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Abstract: Background: The extensive study of clinical health systems is creating a paradigm 
for the newest computer-based systems that are emerging. Pancreatic cancer, which cannot 
be allowed to be treated efficiently once diagnosed and is frequently unanticipated due to its 
position in the belly below the stomach, is one of the most prevalent tumors that is believed 
to be irreversible. Biological therapies, sometimes referred to as immunotherapies or targeted 
therapies, are used to treat pancreatic cancer in order to control hormone pathways, target cer-
tain cancer cells, or strengthen the immune system. Method: Pancreatic cancer is the fourth 
leading cause of cancer deaths, and there currently is no reliable modality for the early detec-
tion of this disease. Here, identifies cancer-specific promoter DNA methylation of BNC1 and 
ADAMTS1 as a promising biomarker detection strategy meriting investigation in pancreatic 
cancer. Nanoparticles directly target tumor cells, allowing their detection and removal. It also 
can be engineered to carry specific payloads, such as drugs or contrast agents, and enhance 
the efficacy and precision of cancer treatment. This study develops a unique cascaded fully 
convolutional neural network (CFCNN) with Hybrid Krill Herd African Buffalo Optimization 
(HKH-ABO) mechanism for early pancreatic computed tomography (CT) image classifica-
tion of pancreatic cancer. A new Wienmed filter is created for pre-processing the noisy CT 
image content after the system is successfully trained on pancreatic CT pictures. In addition, 
the proposed CFCN with the HKH-ABO pathway distinguishes between pancreatic cancerous 
and non-pancreatic cancerous forms of the disease. Results: The accuracy of the CFCNN for 
the analysis of pancreatic cancer was 98.87%, showing that the various volumes of the 3DIR-
CAD datasets analyzed had a combined accuracy rate of 99% for training and 99% for testing. 
Conclusion: The combination of advanced biomarker identification, BNC1 and ADAMTS1 
methylation, and nanoparticle-based targeting further enhances the precision and efficacy of 
pancreatic cancer diagnosis and treatment. As a result, advancements in medical study are 
steadily going in the direction of the installation of automation machines that determine the 
phases of cancers and, if directly touched, provide better guidance and therapy.

Keywords: cascaded fully convolutional neural network (CFCN); deep learning; hybrid krill 
herd African buffalo optimization (HKH-ABO); pancreatic cancer; Wienmed filter and 3DIR-
CAD datasets

1. Introduction
An examination of patient medical records reveals the fact that one of the most

challenging diseases, cancer, occasionally asserts that it is incurable. Because it can 
be brought on by alterations in the genes which control how sentient bodily cells 
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function, it might be seen as a genetic disease. These epigenetic changes may be 
inherited, brought on by a healthy and balanced diet, or brought on by environmental 
factors including cigarettes, UV radiation, and other chemical pollutants that harm 
DNA. Pancreatic cancer is one of the malignancies with the worst prognosis, and 
unlike other cancers, no progress has been made in recent years. Surgery is the sole 
curative therapy, however, only 15%–20% of patients are suitable, and the risk of 
relapse is considerable. In advanced pancreatic cancer, there are limited first-line 
therapeutic choices and no validated biomarkers to aid in treatment selection. Bio-
markers that could aid in the development of tailored therapies for pancreatic cancer. 
Thus, the purpose of this study is to provide an up-to-date viewpoint on biomarkers 
with therapeutic promise in pancreatic cancer [1]. 

The inhibitors, protooncogenes, and DNA repair genes are three distinct protein 
types that function as cancer catalysts that will be impacted by the genetic manipula-
tion. A medical investigation identified certain malignancies as incurable, including 
breast cancer, lung disease, and hepatocellular carcinoma [2]. Distant metastasis ill-
ness is the term used to describe the cancer’s propagation from its origin or frame of 
reference to other internal functions. Carcinoma is the result of cancer cells dispersing.

Convolutional neural networks (CNNs)-based methods for deep learning have 
shown a lot of promise for analyzing medical images [3]. In order to collect and analyze 
the information from the photos and develop a model that reflects the complex relation-
ship connecting images and diagnoses, neural pathways are built on a stack of neurons 
made up of optimization techniques and parameters. In the imaging identification of a 
number of disorders, including skin cancer [4], macular degeneration, and liver cancers, 
the use of CNN has proven to be highly useful. Regrettably, there has not been a lot of 
research on CNN’s potential value in pancreatic cancer early detection and diagnosis. 
Even the most skilled radiologist may have problems producing an early diagnosis of 
cancer tissues because the majority of them have ill-defined boundaries and irregular 
shapes on CT. The nano-based cancer images are an effective diagnostic approach and 
classified to detect cancer cells. It measures the size, color, and shape of the cancer cell. 
Various types of tumors such as benign (non-cancerous) and malignant (cancerous), or 
tumors from different tissues and organs can be recognized and distinguished from one 
another, along with the position of the tumor, and to calculate tumor growth. These can 
be identified using the labeling tool to detect biomarkers of cancer cells in the human 
body. An early stage can help to reduce cancer cells spreading to other parts of the body 
by applying the nanomaterial block [5].

In this work, we demonstrate how to classify images using a cascaded fully con-
volutional neural network (CFNN) and extract characteristics from images in several 
medical domains. The Convolutional Neural Network model with Hybrid Krill Herd 
African Buffalo Optimization (HKH-ABO) has been created and tested using opera-
tional computed tomography (CT) data. Each image was divided into a separate con-
volutional layer. In order to identify images of pancreatic cancer, a comparable study 
investigates how a variable affects a Convolutional Neural Network’s construction 
procedures. It is difficult to categorize “thicker” images with CFCNN. Although CT 
images are frequently used in diagnostic imaging, unintended abnormalities can still 
be created. The boundary prevents these items from appearing in the pictures. The 
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pancreatic cancer cells in the medical image’s unwanted peaks are removed using the 
thresholding method.

The main contributions of the paper are the following: 
•	 The computer was originally used to work using a collection of CT pancreatic 

images.
•	 Identify cancer-specific promoter DNA methylation of BNC1 and ADAMTS1 

as a promising biomarker detection strategy meriting investigation in pancreatic 
cancer.

