
bourne, Melbourne, Australia). The screening criteria for
differentially expressed mRNAs were |log2 (fold change)|
≥1 and p < 0.05.

Key Hub Gene Identification
The STRING database (https://cn.string-db.org/) was

employed to construct protein-protein interaction networks
based on eight upregulated genes in PAH. Subsequently,
the generated network was imported into Cytoscape soft-
ware (version 3.8.2, Institute for Systems Biology, Wash-
ington,WA, USA). Hub genes were then identified from the
protein-protein networks using the Maximal Clique Cen-
trality (MCC) algorithm implemented in Cytohubba.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
Functional Enrichment Analysis and Gene Set
Enrichment Analysis (GSEA)

ClusterProfiler package (version 4.2.2, SouthernMed-
ical University, Guangzhou, China) in R was employed to
conduct KEGG analysis and GSEA of differentially ex-
pressed gene sets. Following false discovery rate (FDR)
correction, activated pathways were identified using the cri-
teria NES > 0 and a significance p-value < 0.05. The
GseaVis package (version 0.0.1, Southern Medical Univer-
sity, Guangzhou, China) in R was used for visualization.

Analysis of Immune Infiltration Using the
MCP-Counter Algorithm

The MCP-counter algorithm (version 1.2.0, Univer-
sité Paris Descartes, Paris, France) was utilized to quantify
the abundance of 10 types of immune cells. Differences
were analyzed using the Wilcoxon rank-sum test.

Single-Cell Transcriptomic and Differential
Expression Analyses

Reads were aligned, and gene expression was quan-
tified using CellRanger software (version 6.0.2, 10X ge-
nomics, California, CA, USA). Subsequent analysis was
performed using the Seurat package (version 4.1.1, New
York University, New York, NY, USA). Cells with fewer
than 1000 unique molecular identifiers or more than 15%
mitochondrial genes were excluded. Doublets were de-
tected in each sample using DoubletFinder software (ver-
sion 2.0.3, University of California, San Diego, CA, USA).
Harmony algorithm was employed to mitigate batch ef-
fects. The top 4000 most variable genes, determined by
the FindVariableFeatures function within Seurat package,
were used for data scaling. Principal component analysis
was carried out based on these variable genes. Addition-
ally, using the top 50 principal components, FindNeigh-
bors function within Seurat package was used to identify
nearest neighbors for graph clustering. Cell subtypes were
identified using FindCluster function within Seurat pack-
age. The Uniform Manifold Approximation and Projection
(UMAP) algorithm was utilized to visualize cell distribu-
tions. Differentially expressed genes between clusters were
determined using the “FindAllMarkers” function, with pa-
rameters set as follows: min.pct = 0.15, logfc.threshold
= 0.15, and only.pos = T. p-values and adjusted p-values
were obtained using the Wilcoxon rank-sum test with the
Benjamini-Hochberg method.

Trajectory Analysis
Cellular differentiation based on the top 100 differ-

entially expressed genes between cell subtypes was char-
acterized using the Monocle2 algorithm (version 2.24.1,
University of California, San Diego, CA, USA). Dimen-
sion reduction was performed using the reduceDimen-
sion function and the DDRtree reduction method, allow-
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ing for a maximum of two components. Gene expres-
sion analysis based on branching fate was conducted us-
ing branch expression analysis modeling (BEAM). The
plot_genes_branched_pseudotime function was utilized to
visualize the expression of branch-specific genes along tra-
jectories, with curves representing LOESS-smoothed gene
expression across each trajectory.

Analysis of Transcription Factor (TF) Regulon
The regulatory network and activity of the regulon

were analyzed using pySCENIC. Subgroup-specific TFs
were identified using the Wilcoxon rank-sum test within
pySCENIC. Additionally, the regulon-associated specific
score (RSS) for each cell type was calculated based on
the Jensen-Shannon divergence, computed using the phi-
lentropy package (version 0.6.0, University of Auckland,
Auckland, New Zealand).

Gene Set Level Analysis for scRNA-seq Data
The run AUCell function in the pochi R package (ver-

sion 0.1.0, New York University, New York, NY, USA)
was utilized to score single-cell signatures. The two-sided
Wilcoxon rank-sum test with Benjamini-Hochberg FDR
correction was used to calculate enrichment scores for dif-
ferential signatures between groups.

Cell-Cell Communications
Cell-cell communication was analyzed using Cell-

PhoneDB Python (version 2.1.1, University of Toronto,
Toronto, Canada) to elucidate potential interactions be-
tween different cell types in PAH as previously described
[11]. CellPhoneDB Python package is a freely accessible
repository containing curated ligands, receptors, and their
interactions. The expressions of receptors in one cell type
and corresponding ligands in another cell type were used
to predict enriched receptor-ligand pairs between cell types.
For subsequent analyses, receptors and ligands expressed in
approximately 10% of cells within a specific cell type were
considered, with significant pairs defined with a p-value <
0.05 and a mean value ≥1.

