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Abstract: Background: Breast cancer is one of the world’s most serious health issues, and 
early and correct detection is vital for increasing survival rates. Biological therapies, sometimes 
referred to as immunotherapies or targeted therapies, are used to treat breast cancer in order to 
control hormone pathways, target certain cancer cells, or strengthen the immune system. These 
therapies seek to reduce injury to healthy cells when compared to standard treatments such as 
chemotherapy, potentially leading to fewer side effects. Methods: This research described a 
novel deep learning-based Content-Based Medical Image Retrieval (CBMIR) method for 
detecting breast cancer using histological images. It begins with biological regulator BC 
images, which are input histopathological images of breast tissue. The major input is the 
BreakHis dataset, with bilateral filtering used as a preprocessing step to decrease noise while 
retaining important tissue properties. Feature extraction uses the Gray-Level Co-occurrence 
Matrix (GLCM) and Histogram of Oriented Gradients (HOG), which allow for the effective 
capture of both textural and spatial information. The Improved Chimp Optimization Algorithm 
(IChOA) and a cascaded Convolutional Neural Network-Long Short-Term Memory (CNN-
LSTM) architecture are then coupled to create a hybrid classification model that enhances 
learning efficiency while also predicting temporal correlations in picture input. To overcome 
this issue, the proposed IChOA-CNN-LSTM framework employs CNNs for precise image 
feature extraction, LSTM networks for sequential data analysis, and an IChOA for effective 
feature fusion. Results: The suggested CBMIR system performed well in both picture 
classification and retrieval tasks. The system attained an amazing classification accuracy of 
97.5%, demonstrating its ability to considerably minimize diagnostic mistakes and processing 
time in histopathology image analysis. Conclusion: The method connects with tailored 
biological therapy options, including HER2-targeted antibodies and small-molecule inhibitors, 
by allowing for more reliable early detection of key tumor features. Integrating CBMIR into 
diagnostic procedures could thus serve as an effective tool for identifying and optimizing 
tailored therapeutic interventions, thereby boosting precision oncology and patient outcomes. 

Keywords: deep learning; medical image analysis; IChOA-CNN-LSTM; CBMIR; breast 
cancer diagnosis; HOG and GLCM 

1. Introduction 

Biological therapy, also known as targeted therapy in some cases, refers to 
medicines that directly engage with biological processes to battle cancer, such as 
modulating the immune response or targeting specific cancer cell markers. The Figure 
1 depicts the biological regulation of immune cells during breast cancer progression 
and identifies mechanisms that contribute to breast cancer regression. Breast cancer 
cells release phosphatidylinositol phosphate (PIP), which signals immunological 
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responses. These cells interact with a variety of immune system components. 
Macrophages, particularly the M1 and M4 phenotypes, respond to tumor-derived 
signals by activating the MAPK and STAT pathways and decreasing SOCS1 and 
SOCS3 levels, which are generally negative regulators of cytokine signaling. This 
activation stimulates phagocytosis of breast cancer cells, which aids in tumor 
regression. 

 
Figure 1. Biological regulation of immune cells during breast cancer progession. 

Simultaneously, cancer cells regulate dendritic cells (DCs), however a question 
mark indicates some ambiguity or unknowns in their complete maturation process. 
Mature DCs generate IL-12, which activates CD4⁺ Th1 cells. These Th1 cells release 
IFN-γ, a powerful cytokine that boosts macrophage activation and tumoricidal activity. 
This feedback loop contributes to the immune-mediated regression of breast cancer. 
Overall, the figure shows the complicated yet coordinated role of innate and adaptive 
immune components in limiting tumor growth. 

The medical field depends on medical imaging because it provides doctors with 
vital information about internal organs and tissues for clinical analysis and treatment 
choices that aid in the diagnosis and treatment of a variety of diseases [1]. Medical 
image analysis has examines current findings on the immunometabolic regulation of 
host-fungal interactions and infection outcomes, as well as how metabolic repurposing 
of immune cell activity might be used in novel and tailored therapeutic approaches [2].  

Breast cancer (BC) is the leading cause death worldwide and the most frequently 
diagnosed malignancy in women. Invasive BC will affect 1 in 8 American women 
(about 13%) at some point in their lives. Early identification of this deadly illness 
lowers treatment costs while significantly improving survival rates [3]. On a global 
scale, cancer is becoming as the most harmful disease. Every year, the mortality rate 
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rises quickly, leading to advancements in the several diagnostic tools used to treat this 
sickness [4].  

As living standards rise and economic situations improve, people’s focus on their 
health is likewise steadily growing [5]. The performance of generic image 
classification methods is shown to suffer when the number of layers created by 
convolution is increased, as evidenced by the model’s loss and validation accuracy [6]. 
Image categorization is becoming a more important subject of research for academics 
in the realm of medical imaging [7]. If breast cancer is detected and diagnosed early 
in its progression, women may be able to undergo the appropriate treatment [8].  

Considering the complicated nature of breast tissues, accurately detecting and 
classifying breast cancer is a crucial job in medical imaging [9]. Biopsies are among 
the most popular methods for detecting breast cancer in women. The pathologist 
removes tissue and examines it under a microscope to check for anomalies [10].  

The proposed method’s main contribution is as follows: 
 It begins with biological regulator BC images, which are input histopathological 

images of breast tissue.  
 Using bilateral filtering as a noise reduction method improves image quality 

without obscuring crucial histology information by successfully maintaining 
tissue shapes and edges. 