•	 To suggest a HKH-ABO with CFCNN to classify pancreatic cancer using deep 
learning techniques employing CT images.

•	 Pre-processing Wienmed filter methods were initially applied to enhance the 
pancreatic pictures’ quality. The CT scans’ training distortion was eliminated in 
the pre-processing layer, and error-refined input images were acquired.

•	 Using the HKH-ABO algorithm and the CFCNN architecture to create high-
level characteristics that can be immediately extracted from data.

•	  In the end, experimental findings have been used to improve accuracy levels in 
terms of precision, recall, specificity, sensitivity, and error rate.
The majority of the essay is detailed as follows: the sections listed below will 

be formatted as follows: Section 2 goes into the literature review for our proposed 
approach and other pertinent information. Section 3 explains the methodology tech-
nique; Sections 4 and 5 describe the investigation’s results and discussions; and Sec-
tion 6 summarizes the conclusion of the study and suggestions for future research.

2. Related works
The difficulty of cancer screening and risk classification has recently given rise 

to considerable interest to deep learning approaches. The majority of PC-related stud-
ies, nevertheless, have focused on the analysis of well-structured file formats, such 
as genomics and graphics data, up to this point. A graph-based technique to learning 
algorithms, for instance, was employed in Al-Fatlawi et al. [6] to infer the architec-
ture of transcription factors systems that have been uniquely related to progressively 
advanced disease of PC. The investigators of refs. [7–9] were able to distinguish 
acute cholecystitis from Pancreatic Cancer (PC) by combining deep-learning-based 
sequencing approaches with biomarker and RNA-based variations obtained from 
endothelial cell samples. Both computerized pancreatic feature segmentation from 
CT scans and techniques for PC segmentation utilizing endosonographic images are 
outlined in the literature [10]. For structured time-series parameters like Electroen-
cephalogram (EEG) measurements, the usefulness of data mining techniques for 
information retrieval tasks has also been shown [11].

Numerous blood biomarker enzymes, including lactate dehydrogenase, γ-glu-
tamyl transferase, and alkaline phosphatase, have been utilized to identify conditions 
like myocardial infarction, liver dysfunction, and prostate cancer. Activity-based 
screening of blood samples revealed changed single-molecule activity patterns of 
CD13 and DPP4 in individuals with early-stage pancreatic cancers. The work demon-
strates the effectiveness of single-molecule enzyme activity screening in identifying 
biomarkers based on protein functional changes [12]. The loss of potentially predic-
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tive data is irreparable as a result of these input data limitations, which typically call 
for substantial human pre-processing. Moreover, the classic “black-box” prediction 
algorithms are problematic due to their lack of interpretability, which lessens their 
utility for medical applications to tackle the inter complexity of EHR data, a number 
of AI-based modeling algorithms based on language modeling have recently been 
developed [13]. For illustration, employing semi-structured data set of smear pho-
tos and a combination of long short-term memory and convolutional networks, the 
authors of [14] construct higher models for ovarian cancer detection using semi-struc-
tured time series of smeared photos. These trickier strategies have not, as far as we 
know, been applied to the PC risk prediction challenge. Due to the richness of knowl-
edge included in unstructured multimodal biological data, the general problem of 
data fusion in this field has recently become a focus of active research; an overview 
of current developments can be obtained in Azad et al. [15].

The challenge of creating mathematical models to describe and explain to unseen 
database containing substantial design differentiations nearly equivalent to the model 
training examples, which might also occur, for instance, because of variations in legis-
lative compliance across different institutions, is among the most important challenges 
in this field. López-Zambrano et al. [16] propose a taxonomy over several levels of 
repeatability and examine the factors that affect errors at each level in a bid to fix these 
issues. The authors of Gutiérrez et al. [17] demonstrate how this strategy improves the 
generalization ability of the framework when it comes to prognostications about how 
students will communicate with educational software by developing an epistemologi-
cal structure for going to weigh how so much numerical simulations rely on high-level 
characteristics with more semantic information. A crucial topic that has been examined 
in Farag et al. [18] in the setting of knowledge fusion is the authenticity of information 
saved under multisensory fusion in the absence of unreliable or erroneous sources.

Several platforms have used a variant of the U-Net architecture to segment the 
pancreas. Fully convolutional network (FCN) and U-Net have been employed by 
other frameworks to build more complex models. Using a training FCN-based fixed-
point model, for instance, determines the general pancreatic region and iteratively 
refines it. Using boundary maps created by trustworthy intraglomerular using random 
forests, pancreas areas are first segregated using holistically multi-layered networks. 
Furthermore, Jain et al. [19] segments the CT pancreas using dense convolution layer, 
which reduces computational burden by using fewer non-zero parameters. Deep neu-
ral networks, in combination with recurrent networks of neurons and long short-term 
memory (LSTM) systems, were utilized as well. A model that really can incorporate 
uncertainty in the recurrent segmentation process was recently suggested using the 
shadowing sets theory. Slices along axial, sagittal, and coronal axes are occasionally 
utilized to incorporate spatial 3D additional context through 2D categorization by 
integrating the output of all 2D networks, for instance, using plurality casting [20].

Recently, further publications have been published on pancreas segmentation 
[21–22]. The difficulty of segmenting the pancreas for medicinal or diagnostic pur-
poses is reflected in the interest in the topic. In this area, researchers have chosen to 
use the hierarchical atlas methodology since the anatomy of the pancreas has under-
gone considerable permanent deformation. Wolz et al. [23] used an architectural 
path that passes through the skull along the splenic and superior peritoneal veins 
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to pinpoint the exact location and composition of the pancreas. They employed 200 
alternative methods, including classification and regression trees, the AdaBoost racist 
and discriminatory learning algorithm, the course classifier, and a fine classification 
algorithm based on the probabilistic spatial model of the pancreas and surrounding 
tissues and vasculature. They were able to get a global temperature distance of 1–2 
mm utilizing a dataset of 40 CT scans and the classifier segmentation approach. Taha 
and Hanbury [24] segmented 12 organs, including the pancreatic, using categori-
zation, identification, and level creation. The analysis of 10 non-contrast CT scans 
revealed an average overlap of 32.5%. A highly autonomous pancreatic segmentation 
algorithm was published by Okada et al. [25] using three-phase contrast enhancement 
CT datasets, which was a significant advancement over their prior work. When com-
pared to standard CT, three-phase contrast-enhanced images offer more segmented 
information. To precisely localize the pancreas, they used a high-profile deformable 
landmarks model with a low-profile probabilistic patients’ health probability atlas.