The Nichenet package was used to identify interac-
tions between POSTN+ SMCs and regulator of G pro-
tein signaling-2 (RGS2+) macrophages (Mphs) to fur-
ther elucidate the key mediators between two cell sub-
groups. For ligand-receptor interactions, genes expressed
in more than 10% of cell clusters were considered. The
top 20 ligands and 100 targets of differentially expressed
genes in “sender cells” and “receive cells” were ana-
lyzed to assess paired ligand-receptor activity. The reg-
ulatory activity of ligands was visualized using the Nich-
enet_output$ligand_activity_target_heatmap, with activity
scores ranging from 0 to 1. Finally, average gene expres-
sion in the specified cell types was measured and scaled
across indicated subtypes to illustrate the expression of dif-
ferentially expressed ligands and receptors in the heatmap.

Deconvolution of Cell Types for the RNA-seq
Datasets

To assess the function of the cell types in a large com-
pendium of samples, CIBERSORTx was used to generate a
reference signature matrix from our scRNA-seq dataset and
predict the proportion of the cell types from the integrated
microarray dataset based on the constructed references of
the cell types. Quartile normalization was applied to the
microarray datasets within CIBERSORTx, with default set-
tings for all other parameters.

The integrated microarray dataset was subjected to
quartile normalization to estimate cell fractions. The per-
mutation parameter was 100 iterations, while default set-
tings were used for other parameters. Spearman’s correla-
tion analysis was conducted to elucidate relationship among
the proportions of infiltrated cell types. Graphs were gener-
ated using the corrplot package (version 0.92, Capital One,
McLean, VA, USA).

Animal Experiments
Pulmonary arterial hypertension (PAH) model tissues

were obtained from the Department of Forensic Medicine,
Nanjing Medical University. Briefly, twelve male Sprague
Dawley rats (Charles River), approximately 6 weeks old
and weighing 200–250 g, were procured from Vital River
Biological Co., Ltd. (Beijing, China). The rats were
randomly divided into control (n = 6) and monocrotaline
(MCT) (n = 6) groups.

Following established protocols [12], rats in the
MCT group received intraperitoneal injections of 60 mg/kg
monocrotaline (cat. no C2401, Sigma-Aldrich, St. Louis,
MO, USA) and were housed for 4 weeks. Conversely,
rats in the control group received an equivalent volume of
saline via intraperitoneal injection and were housed for 4
weeks. Male C57BL/6 mice aged 6–8 weeks were utilized
for the PAHmouse model. SU5416 (cat. no S8442, Sigma-
Aldrich, St. Louis, MO, USA) was subcutaneously injected
at a dose of 20 mg/kg weekly, followed by exposure to
chronic hypoxia (10%O2, 90%N2) in a ventilated chamber
for 4 weeks (Su/Hx group, n = 6) [13]. The control group
(normoxia group, n = 6) received vehicle injections and was
housed under normoxic conditions.

After measuring right ventricular pressure, rats were
euthanized under anesthesia by excess CO2, and their
pulmonary circulatory system was flushed with sterile
phosphate-buffered saline (PBS) at 4 °C. The hearts were
dissected to isolate the right ventricular free wall. Right
ventricular hypertrophy was assessed by calculating the
Fulton index, defined as the weight of the right ventricle to
the weight of the left ventricle and septum [14]. Lung tis-
sue samples were collected for further analysis, including
hemodynamic and histological examination, to confirm the
successful construction of the model. These results were
corroborated by the Department of Forensic Medicine.
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Animals were housed under a 12-hour light/dark cycle
and provided standard food and water ad libitum. All an-
imal experiments were approved by the Committee on the
Ethics of Animal Experiments of Nanjing Medical Univer-
sity (approval number: IACUC-2001008) and conducted
according to the Guide for the Care and Use of Laboratory
Animals.

Western Blot Analysis
Lung tissues and pulmonary arterial smooth muscle

cells (PASMCs) were lysed using RIPA buffer (Cat. No
KGP702, Keygen Biotech. Co., Ltd., Nanjing, China)
supplemented with 1% protease inhibitor cocktail and 1%
phenylmethylsulfonyl fluoride. Subsequently, the lysates
were centrifuged at 4 °C and 13,000 rpm for 15 minutes,
and protein supernatants were collected and quantified us-
ing the BCA Protein Assay Kit (T9300A, TaKaRa, Osaka,
Japan).

Proteins were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), followed
by transfer onto polyvinylidene fluoride (PVDF) mem-
branes (Millipore), which were then blocked with 5% BSA.
Membranes were incubated overnight at 4 °C with pri-
mary antibodies against POSTN (Proteintech, 1:2500 dilu-
tion) and β-actin (Cell Signaling Technology, 1:1000 dilu-
tion), followed by incubation with horseradish peroxidase-
conjugated secondary antibody (Fdbio science, 1:8000 dilu-
tion) at room temperature for 2 hours. Subsequently, sam-
ple detection was performed using an enhanced chemilu-
minescence (ECL) reagent (NCM biotech), and blots were
quantified using ImageJ software (version 1.8.0, University
of Wisconsin Optical and Computational Instrumentation
Laboratory, Madison, WI, USA).

