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Abstract: Deficiencies in immune protection (both congenital and acquired through life) sig-
nificantly influence a human’s life quality. Primary minor immunodeficiencies (PMDs) are 
more common in the population than classical immunodeficiencies and place a high burden on 
society. However, the evidence on PMDs is not systematized. The aim of the current research 
became the analysis and synthesis of the evidence on etiology, epidemiology, diversity, clin-
ical manifestations, diagnosis, and treatment of PMD in humans to synthesize a scientific 
concept. In this way, the systematic review of publications from PubMed and SCOPUS data-
bases has been conducted by the keywords. The time of analysis was the period from 1960 
to 2025. Out of 2937 primary publications, 424 that met the selection criteria were included 
in the final list. As a result, terminology, genetic heterogeneity, epidemiology, spectrum of 
manifestation, structuring of clinical syndromes, and classification of PMD were clarified due 
to the current research. A distinction is made between PMD and classical immunodeficiencies. 
The algorithms of diagnostics and immunotherapeutic interventions were considered. The 
scientific concept of PMD diagnosis and treatment was proposed, which presents PMDs as a 
universal natural model of the development of different human immune-dependent patholo-
gies on a population scale. PMDs, by their prevalence in the population, diversity, and degree 
of clinical manifestation, can explain the development of the entire described spectrum of 
immunodependent diseases in humans. The proposed PMD concept can allow optimizing the 
clinical management of patients with associated immunodependent pathology using an inte-
grative personalized multidisciplinary approach with the availability of etiology estimation 
and etiotropic treatment providing.

Keywords: eosinophilic peroxidase; immunodiagnostics; immunomodulation; immunotherapy;  
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1. Introduction
Over 450 human primary immunodeficiencies are described [1]. They differ 

in inheritance, population prevalence, immune system’s affected branches, flowing 
severity, prognosis, and available treatment approaches [2]. Primary immunodefi-
ciencies are rather heterogeneous diseases that can differ significantly in laboratory 
and clinical phenotypes [3,4]. We can distinguish between classical (major) immu-
nodeficiencies, which, traditionally, are associated with the phenomenon of primary 
immunodeficiency in humans, and minor immunodeficiencies [5]. Primary minor 
(mild) immunodeficiency (PMD) was described a little later and does not correspond 
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to or, sometimes, even contradict, classical immunodeficiencies in terms of the 
main associated clinical and laboratory phenomena [6]. PMDs destroy the estab-
lished stereotype of primary immunodeficiencies as rare diseases with early mor-
tality and dramatically severe morbidity. They are quite common in the population, 
become a part of routine practice, can clinically debut at any age, and are accompa-
nied by moderate or even mild clinical symptoms [7]. At the same time, the terms 
minor and mild are used by various research groups as synonyms, denoting the same 
immunological phenomenon.

Thus, PMDs are common diseases of the immune system in the population with 
a variable course and heterogeneous clinical picture that do not correspond to the 
established ideas about primary immunodeficiencies as a phenomenon.

Authors who have published reports on PMD sometimes used such epithets as 
forgotten [8], ignored [9], or underestimated [10] immune system disease. However, 
research results show that PMDs contribute significantly to the morbidity of modern 
humans and form a great burden on the state and society, causing numerous immuno-
dependent clinical manifestations and associated financial costs. 

The first PMDs were described much later than a number of classical genetically 
determined immune diseases. In 1969, Cain et al. described selective IgE deficiency 
in patients with chronic sinopulmonary infections [7]. While selective natural killer 
(NK) deficiency was reported by Portaro et al. [11]. Litzman et al. in 1995 first used 
the term “minor immunodeficiency” to refer to deficiencies of certain subpopulations 
of T-lymphocytes, IgA, IgM, and components of the complement system (C3 and C4) 
in patients who often suffered from infectious episodes [6]. However, the term “minor 
anomaly of the immune system” was used by Vel’tishchev [12]. Instead, the term “mild 
immunodeficiency” was initially used by Van Kessel et al. in 1999 to refer to cases 
of selective IgG1 subclass deficiency [13]. Today, these terms are still occasionally 
relevant: in 2018, Janssen et al. used “mild hypogammaglobulinemia” to describe that 
even a small decrease in serum immunoglobulin concentrations can have severe conse-
quences to a patient’s health [14]. In 2023, Catli et al. used “mild immunodeficiency” to 
describe clinical consequences of a new homozygous STAT5B mutation [15].