Combining morphology and image intensity approaches, the final classification 
was created. Twenty three-phase CT cases were evaluated using the Jaccard index; 
the results demonstrated a mean of 57.9%. Chu et al. [26] used a hybrid method 
that combines local volumetric weighted structural segments with atlas loading on 
a hierarchy, regional, and regional level to segment various organs. The study made 
use of 150 CT scans from 114 males and 36 women. They used the cross-validation 
technique of omitting one. The suggested method yielded a 69.6 16.7 Dice coeffi-
cient [27] for pancreatic localization in 150 individuals. By merging the spatial links 
of body organs with probabilistic atlases, Placido et al. [28] carried out multi-organ 
identification. For surface topography, hierarchical information and the shape models 
of nearby organs such as the heart, brain, lungs, pancreas, appendix, and the inferior 
vena cava are used. The pancreatic delineation over 28 cases of especially in com-
parison to CT datasets produced a Dice index of 46.6%. An approach for segmenting 
multiple organs using probability maps of the world with spatially variable param-
eters is presented in Brachi et al. [29]. For the pancreas in particular, they apply a 
position-based weighing algorithm and space division to address the great variability 
in organ form and location in various patients. Their findings on 100 transabdominal 
examples exist Dice indexes for the hepatic, heart, pancreatic, and kidneys of 95.1%, 
91.4%, 69.1%, and 90.1%, respectively.

Nanomedicine has great potential in pancreatic adenocarcinoma, because of the 
ability of nano-formulated drugs to overcome biological barriers and to enhance drug 
accumulation at the target site. Moreover, monitoring of disease progression can be 
achieved by combining drug delivery with imaging probes, resulting in early detec-
tion of metastatic patterns. Brachi et al. [29] describe the latest development of ther-
agnostic formulations designed to concomitantly treat and image pancreatic cancer, 
with a specific focus on their interaction with physical and biological barriers.

3. Methodology
The cornerstone for the automated method of healthcare pictures is the register-

ing and recognition of features in an image using previously established measure-
ments and retraining by a predetermined number of labeled images. To highlight the 
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architectural irregularities and deformations in the area of interest and to precisely 
identify the relationships between each tissue and body organ, an anatomical stan-
dards model is needed Release of Information (ROI). Here, a hierarchy atlas model 
is used to recommend a pancreas CFCNN assignment. At both the global and organ 
levels, the mathematical properties of position, scale, and rotations are evaluated for 
the mapping organs. The global atlas settings are transferred to the ensemble space 
to minimize the probability distance among coordinates. The characteristics from 
each map constituent are compared to the actual polygons received from the planned 
patient CT at the relevant role.

3.1. Biological treatment in pancreatic cancer
The Figure 1 presents advances in understanding pancreatic tumor biology and 

the underlying mechanism of disease aggressiveness are providing clues, which may 
help to potentially improve diagnosis, treatment, and patient outcome. Some of the 
critical biological determinants in the development and progression of pancreatic 
cancer. Central to this pathway is the study of tumor biology, which influences early 
detection, treatment development, and ultimately leads to better clinical results.

3.1.1. Tumor biology as the central focus
Molecular mechanisms of solid cancer are very complex with different mech-

anisms taking place and affecting the tissue at different stages of the disease. The 
classic model of pancreatic cancer development describes morphological as well as 
molecular transformation from precursor lesions into invasive carcinoma. The stan-
dard nomenclature and diagnostic criteria for classification of duct lesions has pri-
marily been based on grades of pancreatic intraepithelial neoplasia (PanIN). 

Figure 1. Block diagram for pancreatic tumor biology.
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The grades 1A, 1B, 2, and 3 represent growing cytological atypia character-
ized by loss of polarity, nuclear crowding, enlarged nuclei, pseudo-stratification, and 
hyperchromatism. Each PanIN stage is characterized by a distinct pattern of molecu-
lar processes that are characterized by genetic irregularities that affect specific genes 
and genetic pathways. These study findings suggest that stratification of patients on 
the basis of the molecular signatures of their tumors could provide a means for pre-
dicting drug sensitivity.

3.1.2. Early detection through biomarkers
Ideally, biomarker analysis occurs prospectively as part of large randomized 

clinical effectiveness trials. Wherever possible, new studies including patients with 
pancreatic cancer should include biomarker testing as part of the translational com-
ponent. The next best alternative is to do an accurately powered retrospective study 
of clinical trial material, but ad hoc research employing samples with insufficient 
clinical data should be avoided. To present, research has concentrated on drug trans-
porters, drug-metabolizing enzymes, and proteins that inhibit or enhance the expres-
sion of drug-metabolizing enzymes as potential predictors of a patient’s response 
to various treatments. As illustrated in Figure 2, the majority of studies and clini-
cal trials have aimed to develop an affordable, non-invasive, or minimally invasive 
biomarker with high sensitivity and specificity for PDAC in order to enhance early 
detection and subsequent treatment. Biomarkers for PDAC can be classified as diag-
nostic, prognostic, and predictive. Will present a contemporary perspective on diag-
nostic indicators for early pancreatic cancer diagnosis.

3.1.3. Effective therapy via personalized approaches
On the right side, the diagram highlights how understanding tumor biology leads 

to effective therapy. This is achieved through several components:

Novel targets: Identifying specific genes or proteins involved in cancer growth pro-
vides targets for new drugs.

Molecular subtypes: Classifying tumors based on molecular characteristics allows 
for more accurate diagnoses and tailored therapies.

Figure 2. Characteristics required for biomarkers of pancreatic cancer.
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Treatment selection: Tumor biology helps determine which treatments are likely to 
be most effective for individual patients.