Statistical Analysis
Statistical analyses were conducted using R software

(version 4.1.0, New York University, New York, NY,
USA). Differences between the two groups were assessed
using the Wilcoxon rank-sum test. Multiple hypotheses
were calibrated via the Bonferroni method. Pearson’s cor-
relation test was used to measure the linear correlation be-
tween two variables. A significance threshold of p < 0.05
was considered statistically significant. Statistics signifi-
cant levels were denoted as follows: *p< 0.05, **p< 0.01,
***p < 0.001, and ****p < 0.0001. The term “ns” indi-
cated the absence of statistical significance (p > 0.05).

Results

POSTN as a Biomarker for PAH
To identify the potential biomarkers for PAH, the

Combat algorithm was used to integrate three PAH expres-
sion profiling microarray datasets without bias (Fig. 1A).
Differential expression analysis, combined with stringent
filtering criteria, revealed eight significantly upregulated

genes (COL14A1, HBB, POSTN, HBA2, PI15, SFRP2,
VCAM1, and ASPN) and nine significantly downregulated
genes (RNASE2, S100A9, MGAM, SOSTDC1, S100A8,
S100A12, IL1R2, BPIFB1, and BPIFA1) (Fig. 1B,C). Fur-
ther exploration of the protein interaction network im-
puted in STRING, combined with the CytoHubba algo-
rithm, identified POSTN as the top hub gene among the
upregulated genes (Fig. 1D). Notably, POSTN is an ECM
protein involved in injury-induced tissue remodeling and
PAH pathogenesis.

Five-fold cross-validation of independent POSTN ex-
pression facilitated PAH diagnosis, achieving an area under
the curve (AUC) of 0.8 (Fig. 1E). Based on POSTN expres-
sion levels, PAH samples were classified into two groups:
low and high POSTN expression. The high POSTN ex-
pression group correlated with ECM, exhibiting increased
expression of collagen family genes (COL1A1, COL14A1,
and COL3A1), VCAM1, ASPN, and PI15. Conversely,
SOST, MS4A15, GPR78, FCN3, and SLC6A4were elevated
in the low POSTN expression group (Fig. 1F).

Differentially expressed genes in the high and low
POSTN expression groups were subjected to gene func-
tional enrichment analysis to elucidate the molecular mech-
anisms underlying POSTN in PAH. In the high POSTN ex-
pression group, upregulated genes were enriched in ECM-
associated pathways, including the phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (AKT) signaling pathway,
focal adhesion, protein digestion and absorption, MAPK
signaling, and Rap1 signaling. Conversely, in the low
POSTN expression group, upregulated genes were en-
riched in pathways associated with the synthesis, secre-
tion, and action of parathyroid hormone, the transform-
ing growth factor beta (TGF-β) signaling pathway, nitro-
gen metabolism, neuroactive ligand-receptor interaction,
and proximal tubule bicarbonate reclamation (Fig. 1G).
These findings underscore the association between POSTN
and ECM remodeling, positioning it as a functional target
for PAH. Moreover, to elucidate the correlation between
POSTN and PAH, POSTN expression was measured in the
rat MCT-PAH and mouse Su/Hx-PAH models, revealing a
significant upregulation in PAH animal models compared
to the control group (Fig. 1H, p < 0.001).

Association of POSTN with Fibroblast Infiltration in
PAH

Accumulating evidence underscores the significant in-
fluence of POSTNon immune response regulation [15]. We
investigated the microenvironment composition of the low
and high POSTN expression groups. Overall, compared to
the low POSTN expression group, the high POSTN expres-
sion group exhibited a higher stromal score (p < 0.01) and
lower immune score (p< 0.0001) (Fig. 2A). Subsequently,
employing the MCP-counter approach, we assessed vari-
ations in immune infiltration of 10 types of immune cells
between the two groups. Notably, the proportion of fi-
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Fig. 1. Identification of a potential pulmonary arterial hypertension (PAH) biomarker. (A) Heatmap illustrating the differentially
expressed genes in samples annotated based on sample types and corresponding GSE numbers. The color scale ranges from blue,
indicating low gene expression, and red, indicating high gene expression. (B) Analysis of differentially expressed genes between PAH
and normal samples. Pink indicates PAH samples, while blue represents normal samples. (C) Box plots showing the expression levels
of eight significantly upregulated genes (COL14A1, HBB, POSTN, HBA2, PI15, SFRP2, VCAM1, and ASPN) and nine significantly
downregulated genes (RNASE2, S100A9, MGAM, SOSTDC1, S100A8, S100A12, IL1R2, BPIFB1, and BPIFA1). Different colors indicate
different sample types. (D) Left: Protein-protein interaction network of the eight significantly upregulated genes from STRING (https:
//cn.string-db.org/). Right: The Maximal Clique Centrality (MCC) algorithm in CytoHubba ranked the eight significantly upregulated
genes, with the top gene marked in red. (E) Area under the curve (AUC) for the five-fold cross-validation of the integrated microarray
dataset. The red line represents the mean AUC value. (F) Analysis of differentially expressed genes between samples with high and low
periostin (POSTN) expression. Pink indicates samples with high POSTN expression, while blue indicates low POSTN expression. (G)
Radar plot depicting the functional enrichment results of the high (pink) and low (blue) POSTN expression groups. (H) Western blotting
of the POSTN protein in lung tissues from Su/Hx-PAH mice (mice: normoxia, n = 6, Su/Hx, n = 6) and monocrotaline (MCT)-induced
PAH rats (rats: control, n = 6, MCT, n = 6). *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Fig. 2. Immune infiltration analysis. (A) Box plots depicting the stromal (left) and immune (right) scores of the high (red) and low
(blue) POSTN expression groups. (B) Box plots illustrating the infiltration levels of 10 cell types in the high (red) and low (blue) POSTN
expression groups. Differences were evaluated using the Wilcoxon rank-sum test. (C) Scatter plot showing the correlation between
POSTN expression and the infiltration levels of 10 cell types. (D) Correlation between fibroblast infiltration and POSTN expression.
Correlation analysis was conducted using Pearson’s correlation test. ns p > 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

