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Melatonin is a tryptophan-derived hormone recognized for its diverse physiological benefits such as circadian rhythm regulation
and sleep modulation. Its antioxidant properties have implications for cancer prevention, immune enhancement, neuroprotec-
tion, and cardiovascular health. In contrast, phytomelatonin, a plant-derived counterpart discovered in 1995, shares similar
antioxidant capabilities but follows distinct synthesis pathways. Phytomelatonin shows promise in managing sleep disorders
and reducing oxidative stress, aligning with the growing interest in plant-based solutions. This review highlights melatonin’s
physiological roles and explores the potential of phytomelatonin as a nutraceutical for preventive and therapeutic interventions.
Moreover, this review identifies research gaps to direct future investigations and refine the understanding of melatonin and
phytomelatonin. Phytomelatonin, as a safer alternative to synthetic melatonin, holds therapeutic promise and warrants fur-
ther research to elucidate its efficacy, bioavailability, and optimal usage. This review underscores the nuanced interplay between
melatonin and phytomelatonin, offering insights into natural supplementation and therapeutics aligned with evolving preferences
for effective healthcare practices.
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Introduction

Melatonin, an indole amine hormone synthesized
from the aromatic amino acid tryptophan, is often recog-
nized for its pivotal role in regulating sleep and circadian
rhythms [1]. Recent research has uncovered numerous
physiological benefits associated with melatonin, position-
ing it as a versatile hormone with potential therapeutic im-
plications. For example, studies have identified melatonin
as an outstanding antioxidant, demonstrating its ability to
counteract oxidative stress at physiological concentrations
[2,3]. This property is of particular interest due to its rel-
evance in combating various health issues linked to oxida-
tive damage. Moreover, melatonin shows promise in cancer
prevention, further emphasizing its importance in maintain-
ing overall health. [4–7]. This review comprehensively ex-
plores melatonin’s multifaceted advantages, including an-
tioxidant properties, immune function enhancement, onco-
static potential, neuroprotection, and cardiovascular health.

The discovery of melatonin in various plant species
introduces a new dimension to our understanding of this
hormone. While phytomelatonin shares structural similari-
ties with endogenous melatonin in humans, their synthesis
pathways differ. Phytomelatonin not only mirrors the an-
tioxidant and radical scavenging properties ofmelatonin but
also interacts with the immune system of mammals [8]. Ex-
ploring phytomelatonin’s therapeutic potential, especially
in managing sleep disorders andmitigating oxidative stress,
highlights its significance in human health. This emerging
field provides insights into the interconnectedness of botan-
ical compounds and human physiology, offering opportuni-
ties for advancements in natural supplementation and health
interventions.

This review aims to summarize the inherent physio-
logical roles of melatonin while bringing attention to the
emerging field of phytomelatonin, contributing to the ongo-
ing discourse on the therapeutic potential of plant-derived
melatonin compounds. Additionally, we will delve into the
promising prospects of phytomelatonin as a nutraceutical,
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highlighting its potential role in preventive and therapeutic
interventions. The timeliness of this review aligns with the
global shift towards embracing plant-based solutions and
the increasing prevalence of lifestyle diseases.

As we navigate the current scientific landscape, it is
crucial to acknowledge existing gaps in research and knowl-
edge. Identifying these gaps will pave the way for future
investigations, improving our comprehension of melatonin
and phytomelatonin, and guiding potential therapeutic ap-
plications in human health. This review aims to consolidate
existing knowledge and stimulate future research endeav-
ors.

Discovery of Phytomelatonin

The significance of phytomelatonin emerged upon
discovery in 1995, with concentrations surpassing levels
observed in animals [9,10]. Plant synthesis of serotonin
and melatonin, originating from tryptophan, parallels the
process in animals, [11,12], albeit with distinctive charac-
teristics [13]. However, the synthesis of phytomelatonin
diverged from endogenous melatonin in humans due to in-
herent differences in enzymatic pathways. Animals, includ-
ing humans, exhibit a limited ability to synthesize trypto-
phan, primarily due to their lack of key enzymes present in
plants [14]. This enzymatic distinction fundamentally im-
pacts the availability of tryptophan, thereby influencing the
levels of melatonin production in both animals and plants.
These distinctions contribute to the distinctive roles of phy-
tomelatonin in the plant kingdom. The varying levels of
phytomelatonin across different plant types highlight this
molecule’s complexity [8]. Cellular organelles, particularly
mitochondria and chloroplasts, play a pivotal role in this
biosynthetic process [12,15,16]. A comprehensive under-
standing of these pathways is crucial for exploring the po-
tential benefits of phytomelatonin in both plant physiology
and its implications for human health.

Recognized as a master regulator in oxidative stress
management, phytomelatonin is critical in diverse plant
processes [15,17]. These include flowering, seed germina-
tion, root elongation, senescence, the control of circadian
rhythms, the maturation of fruits, and metabolite balance
[13,18]. The diverse functions attributed to phytomelatonin
underscore its versatility as a key player in orchestrating
plant development and facilitating adaptation to environ-
mental changes [19,20]. The intricate interactions between
melatonin and other phytohormones, such as auxins, cy-
tokinins, and abscisic acid, add complexity to its regula-
tory functions, particularly in stress response mechanisms
[21,22]. Melatonin’s influence extends to the modulation
of root and shoot organogenesis by regulating auxin signal-
ing [23,24]. The application of exogenous melatonin has
been shown to notably alleviate hypoxia-induced inhibition
of rice root growth, demonstrating its positive regulation

of root growth and development under stress conditions by
enhancing the antioxidant system and activating the auxin
signaling pathway, either directly or indirectly [24].