Currently, diagnostic and therapeutic approaches must be developed to improve 
the detection and clinical consequences of PMD, which would affect the frequency and 
severity of associated immunodependent human diseases. Therefore, there is a need 
to systematize data on human PMD by forming a generalized scientific concept that 
would regulate the classification of these diseases, describe the range of associated 
manifestations, and provide algorithms for their diagnostics and treatment.

The aim of the current study was to collect, analyze, and summarize the accu-
mulated evidence on the etiology, epidemiology, diversity, clinical manifestations, 
diagnosis, and treatment of PMD in humans to synthesize a scientific concept for the-
oretical and practical medicine on the diagnosis and treatment of associated immu-
nodependent syndromes. 

2. Materials and methods
Selection process. A systematic review of scientific publications from peer-re-

viewed medical journals indexed in the electronic scientometric bibliographic refer-
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ence databases such as PubMed (MEDLINE) and SCOPUS for the period from 1960 
to 2025 was conducted as a two-stage process. At the first stage of systematic search, 
the keywords “minor” or “mild immunodeficiency” were used, which were combined 
in any order with additional keywords such as “etiology”, “pathogenesis”, “epidemi-
ology”, “clinical picture”, “diagnosis”, and “treatment.”

Firstly, 2937 research papers that met the above selection criteria were selected. 
Then, constructing the final reference list for this systematic review, most of the ini-
tially selected publications were removed in the course of further research. 

Based on the data from the first stage of the search, it was possible to formulate 
a working definition of PMD, criteria for separating PMD from classical immunode-
ficiencies used by research groups, and to define a list of nosological forms that can 
be defined as PMD. 

Thus, the following criteria for identifying primary immunodeficiency as a 
minor disease of the immune system were applied (based on results of scientific pub-
lications from the last 65 years—inclusion criteria):
1)	 High frequency in the population, which contradicts the established notion of 

primary immunodeficiencies as rare diseases;
2)	 Damage to only one immune factor;
3)	 The possibility of debuting at any age, not only in childhood;
4)	 The possibility of an asymptomatic course throughout ontogenesis in at least 

20% of patients;
5)	 Variable clinical course with periods of asymptotic nature of varying duration with 

sudden clinical manifestation, heterogeneous in nature, severity, and duration;
6)	 Heterogeneous clinical picture, which differs in both the closest relatives from 

the same family with the same immunodeficiency, and in the patient himself at 
different periods of his ontogenesis;

7)	 Mild clinical manifestation, indistinguishable from clinical immune-dependent 
lesions in immunocompetent individuals in routine clinical practice;

8)	 Presence of reports of spontaneous resolution of clinical symptoms;
9)	 Presence of reports of unpredictable prognosis or favorable prognosis;
10)	 Presence of reports of unexpected complications;
11)	 Presence of reports of sudden unexpected death;
12)	 Presence of some signs of selective advantage in individuals with immunodefi-

ciency;
13)	 Presence of a historical period of ignoring the immunodeficiency as an “insig-

nificant” disease.
Immunodeficiency was considered minor in published papers if at least 9 of  

the 13 proposed criteria were met (all nosological units from panel 1 correspond to 
at least 9 of 13 criteria).

At the second stage of systemic scientific search such obtained at the first 
stage key words as “transient hypogammaglobulinemia of infancy”, “unclassified 
hypogammaglobulinemia”, “selective immunoglobulin’s (Ig) deficiencies (IgM, IgA, 
IgG, IgE, IgD)”, “myeloperoxidase deficiency (MPOD)”, “eosinophilic peroxidase 
deficiency (EPOD)”, “mannose binding lectin deficiency”, “deficiency of serine 
proteases associated with mannose binding lectin”, “NK-cell deficiency”, “NKT-
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cell deficiency”, “CD16 molecule deficiency”, “CD8 molecule deficiency (CD8D)”, 
“CD64 molecule deficiency (CD64D)”, “idiopathic CD4+ T-cell lymphopenia”, 
“chronic idiopathic neutropenia”, “familial benign neutropenia (FBN)”, and “cyclic 
neutropenia (CyN)” were used. These words were combined in any order with key 
words such as “etiology”, “pathogenesis”, “epidemiology”, “clinical picture”, “diag-
nosis”, and “treatment.”