broblasts was significantly elevated in patients with high
POSTN expression compared to those with low POSTN ex-
pression (p < 0.001). Conversely, immune cell infiltration,
including CD8+ T cells (p< 0.001), cytotoxic lymphocytes
(p< 0.001), neutrophils (p< 0.01), natural killer (NK) cells
(p < 0.01), and T cells (p < 0.01), was more abundant in
patients with low POSTN expression relative to those with
high POSTN expression (Fig. 2B).

Moreover, we elucidated the correlation between
POSTN expression and the infiltration of 10 cell types. In-
terestingly, fibroblast infiltration positively correlated with
POSTN expression in PAH (Fig. 2C,D, Pearson’s correla-
tion test, rho = 0.4724, p < 0.001). However, NK and T
cell infiltration exhibited a significant negative correlation
with POSTN expression in PAH (Fig. 2C). Collectively,
these findings suggest an elevation in fibroblast infiltration
among patients with high POSTN expression.

Identification of POSTN+ SMCs in PAH

The scRNA-seq dataset of human pulmonary arteries,
comprising three healthy individuals and three participants
with PH, was reanalyzed to comprehensively determine
the cellular composition of the PAH microenvironment, as
presented by Crnkovic et al. [16]. The Harmony algo-
rithmwas employed to mitigate batch effects in the scRNA-

seq dataset (Fig. 3A). Following quality control, 22,625
cell transcriptomes were retained for subsequent analysis.
These transcriptomes were then clustered into 33 distinct
clusters representing 14 cell subtypes (Fig. 3A). These sub-
types were identified based on traditional single-cell marker
expression and comprised B cells (MS4A1 and CD79A),
dendritic cells (DCs) (FCER1A and CLEC10A), endothe-
lial cells (CLDN5 and VMF), epithelial cells (KRT8
and KRT19), fibroblasts (DCN and COL1A2), granulo-
cytes (S100A8 and S100A9), mast cells (CPA3 and KIT),
macrophages/monocytes (Mph/Mono) (C1QB and C1QA),
NK cells (GNLY and GZMB), plasma cells (MZB1 and
IGKC), proliferative cells (STMN1 and MKI67), smooth
muscle cells (SMCs) (ACTA2 and TAGLN), T cells (CD3D
and CD3E), and regulatory T cells (Tregs) (FOXP3 and
CTLA4) (Fig. 3C). We compared the infiltration of these
cell subtypes across different sample types and revealed sig-
nificant variations in immune cell composition. Notably,
immune cells such as B cells, T cells, NK cells, DCs, mast
cells, and Tregs were enriched in PAH samples, accom-
panied by a decrease in normal samples (Fig. 3B). These
findings are consistent with previous study and underscore
the pivotal role of dynamic changes in immune and stromal
cells in PAH progression [17].