Beyond growth and development, melatonin served as
a pivotal regulator of redox processes in plants [25], func-
tioning as an antioxidant molecule by scavenging reactive
oxygen species (ROS) and modulating stress-related genes.
This antioxidant capacity enables melatonin to efficiently
neutralize ROS, thereby shielding plants from oxidative
stress induced by various environmental factors. Addition-
ally, melatonin enhances the activity of redox enzymes,
such as superoxide dismutase (SOD), catalase (CAT), per-
oxidase (POX), and ascorbate peroxidase (APX), thereby
regulating ROS and reactive nitrogen species (RNS) levels
and maintaining redox homeostasis in crop plants [26].

The cumulative body of knowledge in this field not
only contributes to our understanding of plant physiology
but also hints at potential applications in broader contexts,
including human health.

Physiological Functions of Melatonin in
Animals

Beyond its circadian regulation, melatonin exhibits a
spectrum of bioactivities, including antioxidant, immune-
modulatory, oncostatic properties, cardioprotective effects,
neuroprotective effects, and sleep regulation (Fig. 1).

Antioxidant Properties of Melatonin
Melatonin’s antioxidative capabilities, rooted in its

evolutionary role as a free radical scavenger, transcend
animal boundaries to influence crucial processes within
the plant kingdom [27,28]. Originating from bacteria like
α-proteobacteria and photosynthetic cyanobacteria, mela-
tonin’s ancient lineage suggests its pivotal role in oxida-
tive stress reduction throughout millennia [29,30]. More-
over, the proposed endosymbiotic theory suggests mela-
tonin’s enduring presence in the evolution of mitochon-
dria and chloroplasts, highlighting its retained production
in these organelles across species [12]. As a powerful scav-
enger of free radicals, melatonin not only eliminates excess
radicals but also intricately modulates the cellular antioxi-
dant system (Fig. 2, Ref. [29]) [31].

The complexity of melatonin’s antioxidative capac-
ity is further enriched by its cascade effect involving
metabolites, such as 3-hydroxymelatonin and N1-Acetyl-
5-Methoxykynuramine (AMK). These metabolites exhibit
exceptional potency in reducing oxidative stress and hold
promise for diverse therapeutic applications [32]. AMK
specifically emerges as a potent inhibitor of neuronal ni-
tric oxide synthase (nNOS) activity, surpassing its precur-
sor, melatonin, in both in vitro and in vivo assessments.
Its non-competitive behavior and higher antagonist effi-
cacy against nNOS demonstrate its potential neuroprotec-
tive effects against NO-dependent excitotoxicity [33]. Sim-
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Fig. 1. The figure illustrates key physiological properties of melatonin. Melatonin serves as a potent neutralizer of reactive oxygen
species (ROS) generated during metabolic processes, highlighting its significant role in cellular antioxidant defense mechanisms. Addi-
tionally, melatonin demonstrates its capacity to modulate the immune system, influencing various immune parameters and contributing
to immune resilience. The figure further depicts melatonin’s preventive effects on oncogenesis, showcasing its oncostatic properties in
impeding cancer cell growth and proliferation. Finally, the regulatory role of melatonin in circadian rhythm is highlighted, emphasizing
its orchestration of biological processes in alignment with the day-night cycle. This comprehensive representation underscores the diverse
nature of melatonin’s physiological effects. COX-2, cyclooxygenase-2; TNF-α, tumour necrosis factor alpha; IL-1β, interleukin-1beta;
NF-κB, nuclear factor kappa B. This figure is copyright free and edited through Microsoft Power Point (MS office 2016, Redmond, WA,
USA).

ilarly, melatonin outperforms vitamin E in hepatoprotec-
tive studies, demonstrating superior efficacy in reducing
bilirubin levels and mitigating free radical damage under
acute biliary duct ligation in rats [34]. Additionally, mela-
tonin’s antioxidative prowess in preventing dopamine oxi-
dation showcases its significance in neuroprotective mech-
anisms [35]. Melatonin’s ability to enhance the cellular
antioxidant defense system is evident through the induc-
tion of gamma-glutamylcysteine synthetase (γ-GCS) ex-
pression and the regulation of antioxidant enzyme activi-
ties such as catalase (CAT), superoxide dismutase (SOD),
glutathione reductase (GSH-Rd), and glucose-6-phosphate
dehydrogenase (G6PD) [36–39].

When combined with other antioxidants, melatonin
exhibits synergistic effects against lipid peroxidation,
showcasing its versatility and potent antioxidative capabil-
ities, even at low concentrations [40]. Notably, its nuanced
interactions within complex antioxidant systems, especially
with vitamin C, highlight melatonin’s multifaceted role in
cellular redox balance.

Immune System Modulation

Melatonin, a crucial immune regulator, intricately
manages the interactions between environmental stimuli
and the body’s defense mechanisms [41]. Its essential
role in immune resilience is evident in the correlation be-
tween melatonin peaks and progenitor cell proliferation,
emphasizing its significance in photoperiodic immune con-
trol [42]. Studies on seasonal animals highlight melatonin’s
substantial impact on immune organ weight, revealing its
potential immune modulatory effects [43–45]. Pinealec-
tomized squirrels with disturbedmelatonin synthesis exhib-
ited increased levels upon exogenousmelatonin administra-
tion, demonstrating its critical role in immune homeostasis
[44]. Additionally, melatonin demonstrated the ability to
regenerate the thymus and restore immunological function
in elderly mice, indicating its broader role in responding to
environmental stress [43].