The second stage of the search allowed us to study the main clinical attributes 
of various nosological forms of PMD, previously identified at the first stage of the 
search, such as etiology, epidemiology, clinical picture, diagnosis, and treatment, 
which became separate chapters of this systematic review, demonstrating the diver-
sity of the phenomenon of PMD in humans.

Exclusion criteria were: less than 9 of the 13 proposed criteria were met, no 
asymptomatic course of disease, high rate of death in the childhood period without 
substitutional treatment or bone marrow transplantation, and no publication about 
immunodeficiency in the past 2000 years.

Risk of bias assessment was associated with the absence of placebo-controlled 
randomized trials, meta-analysis, and systematic reviews dedicated to some PMDs, 
a low number of publications about some form of PMDs, no consensus diagnostic 
criteria for some PMDs, and controversial data about some PMDs. 

Data extraction. Descriptions of single clinical cases, if they were not of histor-
ical or situational value, were removed from the final reference list due to the low 
level of evidence presented. Letters to the editor, articles commenting on other publi-
cations and responses to these comments, publications not in English, papers without 
access to the full text, studies with duplicate results, and papers which used outdated 
diagnostic methods (such as the rosette method for the diagnosis of cellular immune 
deficiencies) that cast doubt on the accuracy of immune diagnosis and the authors’ 
conclusions were removed. Preference was given to articles published within the last 
decade, which reflect the latest and most relevant data in the field of immunodiag-
nostics. However, given the absence of previous systematic analyses on the problem 
of primary minor immunodeficiencies in humans, we still tried to reflect a holistic 
picture of the accumulated evidence and experience in diagnosis and treatment over 
the entire available search period. Since publications on some diseases of the immune 
system are extremely unevenly represented in different decades. So artificially limit-
ing the search to a relatively short period of time would inevitably lead to a distortion 
of information, representing a reductionist approach. The quality of the publication 
was of fundamental importance in selecting the article for the final list of references, 
in particular, the research design, methods of statistical analysis, informative and 
relevant laboratory diagnostic methods, and the availability of adequate illustrative 
material to demonstrate the primary material. All the figures in this review are not 
borrowed, but obtained from the author’s own archives, reflecting his personal clin-
ical experience in the diagnosis of primary minor immunodeficiencies in humans. 

Only 424 references (meta-analyses and systematic reviews, population-based 
studies, controlled clinical trials, retrospective case series, and in-depth litera-
ture reviews based on relevant clinical trials and reports) became the base of the 
current research.
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3. Results

3.1. Differences between major and minor immunodeficiencies
There are more similarities than differences between major and minor immuno-

deficiencies. The similarity of PMD and classical immunodeficiency is the affection 
of the immune system, genetic origin, pentad of main immunodependent syndromes 
(infectious, allergic, autoimmune, immunoinflammatory, oncological) as clinical 
manifestation, approaches to laboratory evaluation, the immunological phenotype, 
and susceptibility to immunotherapy and bone marrow transplantation as treatment 
strategies in general.

So, knowledge of fundamental differences between them is essential in correctly 
interpreting clinical and laboratory data in patients with immunodependent pathology 
(Table 1), which became a way to determine a patient’s management strategy. 

3.2. PMD etiology
PMDs are genetically caused and are quite heterogeneous. They can be caused by 

chromosomal aberrations [9], mendelian mutations in structural genes [25], regula-
tory gene mutations [26], and pathogenic polymorphic single-nucleotide substitutions 
[27]. Some immunodeficiencies (like EPOD) are caused by a single mutation in the 
EPO gene [25]. Others are a collective group of genetically different immune system 

Feature Major immunodeficiency Minor immunodeficiency
Known pathologies Over 400 About 30

Affected immune 
factors

Involved a lot of factors such as all classes of Ig in 
X-linked agammaglobulinemia [16].

Usually, a single factor is affected. For example, there is deficiency 
of only IgA or IgM molecules. It is selective [17] or isolated [18] 
immunodeficiency.

Symptoms severity A severe, life-threatening clinical phenotype, 
usually, signs’ complex consists of heterogeneous 
overlapping immunodependent syndromes with a 
predominance of invasive infections.

Variable phenotype with a wide range of manifestations: from 
asymptomatic and mild (such as EPOD) [19] to severe (such 
as idiopathic CD4+ T-cell lymphocytopenia) [20]. However, 
mostly single syndromes of immunodependent manifestations 
(autoimmunity, allergy, etc.) prevail over the infectious syndrome.