Drug delivery: Liposomes, nanoparticles, and carbon nanotubes are the most popular 
drug delivery vehicles in the treatment of pancreatic cancer. These carriers can shield 
medications from degradation and successfully deliver them to their intended organs. 
Tumor markers are chemicals produced by cancer cells or normal cells in response to 
malignancy in the body. Healthy adults can have trace quantities of CA 19-9 in their 
blood. High levels of CA 19-9 are frequently indicative of pancreatic cancer.

Both early detection and effective therapy converge on the ultimate goal, i.e., 
improved outcome. This includes higher survival rates, reduced side effects, and bet-
ter quality of life. The diagram thus effectively illustrates how a deep understanding 
of pancreatic tumor biology is essential to overcoming the challenges posed by this 
lethal disease and improving the overall clinical management of patients.

3.2. Proposed nano-based CFCNN with HKH-ABO mechanism
Pancreatic cancer generally affects the pancreatic cells of women and results 

in tumor formation, which worsens women’s health. The 2018 research states that 
pancreatic cancer affects 50% of Indian women and kills 58% of people worldwide. 
Thus, this study created the CFCNN with the HKH-ABO strategy for earlier pancre-
atic cancer prediction. To train and test the system, pancreatic CT scans are initially 
used. These pictures are also before using a special Wienmed filter to remove any 
undesirable noise components. The constructed CFCNN with the HKH-ABO model 
is used to process the pancreatic CT dataset in order to summarize the cancerous cells  
and their types at an earlier stage. In addition, the designed CFCNN with the HKH-
ABO mechanism improves the accuracy of classification. As a result, the new tech-
nique detects and categorises pancreatic cancers at an early stage. Figure 3 illustrates 
the developed strategy’s process steps.

3.3. Nanotechnology
Nanotechnology has enormous benefits in a variety of medical sectors, with 

diverse applications in diagnosis and treatment. Nanotechnologies are now widely 
regarded as having the potential to improve a variety of industries, including med-
ication research, water purification, information and communication technologies, 
and the manufacturing of stronger and lighter materials. Nanotechnologies are the 
processes of creating and manipulating materials at the nanometer scale, either by 
scaling up from single atom groups or refining or reducing bulk materials. Nanopar-
ticle-based technologies focus on enhancing the efficiency, sustainability, and speed 
of existing processes. This is achievable because, in comparison to standard indus-
trial processes, nanoparticle-based technologies employ less material, much of 
which is already in a more “reactive” condition. The use of nanoparticles to deliver 
PSs has been demonstrated to improve PDT efficiency while decreasing off-target 
negative effects.

It may change the size, shape, surface properties, targeting, and composition of 
smart nanoparticles in response to both endogenous and external stimuli produced by 
the cell, as illustrated in Figure 4.
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Figure 3. Proposed nano-based CFCNN with HKH-ABO model for pancreatic cancer.

Figure 4. A schematic illustration of smart nanoparticles for pancreatic tumor treatment.
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3.3.1. Medical applications of nano imaging
Nanotechnology-based medical imaging is being used to track transplanted stem 

cells. Medical imaging of stem cells necessitates the use of contrast chemicals. How-
ever, current contrast agents have issues such as metabolic deterioration within the 
body and photo bleaching when photochemical destruction occurs. Along with clas-
sic fluorescence imaging and CT, nanoparticles have been employed to create another 
type of nanoscale medical imaging. Figure 5 shows three important nanomedicine 
fields that benefit from nanotechnology.

Nanotechnology offers a broad range of applications. However, its medicinal 
uses are likely the most important, as they directly benefit human lives. Nanotechnol-
ogy has some genuinely game-changing applications in medical treatment. Examples 
of how nanoparticles and nanomaterials are used in medicine include the following: 
•	 Nanoparticle applications include the development of nanorobots capable of 

repairing or healing at the cellular level. 
•	  Nano sponges are polymer nanoparticles covered with a red blood cell mem-

brane that remove toxins from the bloodstream. 
•	 Nanoflare, a customized nanoparticle, locates genetic targets in cancer cells. 

They are programmed to generate light when a specific genetic target is detected. 
•	 Nanoparticles, along with radiotherapy, are utilized to control tumors locally.

3.4. Image preprocessing
All sagittal CT scans of an individual’s pancreas or pancreatic cancer were manu-

ally labeled by one of two experienced abdomen radiologists so that the model could be 
trained, validated, and tested using open-source software. Because of the pancreatic bor-
der multiple structures and tissues and also pancreatic cancers sometimes have unclear 
borders with the interstitial, so the intercoder differences between the meaningful degree 
of the pancreas and the tumor may exist. Hence, the radiologist verified that the pancreas 
and tumor in the images that were tagged were in accordance before continuing with the 

Figure 5. Major nanomedicine imaging that makes use of nanotechnology.
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image processing and analysis. Two hundred and fifty Hounsfield units were the win-
dow’s width and level (HU). The spots that were not pancreatic or tumors were deleted 
from further inspection after the images were standardized to the range [0,1] using linear 
interpolation. Using the linear estimation method, the images were then cropped into 
rectangular subdomains with origins in the greatest axis (x–y) plane. Between both the 
limits on the right and left, the windows traveled along the x-axis, then descended a dis-
tance down the y-axis until beginning to move along the x-axis once more in the direc-
tion of the opposing border, finally coming to rest in the bottom-right corner. The move-
ment length was set to twice of the patched dimension to produce overlapped patches, 
which increased the variance and amount of the training data. Patches with only normal 
pancreatic tissue were classified as non-cancerous, while areas with pancreatic cancer 
were labeled as cancerous.

3.5. Graph-cut segmentation 
The initial pancreatic segmentation identifies areas on the organ’s outermost 

layer that have an undetermined structure according to surface elements that were 
paired to the training evaluation in the first stage. Each doubtful site is given a unique 
mark using principal components analysis, and because S has a cut-off of 0.2, any 
intra-patient variability can be taken into the investigation. A quick labeling level was 
employed to “boost” the models have been developed on the curve of the CT images 
after the initial procedure largely segmented the livers. The seeds were consequently 
positioned in the middle of the labeling. Segmentation is improved by using a geo-
metrical outline with flexible geometry. The process continues up to the increase 
or decrease by S 0.2 or up until the increase or decrease between those repetitions. 
The procedure recommends using a graph-cut method to segment the pancreas in 
characterizing modest hepatic tumors. The segmentation of larger and smaller struc-
tures, such as blood arteries and varied cancer patterns, presents a challenge since 
the decreasing bias issue affects graph cuts in their most fundamental form. The 
schematic cuts have improved the segmentation of large intestines, and tumors and 
capillary differ significantly from person to person. On the other hand, cancers are 
typically curved and parabolic. Equations (2) and (3) must be used to calculate the 
tumor vessels and blobs (3).