Melatonin exhibits a multifaceted impact by influenc-
ing both the innate and adaptive immune systems. Specif-
ically, melatonin enhances the cellularity of macrophages
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Fig. 2. This figure provides a detailed depiction of melatonin’s antioxidant activity. The illustration highlights melatonin’s modu-
lation of crucial components within the cellular antioxidant system, including glutathione (GSH), catalase (CAT), glutathione reductase
(GSH-Rd), glucose-6-phosphate dehydrogenase (G6PD), and superoxide dismutase (SOD). Furthermore, the figure elucidates the direct
scavenging action of free radicals by melatonin itself, and its metabolites. This comprehensive representation illustrates the intricate
mechanisms through which melatonin actively participates in cellular antioxidant defense, showcasing its multifaceted role in maintain-
ing redox homeostasis. Reproduced with permission from Tan et al. [29], Mitochondria and chloroplasts as the original sites of melatonin
synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes; published by Journal of Pineal Research,
2013.

and microglia, the first-line defenders against pathogens,
while also elevating levels of natural killer (NK) cells and
monocytes crucial in innate immunity [46–50]. Despite
hindering lymphocyte proliferation, melatonin’s intricate
influence on gene expression and cytotoxic effects under-
scores its nuanced impact on immune modulation [51].

Melatonin affects key cytokines involved in immune
responses [52–55]. For example, melatonin inhibits tumour
necrosis factor alpha (TNF-α) and interleukin-1beta (IL-
1β) through signaling pathways like PI3K/Akt and nuclear
factor kappa B (NF-κB), suggesting potential in mitigat-
ing inflammatory conditions [53,54]. Its anti-inflammatory
mechanism, identified through NF-κB inhibition, high-
lights its significant role in regulating genes responsible for
both innate and adaptive immune responses [56].

Melatonin also exerts its effects on T cells by
modulating the equilibrium between Th1 and Th2 re-
sponses, demonstrating its comprehensive influence on
immune regulation [57–59]. Its antioxidant properties
contribute to anti-inflammatory effects by regulating the
ROS/TXNIP/Hypoxia-Inducible Factor 1α (HIF-1α) path-
way, positioning melatonin as a promising avenue for ther-
apeutic exploration in conditions marked by immune dys-
regulation and excessive inflammation [60].

Oncostatic Property of Melatonin

Melatonin’s oncostatic properties offer a multifaceted
approach against cancer cell growth and proliferation. Re-
cent research on human ovarian and gastric cancer cell lines
revealed melatonin’s ability to enhance apoptosis, inhibit
proliferation, andmitigate metastasis—a pivotal stage in tu-
morigenesis [4,6].

Melatonin’s antioxidant properties vastly contribute
to its oncostatic capabilities by countering oxidative stress
and preventing DNA damage, key drivers of cancer ini-
tiation. By neutralizing reactive oxygen species (ROS),
melatonin optimizes mitochondrial oxidative phosphoryla-
tion and regulates antioxidant gene expression, positioning
itself as a guardian of cellular redox equilibrium with thera-
peutic potential in cancer prevention and treatment [61–65].

Beyond its antioxidant role, melatonin acts as a reg-
ulator of inflammatory pathways, exemplified by its inhi-
bition of cyclooxygenase-2 (COX-2), a crucial enzyme in
the inflammatory cascade [66–68]. This anti-inflammatory
prowess broadens melatonin’s oncostatic effects and ex-
tends its therapeutic potential to inflammatory illnesses.
In breast cancer, melatonin’s effects occur through inter-
actions with estrogen signaling pathways, inhibiting aro-
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matase and sulfatase expression and activity, positioning it
as a promising tumor suppressor, especially in hormone-
dependent mammary tumors [69–71].

Melatonin’s oncostatic repertoire extends further to
its interaction with Hypoxia-Inducible Factor 1α (HIF-
1α). Melatonin destabilizes HIF-1α by hindering nuclear
translocation, enhancing von Hippel-Lindau protein (VHL)
ligase-mediated degradation, and influencing the SUMO-
specific pathway linked to HIF-1α [72–74]. Its antioxidant
capabilities play a pivotal role in reducing mitochondrial
hypoxia-induced ROS production, positioningmelatonin as
a promising oncostatic agent by disrupting metabolic adap-
tations, inhibiting angiogenesis, and impeding tumor cell
survival [75,76].

Cardiovascular Diseases
Melatonin’s cardioprotective effect has garnered con-

siderable attention in numerous studies [77–79]. Oxida-
tive stress is implicated in various diseases, including heart
disease, highlighting the value of potent antioxidants like
melatonin in maintaining redox balance [80].