Clinical course Continuous, progressive with frequent relapses, 
tendency to form severe chronic inflammatory and 
oncological lesions, and early mortality.

Variable, with alternating periods of exacerbations and remissions, 
varying in nature, severity and duration, often with the usual 
endurance of patients

Frequency in 
population

Less than a 1 percent About 20% (see Table 3)

Asymptomatic 
course possibility

Rare. Atypical mild forms of X-linked 
agammaglobulinemia [16]; atypical Chédiak–
Higashi syndrome (10% of all cases in childhood 
but lead to delayed neurodegeneration) [21]. 

At least 20% cases according to results of clinical trial dedicated to 
the structure of clinical manifestation—for selective IgA deficiency 
[22], selective IgM deficiency [17], and idiopathic CD4+ T-cell 
lymphocytopenia [20].

Debut of symptoms In early childhood. For example, combined and 
cellular immune deficiencies debut immediately 
after birth; X-linked agammaglobulinemia—in 6 
months after birth after maternal trans-placental 
antibodies catabolism [4].

From early childhood to old age. For example, Endoh et al. 
reported that selective IgM deficiency (17 mg/dl) signs debut 
at the age of 85 years [23] – so called the “late onset mild 
immunodeficiency in the elderly” [24].

Typical clinical 
symptoms

Basically, a typical phenotype is observed. But 
not always. For example, the triad of ataxia, 
telangiectasia, and immunodeficiency in Louis–
Barr syndrome [5].

Heterogeneous and variable nonspecific clinical courses differ 
even in close relatives. Common immunodependent syndromes 
from routine practice which have no specific signs for a particular 
immunodeficiency.

Outcome Unfavorable without specific treatment. Often favorable but can be unpredictable— “unpredictable 
outcome” [17].

Table 1. Comparative characteristics of major and minor immunodeficiencies.
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diseases with a common laboratory phenotype. For example, selective IgA deficiency 
can be caused by multiple mutations in different genes [28], while CyN can be caused 
by multiple mutations in a single gene—ELANE [29–31]— “multigenerational pat-
terns of inheritance consistent with single gene” [32]. The same immunodeficiencies 
can be caused by different mutations, while the same mutation can cause different 
immunophenotypes in different patients. So, mutations in the TACI gene can manifest 
as selective IgA deficiency and combine IgA and IgG deficiency, common variable 
immunodeficiency, and a syndrome resembling common variable immunodeficiency 
(so-called unclassified hypogammaglobulinemia) [33]. The phenotype of primary 
immunodeficiency can change even in the same individual at different periods of 
ontogenesis: the progression of selective IgA deficiency to common variable immune 
deficiency is well known [34]. So, Sgrulletti et al. talked about different evolutionary 
scenarios of immunodeficiency development throughout human ontogenesis [35].

Among PMD, autosomal dominant (AD) [36] and autosomal recessive (AR) 
inheritance [25] as well as X-linked transmission to offspring [16], and even cases of 
codominant inheritance [37] were described. A part of PMD patients are compound 
heterozygotes [38,39]. It has been described in functional hemizygosity [40] and hap-
loinsufficiency [41] cases. Certain PMDs have a non-Mendelian type of inheritance: 
primary mannose-binding lectin deficiency (MBLD) requires a combination of a sin-
gle nucleotide polymorphism (SNP) in the promoter region with several pathogenic 
polymorphic single nucleotide substitutions in MBL2 structural genes [42]. Epigene-
tic regulation processes, including the methylation mechanisms disorders, can affect 
the penetrance of a pathological gene in some PMDs like selective IgA deficiency 
[43], NK deficiency [44], or primary neutropenias [45] (Table 2).

Table 2. Genetic nature of some primary minor immunodeficiencies.

Immunodeficiency Type of 
immunity

Branch of 
immune 
system

Characterized genetic nature Inheritance type

Neutrophil MPOD Innate Phagocytosis

Significant heterogeneity. Classical missense mutation R569W [36], 
mutations Y173C, M251T, and 14-base deletion in exon 9 [39]; SNP 
(single nucleotide polymorphism) –453G/A in the MPO gene [27] 
in Europe; nonsynonymous mutation R499C of the MPO gene in 
Japan [46]; bigenic model of inheritance [37].