https://www.biolifesas.org/
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Fig. 3. Single-cell RNA sequencing (scRNA-seq) analysis. (A) Uniform Manifold Approximation and Projection (UMAP) plot clas-
sifying cell types. Different colors represent different cell types, including dendritic cells (DCs), macrophages/monocytes (Mph/Mono),
natural killer (NK) cells, and smooth muscle cells (SMCs). (B) Bar plot indicating the abundance of cell types across different sample
types. Different colors represent different cell types. (C) Dot plot displaying the top three differentially expressed genes of each cell
type. Color depth indicates the average expression value, while the point size indicates the gene expression percentage. (D) UMAP
plot illustrating POSTN expression. Different colored circles indicate the two cell types with significant POSTN expression. (E) Left:
UMAP plot highlighting the cluster of mesenchymal cells. Different colors represent different cell subtypes. Middle: Bar plots showing
the cell numbers in each cluster. Right: Bar plots indicating the proportion of the sample types in each cluster. Different colors de-
note different sample types. (F) Scatter plot highlighting the enrichment of each cluster in different sample types using a beta-binomial
generalized linear model. Different colors represent different cell subtypes. (G) Kyoto Encyclopedia of Genes and Genomes (KEGG)
terms of the differentially expressed genes significantly enriched in each mesenchymal cell subtype. Colors denote the scaled value of
the -log10 p-value. (H) Gene set enrichment analysis (GSEA) of extracellular matrix (ECM)-receptor interaction, phosphatidylinositol
3-kinase (PI3K)/protein kinase B (AKT) signaling, focal adhesion, and oxidative phosphorylation between POSTN+ SMCs and other
SMCs. Genes were ranked based on fold changes in expression between these two conditions. (I) Analysis of differentially expressed
genes between the SMCs in PAH and normal samples. Purple indicates PAH samples, while cyan represents normal samples.
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Furthermore, POSTN expression was determined in
the scRNA-seq dataset, revealing its clustering in fibrob-
lasts and SMCs (Fig. 3D). Subsequently, mesenchymal
cells were reclustered into 14 clusters, encompassing five
fibroblast clusters (Fb-C00-SFRP2, Fb-C02-FBN1, Fb-
C06-IL6, Fb-C11-GPC3, and Fb-C12-MYH11), four SMC
clusters (SMC-C01-ACTG2, SMC-C05-RACK1, SMC-
C07-POSTN, and SMC-C08-RERGL), and five endothelial
cells (ECs) clusters (EC-C03-EDN1, EC-C04-PLVAP, EC-
C09-HPGD, EC-C10-CCL21, and EC-C13-VWF). Com-
pared with normal tissues, PAH tissues were signifi-
cantly enriched with SMC-C07-POSTN and SMC-C05-
RACK1 (Fig. 3E). After analyzing changes in cell abun-
dance, differential composition analysis, employing a
beta-binomial generalized linear model, revealed signifi-
cant enrichment of SMC-C07-POSTN in PAH (Fig. 3F).
KEGG functional enrichment analysis of distinct mes-
enchymal subpopulations revealed notable enrichment of
ECM-receptor interaction, PI3K-AKT signaling, protein
digestion and absorption, and focal adhesion in SMC-C07-
POSTN (Fig. 3G). Furthermore, GSEA revealed that com-
pared with the other SMCs, ECM-receptor interaction (p
< 0.001), PI3K-AKT signaling (p = 0.01), focal adhesion
(p < 0.001), and oxidative phosphorylation (p < 0.001)
were significantly enriched in SMC-C07-POSTN (Fig. 3H).
Interestingly, various cell subpopulations exhibited dis-
tinct metabolic activation characteristics, including upregu-
lated glutathione metabolism in EC-C10-CCL21, enriched
cholesterol metabolism in SMC-C05-RACK1, and upreg-
ulated xenobiotic metabolism by cytochrome P450 in Fb-
C00-SFRP2 (Fig. 3G). Notably, POSTN emerged as the
top differentially expressed gene between SMCs in PAH
and donors, suggesting the specific enrichment of ECM
modeling-associated POSTN+ SMCs in the PAH microen-
vironment (Fig. 3I).

Cell-State Transition Trajectory of Different SMC
Subpopulations in PAH

TheMonocle 2 algorithmwas used to establish a pseu-
dotime cell trajectory, allowing for the elucidation of dy-
namic processes within fibroblasts and SMCs at the single-
cell level (Fig. 4A). Notably, the integration of pseudo-
time and inferred state statistical analyses revealed two dis-
tinct trajectories; where Fb-C00-SFRP2 occupied the pro-
genitor state and subsequently branched into SMC-C07-
POSTN and SMC-C01-ACTG2 (Fig. 4A–D). The differ-
entiation branch leading to POSTN+ SMC was notably
enriched with PAH cells (Fig. 4C). Additionally, most fi-
broblast subtypes were observed in the progenitor and ini-
tiation state (Fig. 4D). Subsequently, gene expression pat-
terns associated with the two differentiation branches in-
volved in SMC state transitions were explored. Through
a smoothed heatmap, the highly expressed genes in the
early trajectory stage were functionally enriched (cluster
4) in both differentiation branches, with enrichment in

processes such as epithelial-mesenchymal transition, myo-
genesis, apical junction, and oxidative phosphorylation
(Fig. 4E). In contrast to the SMC-C01-ACTG2 differen-
tiation branch, the expressions of cluster 3 genes, impli-
cated in tumor necrosis factor-alpha signaling via the NF-
κB pathway, epithelial-mesenchymal transition, apoptosis,
and disease progression-associated hypoxic pathways, were
higher in the terminal state of the SMC-C07-POSTN dif-
ferentiation branch (Fig. 4E). Furthermore, the expression
of cluster 1 genes, enriched in processes such as epithelial-
mesenchymal transition, angiogenesis, interferon-gamma
responses, and the interferon-alpha response pathway, in-
creased in the terminal state of the SMC-C01-ACTG2 dif-
ferentiation branch (Fig. 4E). Given the critical role of hy-
poxia in PAH and its impact on SMC heterogeneity, BEAM
analysis was performed to identify potential differentially
expressed genes between the two branches. The expres-
sions of ECM-related features (COL1A1, COL3A1, THBS2,
CTHRC1, FN1, VCAN, and TGM2) and hypoxia-associated
features (SERPINE1, SERPINE2, and CD9) were upregu-
lated in the POSTN+ SMC differentiation branch, indicat-
ing that hypoxia stimulates SMC-mediated collagen secre-
tion to modulate the ECM. Additionally, in the POSTN+

SMC differentiation branch, CXCL12 (a cytokine) and
SULF1 (an extracellular sulfatase) were significantly up-
regulated (Fig. 4F).