Melatonin promotes cardiovascular health by pre-
venting atherosclerosis, myocardial ischemia-reperfusion
injury, and hypertension [81]. Its inhibitory effects on
mitophagy and NLRP3 inflammasome activation within
atherosclerotic plaque areas, coupled with its positive im-
pact on plasma cholesterol levels, showcase melatonin’s
multifaceted protective effects. Melatonin’s role in fa-
cilitating mitochondrial homeostasis via mitophagy solidi-
fies its potential as a therapeutic candidate for atheroscle-
rosis. Similarly, melatonin plays a pivotal role in blood
pressure regulation and overall cardiovascular well-being,
demonstrated in both rodent and human models [82–
84]. In rodent models, melatonin administration re-
verses pinealectomy-induced hypertension and modulates
hypertension-related factors in spontaneously hypertensive
rats (SHR). In healthy individuals, low-dose melatonin ad-
ministration significantly reduces blood pressure, lowers
norepinephrine levels, and improves heart rate variability.
The regulation of melatonin 2 receptor (MT2) receptors on
endothelial cells emerges as a central factor in blood pres-
sure dynamics, involving intricate signaling pathways con-
tributing to vasodilation and overall cardiovascular health.

Melatonin’s preventive influence extends to cardiac
pathology, safeguarding cardiac muscle against ischemia-
reperfusion-induced damage [85,86]. These cardioprotec-
tive properties occur as a result of decreased oxidative dam-
age triggered by ischemia/reperfusion, leading to a marked
decrease in infarct size and cardiac arrhythmias. These
findings highlight melatonin’s potential therapeutic role
in protecting the heart from ischemia-reperfusion-induced
damage, offering broader applications for cardiovascular
health.

Neurodegenerative Diseases
Melatonin emerges as a pivotal player in neuropro-

tection, characterized by its robust antioxidative properties
[87–89]. Its efficacy in neutralizing neuronal free radi-
cals associated with cellular damage serves as a key factor
in the development and progression of neurodegenerative
diseases. Moreover, melatonin plays a crucial role in mi-
tochondrial protection, countering the observed mitochon-
drial dysfunction common in neurodegenerative conditions
[89–91].

The neuroprotective effects of melatonin extend to its
role as a cytoprotectivemolecule, effectively reversing low-
grade inflammatory damage and counteracting chronic in-
flammation seen in neurodegeneration. In Alzheimer’s dis-
ease (AD), where inflammation is a significant risk factor,
melatonin intervenes in crucial pathways, specifically tar-
geting NF-κB activation and downstream cytokine induc-
tion [92]. Melatonin’s ability to regulate Aβ-induced cy-
tokine upregulation and protect against pyroptosis through
N-terminal gasdermin D (N-GSDMD) underscores its po-
tential as a versatile neuroprotective agent against inflam-
matory damage in neurodegenerative diseases. Melatonin
administration shows promise in reversing AD-induced ab-
normalities in acetylcholine (ACh) neurotransmission and
enhancing acetylcholine levels [88,93]. Additionally, mela-
tonin’s impact onGABAergic neurotransmission and its po-
tential to mitigate glutamatergic system abnormalities posi-
tion it as a candidate for addressing neurotransmission ab-
normalities associated with neurodegenerative diseases.

In Parkinson’s disease (PD), melatonin also con-
tributes to neuroprotection, mitigating neurotoxicity
induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) in PD animal models [94].
Its efficacy in restoring abnormal autophagic activity,
preserving neuromorphological changes, and protecting
dopaminergic neurons underscores its potential as a
valuable therapeutic intervention in preventing neurode-
generative conditions in PD. Huntington’s disease (HD),
which is characterized by neural oxidative stress and
mitochondrial dysfunction, is also positively benefited
by melatonin’s protective effects. In an HD rat model
induced by 3-nitropropionic acid, melatonin reversed
neural oxidative stress and mitochondrial injury caused
by the neurotoxin [95–98]. Melatonin’s ability to prevent
oxidative damage to cell membranes, organelles, and
nuclear mitochondrial DNA underscores its potential
as a neuroprotective agent in mitigating the effects of
neurodegenerative conditions, including those associated
with HD.

Sleep Regulation
As it relates to its pivotal role in circadian rhythm reg-

ulation, melatonin has emerged as a potent intervention for
sleep disorders and jet lag, functioning both as a dietary sup-
plement and therapeutic drug [99–101]. The circadian sys-
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tem, overseen by the suprachiasmatic nucleus (SCN), plays
a pivotal role in governing physiological processes and be-
haviors [102].

The well-established effectiveness of melatonin in
improving sleep parameters occurs through its chronobi-
otic role in adjusting and maintaining regular circadian
rhythmicity [103–105]. Studies indicate that melatonin
and its derivatives expedite sleep initiation and modulate
sleep architecture, with research on melatonin-proficient
and melatonin-deficient mice highlighting its modulatory
effects on clock gene expression, particularly in the retina,
where it coordinates circadian rhythms in neuronal remod-
elling [106,107]. Referred to as the ‘hormone of darkness,’
melatonin regulates sleep by activating MT1 and MT2 re-
ceptors [108].

In humans, melatonin promotes sleep and lowers body
temperature at night, aligning with the nocturnal sleep cycle
[101,109]. Particularly relevant in industrialized countries,
melatonin supplementation is sought to improve sleep, re-
ducing symptoms of “jet lag”. The European Food Safety
Authority recognizes melatonin’s role in reducing sleep on-
set latency and recommends a daily dose of 1 mg close to
bedtime for the general population [110]. Moreover, mela-
tonin’s status as a dietary supplement has been acknowl-
edged via the creation of consumption guidelines by regu-
latory bodies such as European Food Safety Authority and
Food Standards Australia New Zealand [111]. Given that
approximately one-third of the general population suffers
from sleep disorders, sleep-promoting interventions like
melatonin are crucial.