 To extract rich spatial and texture information from breast tissue samples, a new 
combination of GLCM and HOG is employed. 

 A potent hybrid deep learning model is presented, which combines the Improved 
Chimp Optimization Algorithm (IChOA) for hyperparameter tweaking and 
optimization with Cascaded CNN-LSTM for learning spatial-temporal features. 

 The suggested methodology outperforms many current methods with an 
astounding 97.5% classification accuracy. 
The sections listed below will be formatted as follows: Section 2 goes into the 

literature review for our proposed approach and other pertinent information. Section 3 
explains the proposed technique; Section 4 describes the investigation’s methodology 
and data analysis; and Section 5 summarizes the results of the study and suggestions 
for further research. 

2. Related works 

Hu et al. [11] have proposed a new method for evaluating breast cancer in 
medicine that makes use of CNN and IQA algorithms. Wang et al. [12] have suggested, 
aAlexNet system, Vignette, GoogleNet, and other popular CNNs and its derivatives 
are susceptible to over fitting because of overconfidence in softmax-cross-entropy loss 
and small-scale breast pathology imaging datasets. 

Jung et al. [13] have recommended, a Deep learning-based algorithms may 
discern between “normal” and “benign,” non-cancerous situations that do not require 
immediate treatment, and “malignant” cases, which result in a cancer diagnosis and 
treatment plan. Yusof et al. [14] have described a detailed review of the literature on 
deep learning-based algorithms for detecting breast tumors that can aid researchers 
and practitioners in understanding the issues and latest advancements in the field. 
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Mehta et al. [15] have proposed, the complexity of TAMs has lately gained 
attention in this context because of their diverse subsets and highly controlled 
molecular and metabolic characteristics. In this review, identify significant gaps in of 
the functional and phenotypic characteristics of TAM subgroups linked with breast 
cancer, both before and after treatment. Izadkhah et al. [16] have reported, a new deep 
neural network model for breast cancer diagnosis based on medical imaging. Nguyen 
et al. [17] have proposed, a pre-trained DCNN with a large number of images from the 
ImageNet dataset, two effective deep transference learning-based models enhance 
contemporary systems in single and multiclass classification. Das et al. [18] have 
reported, a precise cancer identification and therapy planning to preserve precious 
lives, mammogram-based automatic breast cancer detection is essential. 

Sharma et al. [19] have proposed, a use data science and its methods to predict 
different diseases in their early stages. Saha et al. [20] have recommended, an enhance 
the prognostic diagnosis of breast cancer using deep learning-based models for 
prediction in a multilayered ensemble architecture. 

Krishnan et al. [21] have proposed, a new deep learning method for identifying 
and classifying breast cancer uses a random forest classifier in conjunction with deep 
layered neural networks. Neelakandan et al. [22] have proposed, A novel methodology 
for diagnosing breast cancer using digital mammography is termed OMLTS-DLCN. 
Kumar et al. [23] have suggested, a new data transfer system that correctly determines 
whether a breast ultrasound is normal, cancerous, or benign. Jiang et al. [24] have 
recommended, a looked into how well a deep learning-based CAD classified various 
kinds of breast lesions. 

3. Proposed system 

Figure 2 illustrates a flowchart of a BC diagnostic system using image analysis 
and deep learning techniques. It begins with biological regulator BC images, which 
are input histopathological images of breast tissue. A DL-based technique that 
effectively classifies and retrieves BreakHis pictures of the histopathology of breast 
cancer. Important textural and spatial features are recovered using HOG and GLCM 
algorithms after the images are initially cleaned using bilateral filtering on the 
BreakHis dataset. A CNN-LSTM network and the Improved Chimp Optimization 
Algorithm (IChOA) are combined in a potent hybrid model for classification in order 
to increase learning accuracy and identify intricate patterns. 

 
Figure 2. The proposed framework. 
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For each magnification factor, specific information on the spatial distribution of 
images in the both malignant and benign categories is provided in Table 1. 

Table 1. Depending on the magnification factor, images are classified as benign or 
malignant. 

Class 
Factors For Magnification Number of 

Patients 40X 100X 200X 400X 

Benign 626 645 624 589 25 

Malignant 1371 1438 1391 1233 59 

Total 1997 2083 2015 1822 84 

3.1. Medical imaging modalities 
The review demonstrates that the BrC categorization comprises of five main 

kinds of medical imaging technologies and their (multimodality) combinations. 
Imaging modalities can be classified into two types: colorful and grayscale images. 
The majority of the study has been done utilizing mammography (MGs), which are 
colored images from breast HP biopsies or grayscale images from breast X-rays. The 
abundance of images may be the fundamental reason for the large number of 
organizations that employ MGs. This imaging technique has been utilized for over two 
decades. The majority of MG-based research sought to assess or classify breast density 
into two (binary) categories. In these investigations, researchers frequently divided 
BrC into one of two main cancer types (benign or malignant), as well as subgroups of 
both benign and malignant BrC. Additionally, multimodality was only used in a few 
research to categorize BrC. For instance, each combination, like Mg with US or US 
with CT images, has a single publication. However, none of them used CT or PET. 
However, BrC classification has previously been done for decades using CT and PET, 
and these methods are still crucial. In cases where there is evidence that breast cancer 
has spread or returned outside the breast, imaging methods such as CT and PET may 
be employed. 
3.1.1. Mammogram 

Low-dose breast X-ray images, or MGs, allow radiologists to look for anomalies 
in the breast tissues. MGs are commonly advised in the initial phases of MG screening 
and have been studied over the last 20 years (Figure 3A). Figure 3B exhibits small 
white dots or specks. But now that imaging technology has advanced, MGs can be 
divided into three categories: digital breast tomosynthesis (DBT), full field digital 
mammograms (FFDM), and screen film mammography (SFM). 
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Figure 3. (A) Mammography screening: masses with different densities in different 
regions, indicating the presence of soft tissue and fat components; (B) Mammogram 
image view on the left, clustered microcalcifications in enlarged view on the right. 