To identify the master regulator of POSTN+ SMCs,
pySCENIC was employed to evaluate the top transcrip-
tion factors (TFs) that were specifically expressed and
their corresponding activities in the TF regulatory network.
Notably, within a hypoxic microenvironment, hypoxia-
inducible factor 1-alpha (HIF1α) expression and activity
were high in the regulatory network of POSTN+ SMCs,
suggesting its role as the key TF driving this differentia-
tion pathway (Fig. 4G–I). Furthermore, the Jensen-Shannon
divergence was used to calculate the regulon-associated
specific score (RSS) of POSTN+ SMCs. RSS identified
HIF1α as one of the top 15 prevalent TFs (Fig. 4H). Col-
lectively, these findings suggest that HIF1α activation in
POSTN+ SMCs drives PAH progression during hypoxia.

Cell-Cell Interaction of POSTN+ SMCs and RGS2+
Mphs Contributes to the Inflammatory
Microenvironment

The cellphonedb method was employed to conduct
cell-cell interaction analysis, investigating the interplay
among major cell types to elucidate the mechanisms gov-
erning the regulation of the PAH immune microenviron-
ment by POSTN+ SMCs. Compared to normal donors,
PAH samples exhibited a strong interaction between SMCs
and macrophages/monocytes (Mph/Mono) (Fig. 5A), sug-
gesting that POSTN+ SMCs contribute to an inflamma-
tory microenvironment by influencing Mph/Mono. Based
on the expression of specific marker genes, seven sub-
types were identified in the Mph/Mono lineage: six
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Fig. 4. Trajectory analysis of fibroblast and SMC subtypes. (A) Developmental trajectory of fibroblasts and SMCs was inferred
using monocle 2 and colored based on the subtypes. (B) Pseudotime of the developmental trajectory. Colors from purple to yellow
indicate low to high values. (C) Sample types of developmental trajectories are colored based on sample types. (D) Inferred states of the
trajectory. Proportions of the cell subtypes are depicted in the circles, with each colored circle representing a different state. (E) Expression
heatmap showing significant (q< 1× 10−3) genes identified via branch expression analysis to compare the fate of two SMC cells (left).
Box plots highlighting the top significantly enriched hallmark pathways in each gene cluster (right). (F) Pseudotime projections of the
transcriptional changes in genes associated with the extracellular matrix and hypoxia between two trajectory branches. (G) Heatmap
depicting the mean activity of the top differentially activated regulons in each fibroblast and SMC subtype inferred using pySCENIC.
(H) Dot plots highlighting the top 15 specifically activated transcription factors (TFs) ranked based on their regulon-associated specific
score (RSS) in each fibroblast and SMC subtype. (I) Up: UMAP and violin plots illustrating hypoxia-inducible factor 1-alpha (HIF1α)
expression. Bottom: UMAP and violin plots depicting HIF1α regulon activity.
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Fig. 5. Characterization of macrophages in normal and PAH samples. (A) Chord diagrams illustrating cell-cell interactions among
major cell types in PAH (left) and donor (right) samples. (B) UMAP plot of individual macrophages or monocytes. Each dot represents
one cell, and color represents cell subtypes. (C) Left: Bar plots highlighting cell numbers in each cluster. Right: Bar plots highlighting
the proportion of sample types in each cluster. Different colors denote different sample types. (D) UMAP plots illustrate the density
distribution of proinflammatory and immunosuppressive scores. Corresponding box plots depict proinflammatory and immunosuppres-
sive scores of each macrophage and monocyte subtype. Each dot represents one cell, and the color represents the cell subtypes. Red
represents Mono-C06-MX1, green represents Mph-C01-OTOA, blue represents Mph-C00-RGS2, purple represents Mph-C02-SEPP1,
yellow represents Mph-C04-MCEMP1, orange represents Mph-C03-RACK1, brown represents Mph-C05-SMIM25. (E) Dot plots de-
picting the Spearman’s correlation for infiltration of pairwise fibroblast subtypes, SMC subtypes, and macrophage/monocyte subtypes
in the integrated microarray cohort. Dot size and color denote Spearman’s correlation, and black dots represent the significance at dif-
ferent p-value thresholds of *p < 0.05, **p < 0.01, ***p < 0.001. (F) NicheNet was utilized to infer the top-ranked ligands regulating
RGS2+ macrophages via POSTN+ SMCs. (G) Dot plots highlighting the expression percentage (dot size) and intensity (dot intensity) of
top-ranked ligands (F) in each mesenchymal cell subtype. (H) Ligand-receptor pairs exhibiting interaction of RGS2+ macrophages with
POSTN+ SMCs measured via ligand activity (F). (I) Dot plots depicting the expression percentage (dot size) and intensity (dot intensity)
of interleukin 1 beta (IL1β)- gene or transforming growth factor beta 1 (TGFβ1)-targeted receptors in each mesenchymal cell subtype.
RGS2+, regulator of G protein signaling-2.