Evessels = −lnln(2v(p,)),

with v =  (1)

ifλ2 < 0 <λ1 < 4 λ2

Eblobs = – lnσmax  (w),

with λ3 > 0;

w = e–(λ /λ 3-1). (2)
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3.6. Classification of proposed nano-based CFCNN method
The U-Net architecture is used to implement the soft mark likelihood maps P. By 

fusing temporal and geographic information into a 19-layer co-evolutionary commu-
nications infrastructure with the trained U-Net curve in the 3DIRCAD data set and 
merging the results into one network architecture, the U-Net design enables precise 
pixel estimate. Figure 6 shows the volume change in pancreatic cancer over time as 
well as the cancer loading, which is significant for a number of individuals.

 Figure 6. A designed and evaluated cascaded convolutional neural network.

Also, according to Research Dice, the overall effectiveness of automatic segmenta-
tion has increased to 53%. The simultaneous separation of the digestive system and the 
lesion is a skill that the U-Net has perfected. One of our most important contributions 
is the cascade training of CFCNN, which allows CFCNN to learn distinguishing prop-
erties only once during training in order to finish a multiclass classification, improving 
classification efficiency overall. U-Nets and other types of CFCNNs recognized the 
supplied data’s hierarchical system, which led to the development of the approach. The 
layer stacks of the CNN architecture are changed toward to the selected categorization 
in an information manner rather than manually assembling living thing facial appear-
ances for the distinguishing of various tissue kinds. Instead of learning from a broad CT 
abdominal scan filtration, U-Net learns from a filtering that is particular to the identifi-
cation and segmentation of the pancreas by cascading two U-Nets. 

Moreover, the pancreatic ROI helps to remove lesions from the body. The pan-
creatic network in the abdominal region is as follows:
•	 This network’s research only focuses on finding and analyzing distinguishing 

characteristics in pancreatic segmentation.
•	 Then, a next network is trained to segment the lesions in the acquired pancreas 

picture.
•	 After being separated in Step 1, the pancreas is compressed and s new in Step 2 

to produce an input dimension suitable for the cascade U-Net. The second U-Net 
is likely to concentrate on discovering the unique traits of the lesion rather than 
fragmenting the pancreas history.
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Pseudocode for Cascaded Fully Convolutional Neural Network
Initiate the partitioning procedure.
Start with the segmented image’s characteristics.
Let x be a pixel feature.
yk = gm(ym−1) be the neuron layers
While x feature >yk

yk = ReLU (xm⊗ ym−1 + Cm)
then
f(0) = my (0, y)
End

After being separated in Step 1, the pancreas is compressed and s new in Step 2 
to produce an input dimensionality suitable for the cascade U-Net. The second U-Net 
is likely to concentrate on discovering the unique traits of the lesion rather than frag-
menting the pancreas ethicology.

3.6.1. Proposed pancreatic cancer classification using nano-based CFCNN 
with HKH-ABO 

The 3DIRCAD CT dataset is processed using the CFNN with HKH-ABO frame-
work, which could also classify the illness categories to identify the extent of the 
pancreatic cancer. Here, the initial classification accuracy of the CFNN’s classification 
layer is enhanced by the HKH-ABO model. Also, the model known as HKH-ABO 
incorporates the African Buffalo Optimization (ABO) and Krill Herd Optimization 
(KHO) techniques. Moreover, hybridized seeks to improve illness classification preci-
sion. The CFNN model is originally created using a dataset that is a CNN’s system for 
classifying pancreatic cancer that is based on decision trees. For categorization, regres-
sion, and some other applications, it is a collective learning technique. It works by cre-
ating classifications for various trees and creating decision trees throughout the train-
ing phase. Training and testing samples are originally separated from the 3DIRCAD 
dataset. Here, the technique described in Equation (3) uses test samples as follows:

Ds = { (Pm, Qm)} , m = 1,2,…..N� (3)

where, the pancreatic CT form numbers of patients is mentioned as Pm =  
(P1

m, ……………PM
m ) with M features and the pancreatic cancer is mentioned as Qm 

that includes the details about tumor like pancreatic cancerous and non-pancreatic 
cancerous. 

Moreover, CFCNN uses mathematics to organize the data points into functional 
sets. Cluster the data could be tough since not every one of the elements can be exam-
ined for a huge dataset with more characteristics. So, the process can also provide the 
likelihood that the data point will fit into a particular category. 

This network’s-based process, referred as the LSTM, logically controls the cell 
state by excluding or integrating data using gate-like mechanisms. When the infec-
tion worsens, the degree of cancer will eventually shift. The earlier cancer data affects 
the current cancer size. In light of this, it would be better to combine and develop the 
history at earlier time steps in order to estimate the size of the malignancy. In order to 
avoid problems with long-term dependability, the LSTM arrangement also provides 
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 Figure 7. Flow chart of proposed CFCNN with HKH-ABO model.

a gating tool that consists of an input, concealed, and output gate. Consequently, 
Figure 7’s explanation of the developed method’s entire procedure.

Let it to have a sigmoidal input vector as the input pattern, ht−1 is the result of the 
x is the information that was used as the output for the present step in time in equa-
tion, and t is the previous iteration step (4).

	 a1 = b + yhi-1 + xit� (4)

In this, the CFCNN with HKH-ABO algorithm that analyses the diseases is 
given the filtering input images. The sickness characteristics are anticipated using the 
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trained data in Equation (2), and the second element is the output, where the imaging 
feature is denoted by the letter y in Equation (5),

	 ht = Qm(Pm)� (5)

Also, the illness component will be given this data, and at this layer, the HKH-
ABO model creation process will begin before being transferred to the destination 
node. Originally, the krill herd’s efficiency (K*

pm) used to improve the illness catego-
rization reported utilizing Equation (6). 