3.1.2. Magnetic resonance imaging 
MRI is a diagnostic technology that uses magnetic fields and radio waves to 

provide detailed images of the body’s soft tissue, such as the breast seen in Figure 4, 
the liver or lung, and bones. Breast MRI scans provide more detailed pictures of the 
connecting breast tissue than CT, MG, or US imaging. 

 
Figure 4. Samples of breast MRI images. 

3.1.3. Magnetic resonance imaging 
Glass microscope slides are used to hold tissue samples taken from an unhealthy 

breast area for HP biopsy imaging. Pathologists examine these slides under a 
microscope after staining them with haematoxylin eosin (HE) to diagnose malignant 
tissues. Additionally, as seen in Figure 5, the slides that are stained are scanned and 
converted into WSIs, which are digitally colored images. Using various zooming 
factors, trained pathologists typically extract ROI patches from WSI to diagnosis 
aggressive BrC or a range of non-invasive tumors (benign). 
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Figure 5. Histopathology image. 

Grayscale images demonstrated in Figure 6. Aside from BrC diagnosis, biopsy 
imaging is regarded as the gold standard for a range of malignancies, particularly liver, 
lung, and bladder cancer, due to the tissue-level image analysis. Consequently, 
numerous investigations have employed HP images to precisely categorize BrC multi-
class. 

 
Figure 6. Histopathology imaging patches indicate eight subtypes of breast cancer. 

3.1.4. Regulation of membrane biochemistry and tumor cell membrane integrity 
Several studies have demonstrated that TFDP1 can stop cancer cells from 

spreading and becoming invasive by inhibiting a few ion channel activity at the cell 
membrane. The cell membrane contains around 300 different ion channels, including 
ligand-gated, lipid-gated, and voltage-gated channels. As a result, research has 
demonstrated that, of all these ion channels, the voltage-gated sodium (Nav) channel 
is critical to cancer growth. Ions can travel through the semipermeable cell barrier 
because it is permeable [25]. The Nav channel, a transmembrane protein, permits 
sodium ion transit through the membrane, which is initiated by an electric current 
created in the cell barrier. This channel can be opened and closed using a voltage 
mechanism in the membrane. 
3.1.5. Impact of biological regulation stress on BC 

In recent years, it has become increasingly obvious that different types of cancer 
cells have larger quantities of reactive oxygen species (ROS) than healthy cells. 
Investigations have found elevated amounts of oxidative stress metabolites in BC, 
including oxidized bases of DNA (8OHdG), the most investigated molecule due to its 
carcinogenic propensity and great immunological sensitivity. A small increase in ROS 
can enhance cell growth and development, whereas too much ROS can cause oxidative 



Journal of Biological Regulators and Homeostatic Agents 2025, 39(3), 3808.  

8 

damage. An imbalance in the redox balance, which can result in either increased ROS 
production or decreased ROS scavenging, has been associated to aberrant cancer cell 
development. Indeed, it has been demonstrated that breast cancer cells have much 
fewer ROS-scavenging enzymes, such as peroxiredoxin, glutathione peroxidase, and 
superoxide dismutase. The oxidation of arachidonic acid (AA) is substituted by six 
stereochemical hydroperoxide substitution molecules at C5, C8, C9, C11, C12, and 
C15, which are all classified as hydroperoxy eicosatetraenoic acids [25]. These 
hydroperoxides are cyclized to form endoperoxides with ring members that are 
specific to Ftype prostaglandins (PGs), which are subsequently known as F2-
isoprostanes. Isoprostanes are now the most important molecules for measuring 
oxidative stress-related pathology. According to two studies on the liver toxicity of 
doxorubicin in humans and carbon tetrachloride (CCl4) in rats, the concentrations of 
F2-isoprostanes rise during oxidative breakdown to lipids and can be used as an 
oxidative stress marker. 

3.2. Image preprocessing 
The inter-region edge can be preserved while intra-regional noise can be 

eliminated via bilateral filtering. Using a weighted average, which is based on the 
radiometric distance between the middle sample and the neighboring samples, the 
local neighborhood samples are filtered. Both Equations (1) and (2) A description of 
bilateral filtering is as follows: 

ℎ(푥) = 휆��(푥) ∫ ∫ 퐼(휉)푤�,
∞

�∞
∞

�∞ (휉 − 푥)푤�,�퐼(휉) − 퐼(푥)�푑휉  (1)

휆(푥) = ∫ ∫ 푤�,
∞

�∞
∞

�∞ (휉 − 푥)푤�,�퐼(휉) − 퐼(푥)�푑휉  (2)

퐼(푥) denotes the input image, while ℎ(푥) is the output image. For geometric 
closeness 푤��, the neighborhood core 푥 and a nearby point 휉 are measured, and for 
photometric similarity 푤��, each pixel at the group center 푥 and a nearby point 휉 is 
measured. While the comparable function  푤��  operates inside the bounds of the 
image function 퐼 , the closeness function 푤��  operates within the domain of 퐼 . To 
enhance images while keeping edges, nearby image values are combined in a nonlinear 
way. Gaussian range functions are edge-stopping. Breast image filtering entails raising 
the spatial Stochastic width at each scale while decreasing the range Gaussian width. 