AD; AR; 
codominant

EPOD Innate Phagocytosis Transition 2060G > A in the EPO gene [25]. AR
FBN (constitutional 
[FСN] and ethnic [FEN]) Innate Phagocytosis SNP –67T > C in the DARC gene (duffy antigen receptor for 

chemokines) [47,48]. AD

CyN Innate Phagocytosis

Multigenerational patterns of inheritance are consistent with a single 
ELANE (elastase neutrophil expressed) or ELA2 (elastase 2) gene. 
However, ELANE deletion (c.224 + (4_19)del16) is characterized 
better [49].

AD, AR, 
X-linked

CD64D Innate Phagocytosis C > T substitution in exon 1, codon 92 of the hFc gamma RIA 
(human Fcγ receptor I) gene [50]. Not specified

NK cell deficiency 
(NKD) Innate Cellular

Significant heterogeneity. Mutations in receptors—FCG3RA3 
(Fcγ receptor type III), in transcription proteins—GATA2 (GATA 
binding protein 2), IRF8 (interferon regulatory factor 8), in the 
cell cycle—RTEL1 (regulator of telomere elongation helicase 1), 
GINS1 (GINS Complex Subunit 1), MCM4 (mini-chromosome 
maintenance complex component 4) [51], in signale protein PLCG2 
(phospholipase C gamma 2) [41], NK cells’ actin cytoskeleton [52], 
and epigenetic regulation disorders [53].

AD (GATA2); 
AR (FCG3RA3, 
IRF8, RTEL1, 
GINS1, MCM4) 
with variable 
penetrance due to 
epigenetic factors 
influence
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Immunodeficiency Type of 
immunity

Branch of 
immune 
system

Characterized genetic nature Inheritance type

NKT cell deficiency 
(NKTD) Innate Cellular

Mutations in the Nkt1 locus on chromosome 1 are associated with 
partial deficiency of NKT cells in SLE, Nkt2 on chromosome 2—in 
type 1 diabetes mellitus (T1DM), and on chromosome 18—with 
total deficiency of NKT cells [54] and with epigenetic regulation 
disorders [53].

AD, AR 
with variable 
penetrance due to 
epigenetic factors

Deficiency of the CD16 
molecule (CD16D) Innate Cellular

T to A substitution at position 230 in fcγ receptor of the IIIa gene 
(Fcγ RIIIA-48H/H) [55], L66H substitution in the FcγRIIIA gene 
[56], c.526G>T (p.V176F) polymorphisms in exon 4 and c.197T>A 
(p.L66H) polymorphisms in exon 3 [57].

AR

THI Acquired Humoral
Significant heterogeneity. From SIgAD to common variable 
immunodeficiency. In many cases, the genetic basis is not 
characterized (UH).

Not specified

UH Acquired Humoral Genetic basis not characterized Not installed
Selective IgM 
deficiency (SIgMD) Acquired Humoral Chromosomal deletion 2q11.2 [9]. Congenital 

disease

Selective IgA deficiency 
(SIgAD) Acquired Humoral

Significant heterogeneity. Trisomy X chromosome [58], 
deletions and SNPs of the constant region of IgA heavy chain 
(immunoglobulin heavy chain constant region alpha, IGαHC) 
[59]; some chromosomal abnormalities (abnormalities of the 18th 
chromosome, trisomy of the 10th chromosome, translocation of 
10q to 4p, etc.) [60]; mutations/polymorphisms of TNFRSF13B 
(tumor necrosis factor receptor superfamily, member 13B) or TACI 
gene (transmembrane activator and calcium-modulating cyclophilin 
ligand interaction), gene regulation disorders in C4A-21-OHA 
deletion [61], methylation effect on expression [43].

Mostly AD 
with variable 
penetrance due to 
the influence of 
epigenetic factors

Selective IgA1 subclass 
deficiency (SIgA1D) Acquired Humoral Heavy-chain deletions of α-1 gene (delIGα1 HC) [62].

Mostly AD 
with variable 
penetration 

Selective IgA2 subclass 
deficiency (SIgA2D) Acquired Humoral Heavy-chain deletions of α-2 gene (delIGα2 HC) [62].

Mostly AD 
with variable 
penetration 

Selective secretory IgA 
deficiency (SsIgAD) Acquired Humoral Mutations of the polymorphic epithelial cell immunoglobulin 

receptor (pIgR), including the A580V missense mutation [63].