	 K*
pm = � (6)

where, K*w, K*b show each CT data’s normal and abnormal features, K*f is the pre-
dicted normal features, and K*g is the predicted disease features. Let Cb be the pth 
patient’s categorization parameter. The coefficient is well-defined in that it is more 
effective than other people and that it is a target I that drives the resolving to the opti-
mization algorithm. In Equation (7), the value of Cb is defined,

	 Cb = 2 � (7)

where l is the actual repeat amount, Imax is the maximum number of repetitions, and 
ran is a random variable between 0 and 1 that improves the searching. For each pth 
patient, an individualized illness prognosis is provided in Equation (8),

	 Wf + 1 = 
wf mf� �1

�*
� (8)

where wf stands for the specific case being processed, mf + 1 stands for the features of 
that specific image, and training disease characteristics. As a result, the output layer 
receives the obtained images and produces the categorized output. As a result, Equa-
tion (9) is used to compute the output sequences of Ot (classified photos),

	 Ot = (c* + zht) Wf + 1� (9)

where c stands for cancerous images, h for weight of photos, t for iteration count, and 
z for non-cancerous images. Hence, utilizing a CT dataset, the suggested CFCNN 
with the HKH-ABO model has identified pancreatic cancer. Additionally, the feature 
extraction procedure is applied to the categorized MRI pictures in order to minimize 
dimensional mistakes.

3.7. Feature extraction cascaded structure for pancreatic in Kernal 
density estimator

The ground-truth atlas map is used to construct the cumulative distribution char-
acteristics of the pancreatic and cancer, which display the ROI in the nearby struc-
tures. The cumulative probabilities of the pancreas for the illumination area Kernel 
density estimator (KDE) can be found by
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	 Pp
RF(x,y,z) = � (10)

	 K � (11)

where WP is the smoothed value, K is the Gaussian kernel function, and NP is the 
total number of pancreatic points in the atlas. The coordinates are denoted by x, y, 
and z. I (x, y, z) the strength of the volume in 3D space. A court hearing experiment 
was carried out on a group of 10 participants picked at random in order to achieve the 
best reliability, and the result was WP = 4.09. The sigma operator covers all the NP 
vertices of the pancreas in the atlas. The cancer density probability T is obtained by 
changing P (x, y, z), NP, and WP to T (x, y, z); the number of cancer locations in the 
atlas NT; and the cancer smoothing coefficient WT (x, y, z).

	 PT
RF (x,y,z) = � (12)

	 K � (13)

In additional to OLA map, authentic component sensitivities for the pancreatic 
IP(x, y, z) and cancer IT(x, y, z) are employed ΨoP(Vq) and ΨoT(Vq) for the detection of 
cancer probability map PT

RF (x, y, z) according to Equation (6). When utilized as a 
hybridization in the probabilistic map generation, the pancreatic tissue has a higher 
cancer voxels determination rate since it has a more unique shape and recognized 
architecture than a cancer. Pancreas probability map PP

RF (x, y, z) is made possible 
by a hybrid among these intensities IP(x, y, z) and ΨoP(Vq) according to Equation (5).

The following formula could be used to determine whether a patch contains 
pancreatic voxels:

Pancreas probability = � (14)

and the likelihood that a patch will contain cancer voxels is:

Tumor probability = 	 � (15)

Using the ground-truth vector map, probabilistic intensity-location characteris-
tics of the pancreas and tumor are generated, exposing the ROI inside the surrounding 
structures. From the location of the illumination of the pancreas, the validation num-
ber from the KDE could be determined as
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Algorithm 1: Proposed nano-based pancreatic cancer classification using CFCNN with HKH-ABO 
Input: CT pancreatic images
Output: classification using pancreatic images
Start
{
Int D(p,q) 
dataset training
Training Pm
for all Pm
classification
 input layer
// HKH-ABO is initiated in the hidden layer
Calculate the fitness function
Calculate Pm = Wf+1
Classifying the cancer types
If (Cb<<0) then cancerous
 else
If (Cb<<1) then non-cancerous
 end if
Extract cascaded kernal density estimator features for classification
 end for
Enhanced classification accuracy
 Output best solution
}
stop

To sum up, the suggested CFNNN with HKH-ABO technique successfully dis-
tinguishes between pancreatic cancerous and non-pancreatic cancerous types. Also, 
it improved categorization accuracy versus earlier models. The assessment ratio is 25 
samples, whereas the training ratio is 600 CT images. If during the operation there are 
concerns with dataset unbalance, they have been corrected by moving the HKH-ABO 
parameter between the two levels.

3.8. Performance evaluation criteria
The suggested network’s performance is evaluated using four widely used clas-

sification metrics: F1-score, accuracy, recall, and precision. These evaluation metrics 
can be computed using Equations (10–13) as follows:

Accuracy = (16)

Precision = (17)

F −score (%) =  2� �
�

recall presicion
recall presicion

(18)

Recall = TP
TP FN+

(19)
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4. Results
The values obtained are established, and Python is used to create the proposed 

nano-based CFCNN using the HKH-ABO approach. The study that is being dis-
cussed aims to classify the pancreatic cancer prototype using an enhanced deep 
learning method. The suggested technique for recognizing pancreatic cancer includes 
several helpful elements, including image pre-processing, afflicted portion splitting, 
characteristic abstractions, and classifications. 

4.1. Datasets
The dataset of CT pancreatic images is assembled, and the acquired pictures are 

highly processed using a unique Wien med filter to remove noise from the CT image. 
In order to increase classification performance with a minimal false high detection 
rate using the CFCNN with HKH-ABO method, cancer types are classified as either 
malignant or non-cancerous. Substantiated measures include accurate, recalls, pre-
cise, sensitivities, specific, and failure rate. In terms of what happened, the experi-
mental findings were superior to the traditional model. The main factor behind this 
enhancement is the proposal’s dual hybridized design, which combines deep learn-
ing and optimizations. So, that aids in producing the best result conceivable. During 
hybridization, the other computer will fix any defects in the design.