3.3. Feature extraction using HOG and GLCM 
The computer vision community uses HOG characteristics to locate and detect 

things. It is based on the idea that a mass or form can be identified by its relative 
quantity histogram, which indicates edge directions or local intensity gradients. Cells 
are non-overlapping uniform panes that make up each mammography ROI. The 
differentials are computed for each cell in the appropriate orientation. As stated in 
Equations (3) and (4), these are referred to as the gradients and in and directions, 
respectively. The gradient associated with differentials is built from a collection of 
cells. 

퐺� = ��(�,�)
��

= �(���,�)��(���,�)
(���)�(���)

  (3)
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퐺� = ��(�,�)
��

= �(�,���)��(�,���)
(���)�(���)

  (4)

Using Equations (5) and (6), the second step entails determining the gradient’s 
magnitude and orientation for every pixel in the image. The orientation displays the 
uniformly distributed angle between 0 and 360 degrees (unsigned) or between −180 
and 180 degrees (signed) for the gradients. 

|퐺| = �퐺�
� − 퐺�

�  (5)

휃(푥, 푦) = 푡푎푛��(��
�

��
�)  (6)

Numerous features of an image’s texture can be used to pinpoint a ROI. The 
Mahotas Python library and the gray level co-occurrence matrix structures (GLCM) 
are used in this study to extract 14 Haralick texture properties. One method for 
computing the texture information is GLCM, which records the spatial relationships 
between the pixels. We have extracted 56 features using this feature extraction 
technique [26]. The co-occurrence matrix is also computed by the GLCM feature 
extraction method and Haralick’s method. Following calculation, the GLCM 
technique only extracts four features, whereas Haralick extracts 56. The amount of 
gray level of the image, or the size of the matrices, is three. By counting the pixel 
pairings for the chosen direction, the co-occurrence matrices for each direction are 
determined. Once the counting process is complete, the amounts are in their correct 
locations. 

3.4. Proposed hybrid IChOA-CNN-LSTM modelfor CBMIR 
The proposed hybrid CBMIR model has three components: IChOA, CNN, and 

LSTM, each of which performs a unique and complementary function in improving 
classification performance. The IChOA is largely responsible for feature selection, 
which involves improving the most significant and discriminative features retrieved 
from histology images using GLCM and HOG methods. By efficiently lowering 
dimensionality and enhancing input feature quality, IChOA ensures that the model 
concentrates on the most informative patterns for breast cancer diagnosis. By learning 
low-to-high-level features including edges, textures, and complex tissue morphology 
all of which are essential for precise classification the CNN component is excellent at 
capturing spatial hierarchies and visual structures inside the images. In the meantime, 
the LSTM module has temporal modeling capabilities that aid in learning 
dependencies or variances across image patches when applied to histological image 
slices or sequences. This combination improves diagnostic accuracy and classification 
results by allowing the model to understand contextual and sequential linkages in the 
data in addition to efficiently extracting and optimizing features. 

The proposed IChOA-CNN-LSTM model produces promising results in terms of 
classification accuracy and retrieval efficiency, the current study has certain 
drawbacks that should be discussed. First, because the BreakHis dataset is 
homogeneous in terms of patient demographics and image acquisition settings, the 
model’s performance has only been verified on this dataset, which may restrict its 
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generalizability. In the absence of external validation on separate datasets, the model’s 
practicality is yet unknown. Secondly, there is little empirical evidence to demonstrate 
how the model’s outputs impact therapeutic decisions, especially with regard to 
targeted biological therapies, and the study is not integrated with real clinical processes. 
Furthermore, the study’s histopathological pictures are static, and the model does not 
take into account changing clinical variables like as patient history or genomic data, 
both of which are frequently required for precision cancer treatment. To guarantee the 
model’s applicability in various healthcare contexts, future steps should involve cross-
dataset validation, prospective clinical trials, and integration with electronic health 
records. Furthermore, the model’s usefulness for oncologists may be increased by 
creating an interactive clinical decision support system that integrates its output, 
ultimately leading to more individualized and knowledgeable treatment planning.  
3.4.1. Improved chimp optimization algorithm 

The exploration and exploitation phases of the ChOA meta-heuristic algorithm 
are modeled after the hunting habits of chimpanzees. Together, chimpanzees hunt in 
groups, with each member playing a distinct role in capturing prey. Slow convergence 
rates and severe entrapment in local optima are mitigated by IChOA’s Basin chaotic 
map. Chimpanzee hunting can be broadly classified into two categories: exploitation 
(attacking) and exploration (driving, obstructing, chasing). Based on the loss function, 
IChOA is used to improve the weight values of convolution layers in the IChOA-
CNN-LSTM process, which has numerous classification layers. Ultimately, the 
classifier assigns each histopathological image to a unique category. Algorithm 1 
optimizes weights and boosts classification accuracy by combining CNN-LSTM with 
the IChOA. The ChOA’s use of the Basin chaotic map to improve chimp hunting 
efficiency is referred to as IChOA. The algorithm uses extracted features (Fe) as input 
and generates categorized output. Basin chaotic mapping is a nonlinear dynamic 
system that generates pseudo-random sequences with great unpredictability, 
sensitivity to beginning circumstances, and ergodicity, making it ideal for optimization 
methods. Basin chaotic mapping is incorporated into the IChOA to improve the 
algorithm’s capacity to more thoroughly explore the search space and prevent early 
convergence to local optima. In IChOA, the Basin chaotic map replaces the chimp 
population’s regular random initialization. Instead of employing uniform or Gaussian 
random values to initialize monkey placements, the Basin map produces a more 
diversified and unpredictable set of starting positions. This ensures that the initial 
population is dispersed throughout the search area, enhancing the chances of finding 
global optima. 