Leveraging melatonin’s capacity to regulate sleep
quality, exogenous melatonin can be integrated as a dietary
supplement to address sleep-related disorders. Ongoing
research solidifies melatonin’s position as a versatile and
promising tool in sleep medicine and circadian rhythm reg-
ulation. As a pivotal regulator of immune functions, mela-
tonin influences immune circadian organization, immune
organ weight, innate immune system components, and cy-
tokine modulation, showing potential for the treatment of
conditions characterized by immune dysregulation and in-
flammation.

Exogenous Melatonin as Dietary Supplements

Exogenous melatonin is readily available as a dietary
supplement and continues to exhibit diverse health bene-
fits. Melatonin originates from the pineal gland and is used
to regulate the sleep-wake cycle. Its exogenous supplemen-
tation has emerged as a versatile tool in various clinical ap-
plications. Beyond its application to sleep disorders and jet
lag, melatonin regulates various physiological aspects, in-
cluding but not limited to inflammation, hypertension, ox-
idative stress, and metabolic syndrome [112–116].

Aside from sleep-related issues, melatonin could po-
tentially improve numerous health conditions including di-

abetes, neurodegenerative diseases, heart diseases, and can-
cers. The meta-analysis study hinted at melatonin’s po-
tential as a viable alternative treatment for irritable bowel
syndrome (IBS) [117]. Nevertheless, additional research
is needed to validate this area. Furthermore, melatonin
supplements have shown promise in reducing weight gain
and have found integration into the management of vari-
ous medical and surgical conditions [118,119]. The core of
melatonin’s effectiveness in treating insomnia lies its abil-
ity to mimic the natural endogenous melatonin, binding to
the same receptors and activating similar pathways [120].

Administered orally, melatonin was characterized by
efficient absorption, widespread distribution, and complete
metabolism, allowing it to traverse the blood-brain bar-
rier and exert its effects on the central nervous system
[121,122].

Melatonin has been generally considered safe with no
reported toxicity, even in extreme doses. Mild adverse ef-
fects such as dizziness, headache, nausea, and sleepiness
have been reported [123]. Despite this safety profile, cau-
tion was advised, and the intake of exogenous melatonin
during pregnancy and breastfeeding was not recommended
due to a lack of comprehensive studies. Melatonin was
approved by the U.S. Dietary Supplement Health and Ed-
ucation Act of 1994, officially recognizing melatonin as
a dietary supplement [10]. This acknowledgment has led
to standardized recommendations, with authoritative bod-
ies like the National Sleep Foundation suggesting a dosage
ranging between 0.2 to 5mg for adults, to be taken approx-
imately 60 minutes before bedtime [107]. This regulatory
support established a foundation for the widespread accep-
tance and use ofmelatonin supplements, particularly in con-
texts where sleep-related issues or circadian rhythm distur-
bances were prevalent.

While the attributes of melatonin hold promise across
various applications, it is crucial to approach supplementa-
tion with caution. Despite its potential, the evidence sup-
porting its efficacy was not uniform across all applications
[117]. As with any dietary supplement, individuals consid-
ering melatonin supplementation should consult healthcare
professionals to ensure safe and appropriate usage, consid-
ering individual health conditions and potential interactions
with medications. Additionally, ongoing research is vital to
further elucidate the full range of melatonin’s health bene-
fits and optimize its application in various clinical settings,
providing a solid foundation for evidence-based recom-
mendations and expanding our understanding of this mul-
tifaceted hormone’s potential contributions to health and
well-being.

Recent Interest in Phytomelatonin for Human
Health

The intricate interactions between phytomelatonin
and endogenous melatonin in humans include similar bio-
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chemical origins and shared functionalities as signaling
molecules. The identical structures of phytomelatonin
and endogenous melatonin establish their conserved roles
in cellular communication and regulation [8,124]. Un-
derstanding these shared functions informs the evolution-
ary significance and potential therapeutic applications of
melatonin-related mechanisms.

In the context of human health, the exploration of
phytomelatonin as a natural, plant-based supplement has
garnered considerable attention. The multifaceted role of
melatonin in regulating crucial physiological activities, in-
cluding mood, sleep, body temperature, locomotor activ-
ity, food intake patterns, circadian rhythms, and immuno-
logical processes, demonstrates its significance in human
health [125]. Despite their distinct synthesis pathways, the
nuanced interactions between phytomelatonin and endoge-
nous melatonin suggest functional convergence, implying
that both compounds may contribute to similar physiologi-
cal outcomes in humans.

Furthermore, phytomelatonin’s antioxidant properties
[25,26] contribute to its allure in the realm of human health.
Antioxidants play a pivotal role in mitigating oxidative
stress, a factor implicated in various human diseases. The
potential benefits of phytomelatonin open avenues for novel
approaches inmanaging oxidative stress-related conditions,
given its antioxidant properties. For example, phytome-
latonin exhibited remarkable potential in treating respira-
tory infections such as Coronavirus disease-2019 (COVID-
19) [126], and in preventing liver diseases [127]. These
outcomes position phytomelatonin as a potential therapeu-
tic agent and simultaneously highlight the broader implica-
tions of understanding the interplay between botanical com-
pounds and human health.

Positive correlations between melatonin-rich foods
and clinical-metabolic indicators have been identified,
highlighting the potential impact of dietary melatonin on
overall well-being [128]. Given the age-associated de-
crease in endogenous melatonin and its correlation with
a higher incidence of sleep disorders, the investigation of
phytomelatonin becomes increasingly relevant [129].