https://www.biolifesas.org/


4001

macrophages (Mph-C00-RGS2, Mph-C01-OTOA, Mph-
C02-SEPP1, Mph-C03-RACK1, Mph-C04-MCEMP1, and
Mph-C05-SMIM25) and one monocyte (Mono-C06-MX1)
(Fig. 5B). Notably, in PAH, Mph-C00-RGS2, Mph-C02-
SEPP1, Mph-C05-SMIM25, and Mono-C06-MX1 were
predominantly enriched (Fig. 5C). Subsequently, we com-
puted the enriched scores for proinflammatory and im-
munosuppressive cells, revealing a higher prevalence of
proinflammatory responses in RGS2+ Mphs (Fig. 5D).
To assess the infiltration patterns of these subtypes, we
evaluated the infiltration of the 21 cell subtypes identi-
fied via single-cell RNA sequencing of the integrated mi-
croarray cohort using CIBERSORTx and calculated the
pairwise Spearman correlations among these cell subtypes
(Fig. 5E). Among the cell populations in the integrated mi-
croarray cohort, the highest correlation was observed be-
tween POSTN+ SMCs and RGS2+ Mphs (Fig. 5E).

To identify the key regulators of the interaction be-
tween POSTN+ SMCs andRGS2+Mphs in PAH, theNich-
eNet package was used to elucidate the mechanisms under-
lying the interplay between these cell types. The activities
of the ligands for interleukin 1 beta (IL1β), APOE, trans-
forming growth factor beta 1 (TGFβ1), FGF1, and GAS6
were elevated in POSTN+ SMCs, accompanied by rela-
tively increased gene expression of IL1β, APOE, TGFβ1,
FGF1, and GAS6 (Fig. 5F,G). Furthermore, the protein en-
coded by TGFβ1 bound to the receptors ITGB5, ENG,
TGFBR1, and SDC2 expressed on RGS2+ Mphs, while the
protein encoded by IL1β bound to the ADRB2 receptor ex-
pressed on RGS2+ Mphs (Fig. 5H,I). These findings sug-
gest that POSTN+ SMCs regulate the formation of an in-
flammatory environment in RGS2+ Mphs via the TGFβ1-
SDC2 axis. Overall, our findings suggest the establish-
ment of a mutually supportive and functionally significant
interaction network between POSTN+ SMCs and RGS2+
Mphs, which may play vital roles in ECM remodeling and
promotion of the inflammatory environment in PAH.

Discussion

Pulmonary arterial hypertension (PAH) is a progres-
sive and fatal disease characterized by the obstruction of
small pulmonary arteries due to endothelial dysfunction
and uncontrolled proliferation of SMC and fibroblast within
the pulmonary arteries [18,19]. Elevated pulmonary artery
pressure, resulting from vascular obstruction, often leads to
right ventricular failure with symptoms such as tachypnea
and syncope. Despite the development of multiple pharma-
cological interventions targeting the endothelin, nitric ox-
ide, and prostacyclin pathways in recent years, the progno-
sis for PAH patients remains unsatisfactory, imposing a sig-
nificant burden on patients and physicians [20,21]. There-
fore, there is an urgent need for further studies to elucidate
PAH pathogenesis.

Periostin (POSTN), previously known as osteoblast-
specific factor-2, belongs to the family of unstructured
ECM proteins [22]. These proteins are highly expressed
under pathological conditions such as inflammation, tissue
repair, and trauma [23]. Studies have identified POSTN as
a potential marker for various skeletal and non-skeletal dis-
orders, including diabetes, allergy, asthma, and cancer [24–
30]. POSTN impacts cell proliferation, migration, adhe-
sion, and angiogenesis via cellular integrin receptors. No-
tably, POSTN is characterized by the presence of vitamin
K-dependent γ-carboxyglutamate residues, which regulate
the coagulation cascade [31]. Moreover, POSTN is upreg-
ulated in collagen-rich connective tissues subjected to me-
chanical stress or injury, such as the aorta, heart valves,
bones, lungs, tendons, and skin [22]. As a multi-modular
protein, POSTN interacts with or regulates other proteins,
such as type I collagen, osteocalcin, and fibronectin, play-
ing a vital role in collagen assembly, bone turnover, car-
diovascular system regulation, and tissue cross-linking [32–
34].

Several recent studies have highlighted the signifi-
cance of POSTN in circulatory system disorders [6,10,35].
Studies focusing on PH revealed that POSTN expression
was upregulated under hypoxic conditions in human and an-
imal PH models, promoting its progression through a posi-
tive feedback loop involving HIF-1α and POSTN [35,36].
This suggests that targeting POSTN expression regulation
may offer an effective therapeutic strategy for managing
PH and serve as a valuable biomarker for assessing dis-
ease severity. In the present study, the Combat algorithm
was used to unbiasedly integrate three PAH expression mi-
croarray datasets. Differential gene expression analysis was
conducted using stringent filtering criteria, and protein in-
teraction networks were explored using the CytoHubba al-
gorithm. Among the upregulated genes, POSTN emerged
as the top-ranked hub gene. Furthermore, POSTN expres-
sion was assessed in the monocrotaline-induced PAH rat
and Sugen/hypoxia (Su/Hx) induced PAH mouse models.
Compared with controls, POSTN expression was signifi-
cantly increased in animal PAH models. Increasing evi-
dence suggests that a complex interaction between immune
and vascular stromal cells contributes to PAH pathogenesis
[37,38]. In this study, we characterized the microenviron-
ment composition in the high and low POSTN expression
groups. Overall, the stromal score was higher, and the im-
mune scorewas lower in the high POSTN expression group.
Furthermore, immune cell enrichment was lower than that
in the low POSTN expression group. Interestingly, a signif-
icant positive correlation was observed between fibroblast
infiltration and POSTN expression in PAH.