Basin chaotic mapping controls critical parameters, including position update 
vectors and control coefficients (e.g., 휙 푎푛푑 휃). These criteria determine how chimps 
navigate the solution space. By applying chaotic sequences to these variables, IChOA 
dynamically adjusts the exploration-exploitation balance during the optimization 
process. This chaotic guiding allows chimps to avoid local optima by incorporating 
controlled unpredictability into position updates. 

The incorporation of chaotic behavior, specifically from the Basin map, improves 
the optimization’s resilience and flexibility, resulting in faster and more precise 
convergence when adjusting the CNN-LSTM layers’ weights. To summarize, Basin 
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chaotic mapping improves the global search capabilities of ChOA by introducing 
organized randomness, which increases both variety and convergence efficiency in the 
learning process. 

Algorithm 1 Improved Chimp Optimization Algorithm 

1: Input: Extracted Features 퐶퐷� 
2: Output: Classified output  
3: Begin 
4:         Initialize input features, convolutional layers, pooling layers, fully connected layers, weight layer ∅�, and loss 
5: Compute convolutional layer 퐶�(푓�(�)) 
6: Compute pooling layer 푃�(푓�(�)) 
7: Compute LSTM layer 푓�(푚), 퐼�(푚), 퐶�(푚), 푂�(푚) 
8: Compute fully connected layer 푓푐� 
9: Check loss function  
10:          If (푙표푠푠 > 푡ℎ푟) 
11:           Initialize population∅�, Coefficient vectors 푔, 훿, 휖 maximum number of iterations 푟��� 
12:                  Calculate fitness of each chimp 
13: Set 푟 = 0 
14: While 푟 ≤ 푟��� 
15: Update 푔, 훿, 휖 
16: Update position using 휃(�,�,�,�) 
17: Evaluate fitness of the positions of chimps 
18: If (∅ < 0.5&& 푠 ∈ (0,1)){ 
19: Update position of the chimp using ∅�(푟 + 1) − 휑. 휃 
20: } 
21: Else  { 
22: Update position of the chimp using 푐ℎ푡���  
23:                                } End if  
24: Update 푔, 훿, 휖 
25: Calculate fitness of the current position of the chimp 
26: Set 휏 = 휏 + 1 
27: End While 
28:                  Return optimized weights 
29: Else  
30:                   Denote the Output as the final output 
31:            End if  
32: End 

3.4.2. IChOA’s improvement of feature fusion 
In several significant aspects, the IChOA significantly enhances the Hybrid 

IChOA-CNN-LSTM model’s feature fusion: 
Adaptive Weighting Preserves Semantic Integrity: IChOA dynamically modifies 

feature weights to give each modality’s most informative characteristics priority. The 
adaptive weighting allows important information to successfully contribute to the 
fused depiction by maintaining the semantic meaning across many modalities. 

Optimization and Cross-Modal Integration: To increase performance metrics, 
IChOA aligns and enhances the fusion of features from various modalities. Utilizing 
parallel processing and heuristic approaches, IChOA efficiently manages the intricacy 
of combining various data types, guaranteeing that the fusion procedure optimizes the 
performance of the overall model. 

Complexity and Difficulties in Cross-Modal Optimization: The process of cross-
modal optimization presents difficulties like the requirement to balance the 
contributions from various modalities and the computational complexity. 
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IChOA maintains the model’s robustness and equity while addressing these 
issues with effective algorithms and balancing strategies. 

The chimpanzee population was split up into four roles in the original ChOA: 
Drivers (D): Approach the prey without actually catching it. A barrier is defined 

as something that prevents the prey from escaping. Chasers (C): Pursue prey. 
Attackers (A): Target the target by anticipating and interrupting its progress. 
Chimpanzee position updates are used in the mathematical description of hunting 
behavior.  The following is how Equation (7) is used to update a chimpanzee’s position 
푋(푡 + 1): 

푋(푡 + 1) = 푋� + 푟�. (푋� − 푋�) + 푟�. (푋� − 푋�) + 푟�. (푋� − 푋�)  (7)

where 푟1, 푟2, 푟3 are random numbers that fall between 0 and 1, signifying the stochastic 
nature of the search procedure. To improve the balance between both exploration and 
extraction, the Improved ChOA (IChOA) incorporates the Basin chaotic map. 
Equation (8) provides the following definition for the Basin chaotic map: 

푋��� = ��
�
� sin 휋푥�  (8)

This chaotic map not only helps prevent local optima but also speeds up the 
algorithm’s convergence. The IChOA alters the CNN-LSTM model’s convolution 
layer weight settings in the way outlined below in an attempt to lower the loss function 
퐿(휃) in Equation (9): 

∇푙휃 = 휃 − 훼∇�퐿(휃)  (9)

where ∇푙휃 = 휃 − 훼∇�퐿(휃) represents the gradient of the loss function. Text data 
contains sequential dependencies that are efficiently captured by an LSTM network. 
These are the actions to take: 

Feature Extraction: A pretrained embedding technique, such GloVe, is used to 
tokenize and transform each text sample into word embeddings. The input for the 
LSTM network is these embeddings. 