A pivotal aspect of phytomelatonin’s influence on cir-
cadian rhythms lies in its interaction with light-dark cy-
cles [126]. Melatonin has demonstrated a unique capac-
ity to respond to environmental light cues, contributing to
the entrainment of circadian rhythms [130,131]. Similarly,
phytomelatonin emerged as a contributor to the regulation
of the body’s internal clock, aligning biological processes
with the natural day-night cycle. This potential renders
phytomelatonin a key player in maintaining the balance of
physiological processes and promoting overall well-being
by influencing circadian rhythms.

Upon ingestion, phytomelatonin was absorbed
through the gastrointestinal tract, modulating blood mela-
tonin levels. The relatively short half-life of melatonin
(20 to 40 minutes) was attributed to its metabolism and

elimination in urine [132,133]. As exploration into the
properties of phytomelatonin progressed, it emerged as a
potentially influential nutraceutical capable of affecting
various aspects of human physiology.

Moreover, the exploration of phytomelatonin as a po-
tential nutraceutical gained significance considering its per-
ceived advantages over synthetic melatonin prevalent in the
market. The notion of reducing the intake of by-product
compounds resulting from the chemical synthesis of mela-
tonin was stressed by the chemical compounds associated
with synthetic melatonin, including tryptophan derivatives
such as 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid,
3-(phenylamino)-alanine, 1,1′-ethylidenebis-(tryptophan),
2-(3-indolylmethyl)-tryptophan, formaldehyde-melatonin,
formaldehyde-melatonin condensation products, hydrox-
ymelatonin isomers, 5-hydroxy-tryptamine derivatives,
5-methoxy-tryptamine derivatives, and N-acetyl- and
diacetyl-indole derivatives [134,135]. These by-products
have the potential to induce eosinophilia-myalgia syndrome
[136–138]. The potential risks associated with these com-
pounds prompt a shift towards phytomelatonin, which ap-
pears poised to mitigate such risks. In fact, phytomelatonin
has demonstrated increased absorption efficiency and supe-
rior antioxidant and anti-inflammatory properties [139].

Phytomelatonin has emerged as a key player in pro-
moting improved sleep quality and duration. Consuming
foods containing melatonin has been shown to promote a
positive impact on sleep quality. Additionally, there was
an observed elevation in plasma melatonin levels, accom-
panied by improvements in various sleep quality parame-
ters [140–142]. For example, tart cherries are rich in phy-
tomelatonin and have been reported to have a positive effect
on insomnia and sleep quality [143–146]. This overall in-
volvement suggests phytomelatonin’s potential to improve
sleep patterns.

Moreover, research highlighted the versatility of phy-
tomelatonin and its potential as a valuable component in
the development of immunotherapeutic strategies. The im-
mune modulatory effects of phytomelatonin have also been
investigated in nocturnal male rodent, golden hamsters, us-
ing melatonin-rich foods, such as cabbage (Brassica ol-
eracea) and carrots (Daucus carota) [147]. Remarkably,
supplementation with these phytomelatonin-rich foods re-
sulted in a significant increase in spleen weight, aligning
with other findings associated with exogenous melatonin
treatment and resultantly indicating a potential role for phy-
tomelatonin in influencing immune function. Additionally,
an animal study showcased an enhancement in reproduc-
tive health following consumption of a phytomelatonin-rich
diet, suggesting a novel avenue for phytomelatonin in re-
productive physiology [148]. While the exploration of phy-
tomelatonin as a supplement holds promise, its efficacy and
practical applications warrant careful evaluation. While
melatonin-rich foods are recognized as potential nutraceuti-
cals, concerns have been raised regarding the true potential
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of these foods and the efficacy of their respective dietary
supplements. Critics highlight the lack of a clear quantita-
tive correlation between the intake of phytomelatonin-rich
foods or supplements and plasma melatonin levels of mela-
tonin, casting doubt about the reliability of achieving ther-
apeutic effects solely through dietary means. This observa-
tion emphasizes the need for a more nuanced understand-
ing of the relationship between phytomelatonin intake and
physiological outcomes.

As the landscape of supplementation evolves to-
wards natural alternatives, the exploration of phytomela-
tonin establishes potential avenues for novel and potentially
groundbreaking approaches to health and well-being. Nev-
ertheless, a judicious and evidence-based approach is es-
sential to navigate the complexities surrounding phytome-
latonin supplementation to provide clarity on its true poten-
tial, ensuring its integration into mainstream health prac-
tices.

Bioavailability of Dietary Phytomelatonin

When administered externally, melatonin has
demonstrated remarkable efficiency in oral absorption,
widespread distribution, and thorough metabolism within
the intricate landscape of the human body [149]. Whether
introduced through beverages or encapsulated in galenic
tablets, melatonin has exhibited prompt assimilation into
the bloodstream [150,151]. However, despite advance-
ments in understanding melatonin’s pharmacokinetics, the
oral bioavailability of melatonin from various sources,
including dietary supplements, food items, and natu-
rally occurring phytomelatonin, remains incompletely
understood.

The substantial variations observed in melatonin-
related absorption, metabolism, and elimination among in-
dividuals, underscore the pressing need for more exhaustive
research to unravel the intricacies of melatonin’s pharma-
cokinetic properties. This was particularly relevant asmela-
tonin was found in a diverse array of foods, including nuts,
fruits, seeds, cereals, oils, coffee, wine, and beer. Each
food presented a unique matrix for melatonin bioavailabil-
ity [111,152–154]. Phytomelatonin from plants modulates
blood melatonin levels with a half-life of 20 to 40 minutes.
However, it was crucial to acknowledge that the bioavail-
ability of melatonin can vary due to several factors, includ-
ing individual metabolism, diet composition, and the pres-
ence of other compounds that may interact with melatonin
[111,155,156]. Species-specific differences in melatonin
bioavailability, influenced by dosage, further contributed to
the complexity of its pharmacokinetics.