The development of single-cell RNA sequencing
(scRNA-seq) has facilitated comprehensive analysis of the
disease microenvironment, enabling the identification of
novel and unique immune cell subsets in health and dis-
ease, determining stochastic heterogeneity within cell pop-
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ulations, and constructing developmental cell trajectories
[16,39]. In the present study, we reanalyzed the scRNA-
seq dataset proposed by Crnkovic et al. [16]. Nature killer
(NK) cells, T cells, B cells, dendritic cells (DCs), mast
cells, and regulatory T cells (Tregs) were enriched in PAH
samples while decreased in normal samples. These find-
ings are consistent with previous study emphasizing the piv-
otal role of dynamic changes in immune and stromal cells
during PAH progression [37]. Furthermore, we observed
that POSTN was clustered in fibroblasts and SMCs, and
SMC-C07-POSTN was significantly enriched in PAH tis-
sues compared to normal tissues. POSTN emerged as the
most differentially expressed gene between PAH and donor
SMCs. Additionally, pathways related to ECM-receptor in-
teraction, PI3K-AKT signaling, focal adhesion, and oxida-
tive phosphorylation were notably enriched in SMC-C07-
POSTN, indicating the specific enrichment of POSTN+

SMCs in the PAH microenvironment and their association
with ECM remodeling.

SMCs constitute a central component of the arterial
media and play an essential role in arterial physiology and
pathology. Emerging evidence suggests that metabolic and
phenotypic switching of SMCs is closely associated with
the progression of various vascular diseases, including PH
and atherosclerosis [40–42]. The Monocle 2 algorithm was
employed to elucidate the dynamic processes of fibroblasts
and SMCs at the single-cell level in PAH. We observed
the enrichment of PAH cells in the POSTN+ SMC differ-
entiation branch. Moreover, the expressions of genes in-
volved in disease progression-related signaling pathways
such as NF-κB, epithelial-mesenchymal transition, apopto-
sis, and hypoxic pathways were higher in the terminal state
of the SMC-C07-POSTN differentiation branch. Notably,
in the hypoxic microenvironment, hypoxia-inducible fac-
tor 1-alpha (HIF1α) expression and activity were elevated
in the regulatory network of POSTN+ SMCs, suggesting
its role as a key TF driving this differentiation pathway.

Moreover, we aimed to elucidate the novel mechanism
by which POSTN+ SMCs regulate the PAH immune mi-
croenvironment. Previous studies have revealed the exces-
sive accumulation of immune cells, including macrophages
(Mphs), neutrophils, dendritic cells (DCs), mast cells, T
lymphocytes, and B lymphocytes, around the pulmonary
vessels of PAH patients [17,21]. Among these, various
Mph subtypes play a central role in PAH progression [43].
M1-typeMphs exacerbate inflammation by secreting proin-
flammatory factors, while M2-type Mphs promote tissue
repair. In this study, we observed a strong interaction be-
tween SMCs andMph/Mono in PAH samples. Based on the
expression of specific marker genes, seven subtypes were
identified within the Mph/Mono lineage. Our findings sug-
gest that POSTN+ SMCs regulate the formation of an in-
flammatory environment in RGS2+ Mphs via the TGFβ1-
SDC2 axis. In summary, a mutually supportive and func-
tionally significant interaction network was established be-

tween POSTN+ SMCs and RGS2+ Mphs, potentially con-
tributing to ECM remodeling and promoting an inflamma-
tory environment in PAH. These insights provide novel per-
spectives into PAH pathogenesis.

However, this study has several limitations. Firstly,
the inclusion of public data was limited, and the findings
will be validated and reinforced by a larger sample size by
establishing an external validation cohort. Secondly, due to
constraints in time and funding, the regulatory mechanism
of RGS2+ Mphs by POSTN+ SMCs via the TGFβ1-SDC
axis, promoting PAH progression, is solely based on bioin-
formatics analysis. Specific in vivo or in vitro experimental
validation was not conducted. These aspects will be ad-
dressed in future investigations.

Conclusions

Our findings provide further evidence on the asso-
ciation between POSTN and PAH through a combination
of bioinformatics and experimental methods. We demon-
strated, for the first time, the potential involvement of
POSTN+ SMCs in regulating the inflammatory microen-
vironment in RGS2+ Mphs via the TGFβ1-SDC2 axis.
These findings also indicate the establishment of a syner-
gistic and functionally significant interaction network be-
tween POSTN+ SMCs and RGS2+ Mphs, which may play
a pivotal role in ECM remodeling and promotion of the in-
flammatory environment in PAH. Our findings offer novel
insights into PAH pathogenesis.
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