4.2. Performance analysis
The Dice index a metric of how closely the extracted shape resembles the 

atlas is used to assess the outcomes of CFCN extraction. Figure 8 displays the 
outcomes of probability map generators for the extraction of the pancreatic and 
tumor shapes from a single sample slice of a CT image. The representative out-
comes of the graph cut method for segmenting the pancreas. The multiplex 
CFCNN-HKH-ABO model, which includes a CT scan in each of the three planes 
(coronal, sagittal, and horizontal), does not directly employ the original clinical  
data images.

Figure 8. CT scans in the coronal plane (A), dagget (B), and without the pancreatic 
(C), aortic (D), microvascular (E), and disrupted phase CT images.
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By calculating the derivatives of the right class scores with reference to the 
picture pixels and emphasizing the regions that the neural network considers most 
important, a saliency map increases the accuracy of the designer’s diagnoses. It 
can help radiologists grasp the desktop decision by serving as a graphical anal-
ysis tool, which raises the model’s confidence. Figure 9 shows a comparison of 
salience maps.

Figure 10 shows the biomarker results in pancreatic tumor classification. Bio-
marker-based pancreatic cancer screening could significantly improve survival rates 
in appropriately targeted high-risk patients. Prior to analysis, samples from each 
group were randomly assigned to training and blinded validation sets. To discover 
discriminatory biomarker panels in the training set, we employed a CFCNN with the 
HKH-ABO algorithm. The identified panels were tested in a validation set as well as 
in colon cancer patients. 

In this paper, introduced the effectiveness of the proposed nano-based CFCNN 
with HKH-ABO technique can classify the important indicators in this section. The 

Figure 10. Biomarker results in pancreatic tumor classification.

Figure 9. Comparison of salience maps for (A, B, and C) are cancer patients and  
(D, E, and F) are non-cancerous patients.
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suggested model was evaluated using some commonly employed performance met-
rics: Confusion matrix, Roc, and AUC curve as some evaluation parameter, such as 
accuracy, precision, recall, error rate, specificity, and sensitivity. Finally compared 
some existing method with proposed method to perform better accuracy. 

5. Discussion

5.1. A potential DNA methylation biomarker for early identification of 
pancreatic cancer

The aberrant methylation status of BNC1 and ADAMTS1 was determined by 
quantitative MSP analyses, as shown in Figure 11A and linked with gene expression 
patterns using qPCR (Figure 11B). In these cell lines, both genes demonstrated a 
lack of endogenous gene expression followed by considerable re-expression after 
DAC treatment. Treatment with TSA, a histone deacetylase inhibitor, resulted in 
limited re-expression except for BNC1 in PL45, which may be regulated by pro-
moter DNA methylation and histone modifications, as shown in Figure 2B. Bisulfite 
sequencing verified CpG island methylation in the BNC1 and ADAMTS1 promoters 
in pancreatic cancer cell lines, primary pancreatic cancer tissues, normal pancre-
atic tissue, and the DNMT1(/) DNMT3B (/) double knockout (DKO) as a nega-
tive control. These findings demonstrated that BNC1 and ADAMTS1 were densely 
methylated in the pancreatic cancer cell line and primary pancreatic cancer, but 
normal pancreas tissues and DKO had minimal or no methylation. These findings 
are consistent with both the conventional and quantitative MSP analyses, as shown 
in Figure 11C and D.

Figure 11. Silencing of BNC1and ADAMTS1 genes biomarker in pancreatic cancer 
cell lines.
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Figure 13. Clinical dataset for pancreatic cancer.

Figure 12. Confusion matrix.

5.2. Confusion matrix
The confusion matrix is used to demonstrate how well the presented technique 

performed across both datasets. The confusion matrix provides additional evidence 
of the proposed method’s classification results in regards to the actual and projected 
class. Figure 12 shows the discriminant function that was discovered throughout the 
simulation phase.

Patterson’s link results demonstrate how feature attributes influence objective 
attributes. In Figure 13 despite the main attributes associated with patient attributes, 
no single statistic has a significant impact on stroke, according to covariance matrices. 
Age, gender, overall survival, disease free survival, pancreatic stage 1, stage 2, stage 3, 
stage 4, pmax diameter (cm), and differentiation all have an impact on pancreatic cancer.
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5.3. Samples for training, validating, and evaluating
The training/validation (n = 50, evaluated by an imaging professional [VA]) and 

testing (n = 10) subsets of the CT 3DIRCAD dataset were created. The algorithms 
were trained and validated using 600 validation samples. The validation dataset was 
then subjected to the trained and verified algorithms.

In its final output, the proposed method employs 600 samples. Figure 14 depicts 
the accuracy as a function of epoch count in both validation and training, while 
Figure 15 depicts the corresponding loss.

The related values are shown in Table 1. After feature extraction, valid photos 
were randomized split into three groups with a ratio of 6:2:2 for learning, verifying, 
and evaluating each thread, respectively. Training was halted while neither efficiency 
nor loss continued to improve.

It evaluated the approaches used by ResNet-32, OLA, OLA + PL-MRCNN, and 
Cascaded Fully Connected Neural Network (CFCNN). OLA, OLA + PL-MRCNN, 

Figure 14. Accuracy versus samples.

Figure 15. Loss versus samples.



2323

Journal of Biological Regulators and Homeostatic Agents 2025, 39(3), 3854.

Models Samples Training 
accuracy 

Validation 
accuracy (%)

Testing 
accuracy (%)

Training 
loss

OLA 200 87.8 88.12 91.12 5.1
OLA + PL- OLA + PL- 
MRCNN

20 89.45 87.12 94.87 2.01

ResNet-32 300 90.02 88.17 85.36 1.25
Proposed nano-based 
CFCNN with HKH-ABO

600 97.14 84.16 96.99 0.03

Table 1. Performance of the trained and test dataset.

ResNet-32, and completely cascaded all contrast the graph-cut approach and wavelet 
filtering. The mixture of OLA and PL-MRCNN is referred to as OLA + PL-MRCNN. 
After using OLA, OLA + PL MRCNN, ResNet-32, and the fully cascaded technique, 
the pancreas shape extraction DSCs increased from 97%, 88.17%, and 96.99% MLoU 
to 90.02%, 84.16%, and 97.14%, correspondingly.