Sequential processing: Because each LSTM cell retains information from earlier 
words, the LSTM network sequentially scans the textual content, allowing the model 
to eventually comprehend context and word relationships. This is critical for 
histological processing of photographs, as word succession frequently defines a 
sentence’s meaning. 

Final Feature Representation: The final hidden state after it has passed through 
the LSTM layers is the sum of all the text sequence’s features. This feature vector is 
then sent via a softmax layer and a fully connected layer to predict the image category. 

For breast image processing, a CNN was deployed, based on the VGG16 
architecture. The following actions are required: 

Pooling and Feature Aggregation: The features then move on to pooling layers, 
which reduce spatial dimensions while preserving the most crucial information, after 
feature recovery. 

Categorization of Breast Pictures: To forecast the image, the final feature vector 
produced by the pooling layers is fed into a softmax classifier and a fully connected 
layer.Our method guarantees that the model can correctly identify the image by 
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capturing both fine-grained information and broader visual motifs. The suggested 
approach’s flow diagram is displayed in Figure 7. 

 
Figure 7. Flow diagram of proposed method. 

Performance evaluation criteria 
The suggested network’s performance is evaluated using four widely used 

classification metrics: F1-score, accuracy, recall, and precision. This evaluation 
metrics can be computed using Equations (10)–(13) as follows: 

Accuracy = �����
�����������

  (10)

Precision = ��
�����

  (11)

F−score (%) = 2 × ������×���������
����������������

  (12)

Recall = ��
�����

  (13)

4. Results 

4.1. Dataset  
To assess the IChOA-CNN-LSTM model’s performance, the publicly accessible 

BreaKHis dataset has been utilized. 7909 histopathology images of 84 patients with 
breast cancer are included in this collection. Using the BreakHis dataset, data 
augmentation, and class weighting is critical for producing fair and impartial model 
results. Augmentation techniques like rotation, flipping, scaling, and color jittering 
can artificially boost the number of benign data, allowing the model to learn varied 
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representations while avoiding overfitting to the overrepresented malignant class. In 
general, the number of enhanced samples should be selected to roughly balance the 
two classes. In this instance, producing around 2484 more benign photos would 
correspond to the number of malignant samples, which is 5433. This would ensure 
equal representation of the two classes during training. Furthermore, by incorporating 
class weighting into the loss function, the model can avoid prioritizing the majority 
class by penalizing minority class misclassifications more severely. In addition to 
improving classification performance across both classes, this dual approach 
augmentation and weighting—also increases the diagnostic model’s fairness and 
dependability. Table 2 displays the comparison of breast cancer diagnostic approaches 
based on imaging modalities. 

Table 2. Comparison of breast cancer diagnostic approaches based on imaging modalities. 

Approach Type Modalities Used Example Model/Study 

Current Study Histopathology only IChOA-CNN-LSTM (Proposed) 

Single-Modality Mammograms only CNN-based Mammography Classifier 

Multi-Modality Mammograms + Histopathology Fusion-CNN, Multi-View DL (e.g., CAMELYON+MIAS) 

Multi-Modality Histopathology + Genomics CNN + Gene Expression Classifiers 

Figure 8 demonstrates the The top row of the BreaKHis database shows benign 
tumors, whereas the bottom row shows malignant tumors, which comprise samples of 
histological images of breast cancer. The photos are in the following magnification 
order: 40X, 100X, 200X, and 400X: (a, e), (b, f), (c, g), and (d, h). Figure 9 displays 
the feature extraction results: (a) input image, outputs are (b) the second level output, 
(c) level 60 output, and (d) level 132 output. 

 
Figure 8. Benign vs. Malignant Tumors in BreaKHis at varying magnifications. 
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(a) (b) 

  
(c) (d) 

Figure 9. Features maps of the several layers of the breast cancer histological 
picture. 

4.2. CBMIR in IChOA-CNN-LSTM 
The pipeline consists of two computational stages: (1) optimizing network 

weights with IChOA and (2) forward inference of trained CNN LSTM, which are 
analyzed separately. 

IChOA Optimisation: Let nnn be the number of chimps (population size), 푑 be 
the weight vector’s dimension, and 푇 be the maximum number of repetitions. In each 
cycle, each chimp evaluates one forward and backward transit across the network to 
determine its fitness, giving a time complexity of, 

푂(푇푛퐶���)  (14)

where, 퐶��� is the FLOP cost of one CNN LSTM pass. With the Basin chaotic map, 
the additional cost is only the generation of a chaotic sequence 푂� integer operations 
which is negligible (< 0.1% of the total runtime). On an RTX A6000 GPU (48 GB), 
using 푛 = 30  and 푇 = 150  for a 3.1 M parameter CNN LSTM, the full training 
completed in 41 min (mean of three runs), versus 58 min for standard ChOA and 67 
min for particle swarm, illustrating both faster convergence (≈ 29% fewer iterations to 
reach the same loss) and lower wall clock time. 

Inference: Clinical deployment only requires the trained model. The forward path 
of our CNN LSTM contains ≈ 2.9 M FLOPs; batched on a single GPU it processes 
1200 images  s−1, and on a mid range CPU (Intel i7 12700) it maintains 33 images s−1 
well within the sub second latency (≈ 30 ms) expected for point of care decision 
support. 
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Memory footprint: Peak GPU memory during training was 9.8 GB; inference 
needs just 310 MB, allowing deployment on common clinical workstations or edge 
devices. 