Bioavailability on Animal Models
Assessments of the bioavailability of dietary mela-

tonin have often been conducted using vertebrate models
due to their physiological similarities with humans. For

instance, a study performed on a rat model demonstrated
that the consumption of germinated kidney beans altered
melatonin and serotonin levels, resulting in increased excre-
tion of 6-sulfatoxymelatonin in urine [142]. The compari-
son of melatonin bioavailability from kidney bean sprouts
with synthetic melatonin showed a 16% increase in plas-
matic melatonin and urine 6-sulfatoxymelatonin levels af-
ter 90 minutes, suggesting kidney bean sprouts as a poten-
tial dietary source of phytomelatonin. This finding is par-
ticularly significant as 6-sulfatoxymelatonin serves as the
primary melatonin metabolite in urine, acting as a reliable
surrogate biomarker mirroring melatonin concentration in
the blood [157]. Another study using chicken feed with
24 different melatonin-rich plants also highlighted similar
results [158]. These results indicated the effectiveness of
melatonin in raising circulating melatonin levels, providing
a scope for the development of phytomelatonin-based di-
etary supplements. These findings suggested the efficacy
of plant-derived melatonin sources in elevating circulating
melatonin levels, offering physiological benefits upon con-
sumption, and presenting potential avenues for the devel-
opment of dietary supplements utilizing phytomelatonin.

In a retrospective analysis across various studies uti-
lizing diverse models such as rats, dogs, and monkeys
by Yeleswaram et al. [159], species-specific and dose-
dependent variations in melatonin bioavailability were ob-
served. Notably, a 10 mg/kg oral dose in rats demonstrated
a 53.5% bioavailability, while dogs and monkeys exhibited
nearly 100%. Interestingly, a lower dose (1 mg/kg) resulted
in a significant decrease in bioavailability to 16.9%, empha-
sizing the dosage-dependent nature of melatonin absorption
across different species.

Bioavailability on Human
Two independent studies on humans, conducted fol-

lowing the consumption of melatonin-rich food, demon-
strated the capability of dietary melatonin to reach cir-
culatory levels and induce physiological benefits [141,
160]. For example, one study found that the ingestion
of freeze-dried sweet cherries in powder form elevated 6-
sulfatoxymelatonin, demonstrating a direct associationwith
antioxidant capacity [141]. Comparable outcomes were ob-
served in investigations involving plums and grape juice
across various age cohorts. Additionally, research on 18
beer samples correlated melatonin concentration with alco-
hol content, with blood melatonin levels significantly rising
post-ingestion, along with an increase in total antioxidant
status [160].

The bioavailability of melatonin varies significantly
depending on the source and administration route, whether
oral or intravenous [149,156]. These variations include ab-
sorption, metabolism, and elimination, emphasizing the im-
perative for comprehensive studies to explore melatonin’s
pharmacokinetic properties further. In a crossover cohort
study on melatonin pharmacokinetics, oral administration
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led to rapid absorption (Tmax at 41 minutes) but with
considerable variation in maximal plasma concentrations
(Cmax) and area under the curve (AUC) of plasma concen-
trations among volunteers [161]. Despite rapid absorption,
oral melatonin bioavailability was only 3%, indicating sig-
nificant variability among participants. Following oral in-
take, melatonin underwent extensive hepatic metabolism,
known as the first-pass effect [32,161,162]. This process
significantly reduced its bioavailability, explaining why
only a small percentage of the consumed melatonin reached
the bloodstream. However, it is imperative to acknowledge
that supplementary factors, notably the plausible enzymatic
breakdown facilitated by gastrointestinal cytochrome P450
1B1 [32,163], in conjunction with nonenzymatic mecha-
nisms, also played contributory roles in this process. It
was noteworthy that melatonin’s bioavailability exhibited
inter-individual disparities, with variations extending up to
37-fold [32]. This substantial heterogeneity was likely un-
derpinned by the diverse expression patterns of cytochrome
P450 subtypes within the human genome, thereby introduc-
ing a layer of complexity to the understanding of melatonin
metabolism and its subsequent availability in different in-
dividuals.

While numerous studies highlighted the effective ab-
sorption and wide distribution of orally administered mela-
tonin throughout the human body, the specific absorption
dynamics of melatonin from herbal remedies or products,
along with the oral bioavailability of phytomelatonin, re-
quire further investigation. As the scientific community
continues to investigate the properties of phytomelatonin,
there is a need for systematic studies that elucidate its ab-
sorption kinetics, bioavailability, and potential interactions
with other compounds. The absorption of melatonin will
likely occur regardless of consumptionmethod, yet this pro-
cess is not entirely understood. Such investigations will not
only contribute to a more comprehensive understanding of
phytomelatonin’s efficacy but also guide its incorporation
into dietary supplements and health interventions.

Recent Advancements in the Utilization of
Phytomelatonin Beyond Plant Systems

The recent upsurge in phytomelatonin research, es-
pecially beyond plant systems, has yielded valuable in-
sights into its diverse applications and potential advantages.
For example, a recent review highlighted melatonin’s role
in regulating physiological processes and investigated the
distinctions in biosynthetic pathways between animal and
plant cells, extending the pharmacological benefits of ex-
ogenous melatonin on animals via dietary supplements [8].