5.4. ROC and AUC curves
Figure 16 depicts the ROC curves used to contrast the suggested CFCNN with the 

HKH-ABO hybrid approach. There are several curves that may be produced by dis-
playing the graph on the y-axis and the false-positive rate on the x-axis. By changing 
the cut-off value, these curves investigate the model’s score in the interim. When the 
area under the curve (or ROC) is big, it clearly illustrates that performance improves. 
It is important to remember that the AUC may exceed 0.98 for all categories.

The proposed nano-based CFCNN with HKH-ABO outperformed deep learning 
hybrid optimization techniques. The accuracy rate, precise, specificity, sensitivity, 
recollect, and failure rate of the proposed nano-based CFCNN with HKH-ABO are 
evaluated to those of four current models in Table 2. Using established methods like 
Firefly modified chicken-based Chicken Swarm Optimization with Convolutional 
RNN (FC-CSO-CRNN), Optimized Artificial Neural Network (OANN), and MVO-
GBDT, the effectiveness of the proposed strategy is confirmed.

In Figure 17, the error rate of the developed CFCNN with the HKH-ABO low 
error rate 0.12% approach is validated against existing approaches. The prevalent 
methods, such as FC-CSO-CRNN, OANN, and MVO-GBDT approaches, have high 
error rates of 1.6%, 1.1%, and 0.91%, respectively.

Figure 16. ROC under AUC curve.
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Methods Average 
accurate

Precision Specificity Sensitivity Recollect Failure 
rate

RNN (FC-CSO- CRNN) 95.52 92.01 91.22 95.85 75 1.6
Optimized Artificial 
Neural Network (OANN)

96.22 93.12 94.12 93.21 82 1.1

MVO-GBDT 97.14 95.12 95.35 94.17 83 0.91
Proposed nano-based 
CFCNN with HKH-ABO

98.87 96.27 98.22 95.78 96.11 0.12

Table 2. Classification of proposed nano-based CFCNN with HKH-ABO technique.

Figure 17. Accuracy.

In Figure 18, the failure rate of the proposed nano-based CFCNN with the HKH-
ABO low error rate 0.12% approach is validated against existing approaches. The 
prevalent methods, such as FC-CSO-CRNN, OANN, and MVO-GBDT approaches, 
have high failure rates of 1.6%, 1.1%, and 0.91%, respectively.

Figure 19 shows a comparison of the precision, specificity, and sensitivity. 
Table 3 compares the best outcomes obtained utilizing the advised hybrid approach 

Figure 18. Failure rate.
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to those of other researchers that have previously publicized their work in order to 
emphasize the distinctions between hybrid and other improvements. This served as 
the basis for the proposed HKH-ABO framework. According to the results, the pro-
posed system surpasses the current ones with a represent the greatest of 98.22%. 
Lastly, the suggested approach determined the presented in tabular form based on the 
quantity of trained photos evaluated using existing techniques. The existing meth-
ods achieved able to make decisions based of nearly 95.85% for FC-CSO-CRNN, 
93.21% for OANN, and 94.17% for MVO-GBDT. In terms of sensitivity, the findings 
indicate that the suggested scheme outperforms the existing ones (95.78%).

5.5. Comparison with existing techniques
The suggested CFCNN with HKH-ABO methodology accomplished a 0.12% 

error rate in characterizing pancreatic cancer. The consolidated HKH and ABO mod-
els perform poorly in categorizing pancreatic cancer. These methods’ hybrid forms 
are highly efficient. Moreover, in the interest of maximizing effectiveness, these opti-
mization algorithms are carried out in an identical environment. To highlight the dif-
ferences between hybrid and other enhancements, Table 3 compares the best results 
produced using the recommended hybrid technique to those of other researchers who 
have already published their work. The suggested HKH-ABO model was inspired 
by this.

As a result, as shown in Table 3, the designed CFCNN with HKH-ABO model 
classified pancreatic cancer at an early stage with good accuracy, sensitivity, preci-

Figure 19. Comparative of sensitivity, specificity, and precision.

Table 3. Comparison with existing techniques.
Author Methods Accurate 

(%)
Precision 
(%)

Recollect 
(%)

Specificity 
(%)

Sensitivity 
(%)

Failure 
Rate (%)

Zhenget al. (2020) DLA-EABA 96.2 92.1 93.92 92.8 98.3 1.8
Zhang et al. (2021) CNN 78 86 77 80 86 10
Piantadosi et al. (2022) Deep CNN 97.11 94.16 92.34 93.49 92.80 0.74
Proposed work CFCNN with HKH-ABO 98.87 96.27 98.22 95.78 96.11 0.12
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sion, recall, specificity, and a lower error rate. When compared to all existing models, 
the proposed model outperformed them in all specifications.

6. Conclusion
BNC1 and ADAMTS1 is a potential biomarker to detect early-stage pancreatic 

cancers. Assaying the promoter methylation status of these genes in circulating DNA 
from serum is a promising strategy for early detection of pancreatic cancer and has 
the potential to improve mortality from this disease. This research showed that using 
CFNN in combination with HKH-ACO on hepatic portal CT images can accurately 
differentiate pancreatic cancer. The CFNN model may be used as a computer-aided 
diagnostics tool to help doctors and medical students make a pancreatic cancer diag-
nosis. The obtained collection of CT images is initially used to develop the system. 
The faults related to conditioning and strength training were then eliminated using 
the pre-process tool. In order to complete the characteristic extraction and classifica-
tion features, the pre-processed data were then put into the classification algorithm. 
According to the outcomes of the suggested model, pancreatic cancer can be divided 
into subgroups that are both pancreatic cancerous and non-pancreatic cancerous. Also, 
the suggested scheme’s performance was contrasted with that of other current schemes 
in terms of a number of criteria, including accuracy, recall, sensitivity, precision, and 
error rate. As a result, the model’s usefulness was demonstrated by the possible new 
framework 98.87% greater accuracy and 0.12% reduced failure rate. The nano-based 
cancer images are an effective diagnostic approach and classified to detect cancer cells. 
It measures the size, color, and shape of the cancer cell. Different kinds of tumors can 
be identified, along with the position of the tumor and to calculate tumor growth.
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