Using the IChOA-CNN-LSTM model as a feature descriptor for the 
histopathological picture, the discriminative power of deep features has been 
examined. The input images of breast cancer histology are subjected to deep feature 
extraction; the resulting feature vectors are then utilized as input for classification. 
Biological therapy and the proposed deep learning-based CBMIR system are 
conceptually rather than experimentally framed. By mentioning these treatments, it is 
implied that they may be integrated with the CBMIR model’s diagnostic capabilities, 
which could help find appropriate candidates for particular medicines through 
improved image-based tumor characteristic detection. Figure 10 shows the confusion 
matrix.  

 
Figure 10. Confusion matrix for proposed method. 

To assess the IChOA CNN-LSTM model’s classification performance, dataset 
comprising both benign and malignant cases were used. Confusion matrices were 
created for every magnification level to represent model performance, presuming an 
accuracy of 97.5% to 98%. At 40X magnification, the model accurately identified 
1947 samples, achieving a 97.50% accuracy rate, out of 1997 total samples (626 
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benign and 1371 malignant). The false positive and false negative rates varied slightly, 
but similar high-performance trends were seen at 100X (97.50% accuracy), 200X 
(97.52% accuracy), and 400X (97.47% accuracy). Combining predictions from all 
magnification levels allowed the model to classify 7719 out of 7917 samples achieving 
97.50% total accuracy. According to these results, the IChOA CNN-LSTM 
architecture can accurately diagnose benign from malignant cases in histological 
images with a low rate of misclassifications. 

The Figure 11 shows a dual-axis trend of the impact factor and citations per 
document for the Biological Regulation in breast cancer from 2013 to 2023 [27].  

 
Figure 11. Graphical representation of biological regulator impact factor. 

All patients with breast cancer are diagnosed as breast cancer for the frst time, 
and have not received any chemotherapy, radiotherapy, or biological treatment [28]. 
Figure 12 shows that the Down-regulated and up-regulated genes of the Venn diagram 
breast cancer. 

 
Figure 12. Down-regulated and up-regulated genes of the Venn diagram breast 
cancer. 
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Figure 13 depicts a Principal Component Analysis (PCA) to study the 
relationship between biological aging markers and chemotherapy treatment outcomes. 
The PCA figure in panel (a) distinguishes between tissue samples collected before 
(blue dots) and after (red triangles). The two ellipses (blue and red) indicate the data’s 
clustering and distribution among these groupings. The first main component (Dim1), 
which accounts for 52.6% of the variation, appears to distinguish the pre- and post-
treatment groups, implying that chemotherapy causes meaningful alterations in 
biological aging markers. Dim2 accounts for an extra 15.6% of the variation, which 
helps to further differentiate groups. The PCA figure in panel (b) is a correlation circle 
plot that shows how different biological aging markers influence the principal 
components.  

 
Figure 13. PCA of biological ageing markers and chemotherapy association. 

Markers such as GrimAge acceleration (GrimAA), DunedinPACE, PhenoAge 
acceleration (PhenoAA), EEAA (Extrinsic Epigenetic Age Acceleration), and Age 
acceleration (AA) all have high positive relationships with Dim1, demonstrating their 
importance in distinguishing pre- and post-treatment states. In contrast, RACE 
(perhaps a resistance or alternative age-related marker) points in the opposite direction, 
indicating a negative relationship with the post-treatment profile. The color gradient 
on the vectors shows each marker’s variable contribution, with orange-red indicating 
a stronger influence on the principal components. Overall, this data reveals that 
chemotherapy is associated with unique variations in biological aging profiles, as 
represented by several aging-related indicators. 

Through the identification and targeting of particular biomarkers, biological 
treatments are being employed more and more to aid in early diagnosis and monitoring 
of breast cancer in addition to their therapeutic application. These biomarkers [29], 
such as HER2, estrogen and progesterone receptors, and circulating tumor DNA 
(ctDNA), are proteins or genetic changes linked to breast cancer that can be discovered 
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utilizing modern molecular imaging and diagnostic procedures. Furthermore, these 
biomarkers can guide individualized screening efforts, especially in high-risk people, 
and enable real-time monitoring of therapy response or illness recurrence. Thus, 
biological treatments and techniques are making breast cancer detection more precise, 
targeted, and patient-specific, resulting in better early diagnosis and prognosis. 

The connection between computational methods and biological discoveries is 
crucial, since it can considerably increase the impact and interpretability of the 
research. While the IChOA combined with CNN-LSTM has strong classification skills, 
its utility can be increased by tying model-identified features to specific biological 
processes or biomarkers. For example, it is crucial to look into whether features 
discovered by the deep learning model are highly significant in the classification of 
breast cancer subtypes match known gene expressions, protein levels, or molecular 
pathways implicated in tumor progression, hormone response, or immune modulation.  

By linking computationally determined attributes to biological entities, 
researchers can validate the model’s judgments based on biological relevance, 
boosting the AI system’s reliability. Furthermore, this relationship allows for the 
discovery of novel biomarkers or regulatory processes that would not be obvious using 
traditional analysis. Such findings can help guide future wet-lab research, stratify 
patient populations, and aid in the development of tailored medicines. In summary, 
mixing biological interpretation with computational outputs turns the model from a 
black-box classifier to a relevant scientific instrument that connects artificial 
intelligence and biomedical research. 