Mostly AD 
with variable 
penetration 

Selective IgG subclass 
deficiency (SIgGSD: 
SIgG1D, SIgG2D, 
SIgG3D, SIgG4D)

Acquired Humoral
Deletions of the constant region of the IgG1-4 heavy chain genes 
(delIGγHC) [59] and SNPs in IGγHC in combination with HLA-D 
in IgG4 deficiency [64].

Mostly AD 
with variable 
penetration 

Selective IgE deficiency 
(SIgED) Acquired Humoral SNPs of the regulatory gene AICDA (activation-induced cytidine 

deaminase) 5923A/G and 7888C/T [26]. AD

Deficiency of specific 
(antipolysaccharide) 
antibodies (SAD, 
SPAD)

Acquired Humoral
Mainly, it was not identified. Hypomorphic mutations c.125 A > G 
in RAG1 gene (recombination activating gene 1) and c1342-3delCT, 
pSer381Terfs*1; c683G > A, pGly95Arg in the RAG2 gene [65].

Not specified

Combined deficiencies 
of immunoglobulin 
classes/subclasses

Acquired Humoral A combination of deletions IGγ2HC, IGγ4HC, IGα1HC, IGεHC [66], 
IGγ1,HC, IGγ3HC, IGεHC [67], and others. Not specified

Idiopathic CD4+ T-cell 
lymphocytopenia 
(ICD4+TL)

Acquired Cellular
Nonsense mutation c.C49T:p.Q17X in the ITK gene (IL2 inducible 
T Cell kinase) [68]; dominant-negative missense mutation V22G in 
Unc119 gene (lipid binding chaperone) [69].

AR; AD

CD8D Acquired Cellular Misense gly90>ser mutation in the CD8alpha gene [70] and 
p.Gly111Ser mutation in CD8α gene [71]. AR

MBLD Innate Complement 
system

Combination of promoter SNPs –550 (H/L) or –221 (XY) and SNPs 
in structural genes R52C, G54D and G57E of the MBL2 gene [42]. AD

 Table 2. (Continued).
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3.3. PMDs epidemiology
PMDs collectively affect at least 20% of the modern world’s human popula-

tion (Table 3). Its high prevalence is facilitated by the predominant AD mode of 
transmission to offspring and the possibility of an asymptomatic or mildly symptom-
atic course for long periods. Paradoxically, advances in drug therapy are also likely 
to have an impact on the increasing prevalence of PMD, for example, by ensuring 
patient survival in severe cases of infectious lesions, as demonstrated by the case of 
recovery from acute Candida meningitis in MPOD [77].

PMDs frequency varies widely from one case per a million inhabitants in CyN (low) 
[78], through one case per 14 thousand people in EPOD (medium) [19], to one case per 
every third person in central Africa in MBLD (high frequency) [79,80] (Table 3).

Table 3. Prevalence and typical manifestations of PMD among modern people.

PMD Frequency Specific gravity Prevalence 
estimate Manifestations

THI 1:164 confirmed THI + 1:103 possible 
THI [93].

0.6% confirmed THI +0.9% possible  
THI [93]. Frequent Broad clinical phenotype

UH 4/5 patients with a primary diagnosis of 
THI [94].

80% of patients with a primary diagnosis 
of THI [94]. Frequent Broad clinical phenotype

SIgMD 1:265 for Iran [95], 1:385 for Europe 
[96], 1:2216 for China [97].

0.37% for Iran [95], 0.26% for Europe 
[96], 0.045% for China [97]. Frequent Broad clinical phenotype

SIgG1D 1:26 in Europe [98]. 3.8% in Europe [98]. Frequent Pyogenic respiratory 
infections

SIgG2D 1:28 cases among children with recurrent 
respiratory infections [99].

3.5% of cases among children with 
recurrent respiratory infections [99]. Frequent Pyogenic respiratory 

infections

SIgG3D 1:25 cases among children with recurrent 
respiratory infections [99].

4% of cases among children with recurrent 
respiratory infections [99]. Frequent Viral respiratory infections

SIgG4D 1:400 in Europe [64]. 0.25% in Europe [64]. Frequent Pyogenic respiratory 
infections or asymptomatic

SIgAD 1:160–1:500 in Europe and the USA 
[100], 1:2000–1:4000 in China [88].