Despite recent advancements in synthesizing mela-
tonin chemically, concerns persist regarding the generation
of unwanted by-products as contaminants during chemical
reactions. In response, Pérez-Llamas et al. [164] proposed
using raw plant material to obtain dietary supplements rich

in phytomelatonin instead of synthetic melatonin, along
with its associated chemical by-products. They presented
a phytomelatonin-rich extract procedure from a herbal mix
composed of various plants as an alternative to synthetic
melatonin, suitable for cost-effective industrial-scale pro-
duction. Additionally, another study highlighted the su-
perior antioxidant and anti-inflammatory properties of the
natural phytomelatonin-rich extract compared to synthetic
melatonin when administered exogenously to animal mod-
els [139]. This research emphasized the potency of phy-
tomelatonin due to the richer chemical profile of natural
sources, leading to enhanced intestinal absorption of mela-
tonin.

Another review article explored the potential phy-
totherapeutic intervention for individuals exposed to
COVID-19, establishing phytomelatonin as a compelling
consideration as a natural adjuvant [126]. In a recent re-
view article by Arnao et al. [135], they provided a compre-
hensive overview of phytomelatonin from plants, algae, and
genetically modified microorganisms as alternatives to syn-
thetic melatonin. They meticulously analyzed the pros and
cons of obtaining melatonin from different sources, delv-
ing into the economic and quality aspects of these products,
some of which are already on the market.

As awareness of the potential physiological benefits
of melatonin grows, there is a heightened interest in con-
suming melatonin-rich plant sources. Based on this con-
cept, Kennaway’s [165] review scrutinized the effects of
consuming melatonin-rich foods on plasma or saliva mela-
tonin and its urinarymetabolite acrossmultiple studies. The
author highlighted methodological flaws and result assess-
ment issues in these studies, leading to the conclusion that
expecting melatonin-rich foods to influence sleep or have
physiological effects may be overly optimistic. In con-
trast, other researchers continue to advocate for the ben-
efits of such consumption. For instance, a recent study
demonstrated that phytomelatonin-rich diets significantly
improved sperm quality and seminal plasma composition in
rams [148]. However, the ongoing discourse surrounding
the efficacy of melatonin-rich foods persists, leaving both
consumers and researchers striving for conclusive insights.

Conclusion

The physiological benefits of melatonin are extensive
and multifaceted, positioning it as a promising avenue for
therapeutic exploration across various health conditions.
As a key regulator of immune functions, melatonin demon-
strates remarkable adaptability and resilience by synchro-
nizing immune responses with internal rhythms, influenc-
ing immune organ weight, enhancing immune responses,
andmodulating cytokines. In cancer, cardiovascular health,
and neuroprotection, melatonin exhibits oncostatic, antiox-
idant, anti-inflammatory, and regulatory properties, show-
casing its versatility in addressing diverse physiological
challenges.
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Moreover, melatonin’s role in regulating circadian
rhythms and treating insomnia further solidifies its clini-
cal potential, extending to conditions such as inflamma-
tory bowel disease and obesity-related damage. Further-
more, exogenous melatonin supplementation may compen-
sate for age-related declines in endogenous melatonin. The
prospects for phytomelatonin as a nutraceutical present
an intriguing avenue, with emerging research highlight-
ing its potential health benefits. Positive correlations be-
tween melatonin-rich foods and clinical-metabolic indica-
tors, coupled with its influence on circadian rhythms, un-
derscore phytomelatonin’s role in promoting overall well-
being.

While exogenous melatonin supplements are read-
ily available and have demonstrated diverse health ben-
efits, phytomelatonin presents a natural alternative with
the potential for added advantages. However, a judicious
and evidence-based approach is imperative in navigating
the complexities surrounding phytomelatonin supplemen-
tation. The lack of comprehensive knowledge on oral mela-
tonin bioavailability in the human diet emphasizes the need
for further clinical trials and systematic studies to elucidate
absorption kinetics, bioavailability, and interactions, ensur-
ing informed incorporation into health interventions and di-
etary supplements.

Recent research on phytomelatonin showcases its di-
verse applications and potential benefits extending beyond
plant systems. These studies emphasize melatonin’s cru-
cial role in regulating physiological processes, propose sus-
tainable methods for obtaining phytomelatonin-rich supple-
ments, and highlight the superior properties of natural ex-
tracts over synthetic alternatives. Exploring the potential
phytotherapeutic role of phytomelatonin in mitigating the
impact of COVID-19, a comprehensive overview analyzes
the economic and quality aspect of phytomelatonin prod-
ucts from various sources.

While caution is advised against overestimating the ef-
fects of melatonin-rich foods on sleep, evidence supports
the positive impact of phytomelatonin-rich diets on animal
health. Furthermore, the nuanced interplay between mela-
tonin and phytomelatonin, rooted in their shared function-
alities as signaling molecules, offers a foundation for scien-
tific inquiry. Melatonin’s diverse and distinct roles, coupled
with the prospects for phytomelatonin, hold promise for ad-
vancing our understanding of natural supplements and ther-
apeutics. As the scientific community continues to unfold
these complexities, a balanced and evidence-based perspec-
tive will be crucial in guiding the integration of melatonin
and phytomelatonin into healthcare practices, aligning with
evolving preferences and expectations for natural and ef-
fective supplementation options.
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