5. Discussion 

Presented an approach for identifying robust prognostic markers using biological 
regulatory networks in the breast cancer context. Rather than establishing signatures 
of genes that are differentially expressed in poor prognosis vs good prognosis samples, 
the method attempts to identify the upstream transcriptional regulators of the signature 
that are consistent with the network topology. Next A DL-based technique that 
effectively classifies and retrieves BreakHis pictures of the histopathology of breast 
cancer. Important textural and spatial features are recovered using HOG and GLCM 
algorithms after the images are initially cleaned using bilateral filtering on the 
BreakHis dataset. A CNN-LSTM network and the IChOA are combined in a potent 
hybrid model for classification in order to increase learning accuracy and identify 
intricate patterns. 

Furthermore, the model had great recall and precision, both of which reached 
98.18%, suggesting that it was equally successful in reducing false negatives and false 
positives. The model’s predictions were consistent and dependable, as evidenced by 
the F1-score of 98.18%, which balances precision with recall. The Roc curve is 
displayed in Figure 14. 
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Figure 14. Suggested model is contrasted with the ROC curves of other pre-trained 
CNN models. 

The performance of breast histopathology pictures using the suggested method 
and several pretrained CNN models is shown in Table 3. The performance analysis in 
relation to several models is displayed in Figure 15. 

Table 3. Evaluation of breast histopathology images utilizing several models 
existing in use against the proposed approach. 

Model Accuracy Precision Recall F1-Score 

ResNet 88.56 88.74 88.15 88.67 

VGG16 86.23 86.18 85.97 86.75 

Inception V3 88.04 87.64 87.93 87.34 

Xception 85.57 86.06 85.74 86.01 

DenseNet 89.69 90.41 90.07 90.21 

Proposed IChOA-CNN-LSTM 97.50 98.18 98.18 98.18 

 
Figure 15. performance analysis compared to several models. 

By giving pathologists in developing countries access to tissue images at greater 
magnifications, the suggested method can be a valuable tool in helping them get 
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around the constraints of their scanners. Through the use of greater magnifications to 
analyze similar patches, IChOA-CNN-LSTM CBMIR can help pathologists from 
various locations collaborate across borders. IChOA-CNN-LSTM CBMIR in Sen2 
enables pathologists to obtain comparable instances at all four scales, in contrast to 
CBMIR, which only permits pathologists to obtain cases from the same magnification 
as their query (Q). However, storage and privacy limits make image sharing with a 
single server difficult. Using the suggested IChOA-CNN-LSTM CBMIR, comparable 
patches can be retrieved at the same or greater magnifications. The accuracy and 
dependability of DL models may be significantly impacted by this unpredictability. 
This is a significant finding because it shows that one of the main obstacles to 
gathering and applying WSIs in histopathology can be successfully addressed by the 
suggested strategy. With a more generalized, fast-trained, and accurate CBMIR, the 
suggested approach has addressed the concerns of both pathologists and DL scientists, 
according to the experimental outcomes in both scenarios and tests. Table 4 displays 
the performance comparison of the proposed CBMIR model with different 
histopathological datasets. Table 5 shows that the performance metrics for various 
strategies. 

Table 4. Performance comparison of the proposed CBMIR model vs different 
histopathological datasets. 

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

BreakHis 97.5 96.8 97.2 97.0 

TCGA 95.3 94.7 94.1 94.4 

CAMELYON16 94.6 93.8 94.0 93.9 

Table 5. Performance metrics for various strategies. 

Title Method Accuracy (%) 

Breast cancer prediction with a voting classifier method, 
2017 [30] KNN 83.45 

Enhancing Breast Cancer Detection using Deep Learning 
[31] CNN 88.00 

Proposed IChOA- CNN-LSTM 97.5 

Limitations 
Despite the high performance of the proposed CBMIR system, this study has 

many drawbacks. First, the model is trained and tested solely on the BreakHis dataset, 
which may limit its applicability to other histopathological datasets or clinical contexts 
with different image capture techniques. Second, the study does not include 
multimodal data like mammography or genetic information, which could improve 
diagnostic accuracy and provide a more complete clinical picture. Furthermore, the 
framework lacks a full investigation of computational complexity and training time, 
which are critical for determining its suitability in real-time clinical settings. The 
robustness of the model’s performance may be impacted by class imbalance in the 
dataset, which is why no methods like data augmentation or class rebalancing are 
provided. 
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6. Conclusion  

This work built a strong and intelligent biological system for categorizing and 
retrieving histology pictures of breast cancer. Proposed method, which makes use of 
the BreakHis dataset, combines sophisticated preprocessing via bilateral filtering with 
rich feature extraction using HOG and GLCM descriptors. Using a cascaded CNN-
LSTM architecture and the Improved Chimp Optimization Algorithm (IChOA), the 
hybrid classification model at the heart of the system effectively learns both spatial 
and temporal patterns in the image data. With a 97.5% classification accuracy, the 
proposed framework demonstrated significant potential to support clinical diagnostic 
judgments. The method connects with tailored biological therapy options, including 
HER2-targeted antibodies and small-molecule inhibitors, by allowing for more 
reliable early detection of key tumor features. Integrating CBMIR into diagnostic 
procedures could thus serve as an effective tool for identifying and optimizing tailored 
therapeutic interventions, thereby boosting precision oncology and patient outcomes. 
The finding may hold promise for future improvements in treating BC. In order to 
improve feature discrimination and concentrate on tissue regions that are 
diagnostically significant, future studies can investigate the incorporation of attention 
mechanisms into the IChOA-CNN-LSTM structure. The system’s diagnostic insights 
could also be further enhanced by the addition of multi-modal data, such as genetic 
markers or clinical records. 
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