0.06–0.2% in Europe and the USA [100], 
0.05–0.025% in China [88]. Frequent Broad clinical phenotype

SIgED 1:30 in Europe and the USA 
[101,102,103]. 3% in Europe and the USA [101,102,103]. Extremely 

frequent Broad clinical phenotype

Immunodeficiency Type of 
immunity

Branch of 
immune 
system

Characterized genetic nature Inheritance type

MBL-associated serine 
protease 2 deficiency 
(MASP2D)

Innate Complement 
system SNP D120G of the MASP2 gene [72]. AR

C6 deficiency (C6D) Innate Complement 
system

Deletions 1195delC, 1936delG of the C6 gene (in African 
Americans) and deletion 878delA of the C6 gene (in African 
Americans and Europeans) [73].

AR

C7 deficiency (C7D) Innate Complement 
system

Premature codon termination mutations K416 X 419 and S620 
X 630 of C7, missense mutation G357R [74], missense mutation 
G379R and deletion of 3’UTR (c.*99_*101delTCT) of C7  
gene [40].

AR

C8 deficiency (C8D) Innate Complement 
system

C8A-type I (3’ Splice Site C8A) [74] and C8B-type II (p.Arg428* 
C8B) [75]. AR

C9 deficiency (C9D) Innate Complement 
system Arg95Stop mutation of the C9 gene [76]. AR

 Table 2. (Continued).
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PMD Frequency Specific gravity Prevalence 
estimate Manifestations

SIgDD 1:12–1:14 in Europe [104]. 8–9% in Europe [104]. Extremely 
frequent Mainly, asymptomatic

MBLD 1:10–1:20 in Europe [86], 1:3 in central 
Africa [79,80].

5–10% in Europe [86], 35% in central 
Africa [79,80].

Extremely 
frequent Broad clinical phenotype

SPAD 1:9–1:1.6 in groups of patients with 
recurrent pneumococcal infections [65].

11–60% in groups of patients with 
recurrent pneumococcal infections [65]. Frequent Recurrent pneumococcal 

infections

MASP2D 1:25 among the population of Europe, up 
to 1:6 in some regions of Africa [105].

4% among the population of Europe, up to 
18% in some regions of Africa [105].

Extremely 
frequent

Bacterial infections 
(pneumococcal 
pneumonia, pulmonary 
tuberculosis, skin 
abscesses, sepsis), 
systemic lupus 
erythematosus, interstitial 
lung disease

FBN

1:2–1:4 in Africans, 1:22 in African 
Americans, 1:9 in Arabs, 1:8 in Yemeni 
Jews, 1:6 in black Ethiopian Jews, less 
than 1:100 in general US population [89].

25–50% in Africans, 4.5% in African 
Americans, 10.7% in Arabs, 11.8% in 
Yemeni Jews, 15.4% in black Ethiopian 
Jews, ˂1% in the general US population 
[89].

Frequent

Persistent periodontitis, 
recurrent oral candidiasis, 
recurrent neutropenic 
ulceration of the oral 
mucosa, agranulocytosis to 
certain medications

CIN 1–2:1 000000 [106] 0.0001–0.0002% [106] Rare

Recurrent bacterial 
respiratory, urinary, and 
gastrointestinal infections; 
agranulocytosis to certain 
medicines

CyN 1:1 000000 [78] 0.0001% [78] Rare

Periodical hyperthermia 
with bacterial urinary, 
gastrointestinal, and 
respiratory infections with 
21-day cycle

EPOD 1:14,000 in Europe [19] 0.007% in Europe [19]. Medium Mostly asymptomatic

C6D
C6Q0 is 1:1600 among African 
Americans and 1:40,000 among 
Europeans [73].

C6Q0—0.06% among African Americans 
and 0.0025% among Europeans [73]. Medium Invasive Neisseria 

infections

C7D 1:24273 in Japan [40,107] 0.0041% in Japan [40, 107] Medium Invasive Neisseria infections

C8D For C8A 1:36410 in Japan [75]. For C8A 0.0027% in Japan [75]. Medium Invasive Neisseria 
infections

C9D 1:1000 (homozygous) [21] and 1:15 
(heterozygous mutation) [76] in Japan.

0.1% (homozygous) [21] and 6.7% 
(heterozygous mutation) [76] in Japan. Frequent Invasive Neisseria 

infections

MPOD 1:2000–1:4000 in Europe and the USA 
[36], 1:10,000 in Japan [83].

0.05–0.025% in Europe and the USA [36] 
and 0.01% in Japan [83]. Medium Invasive Candidiasis

ICD4+TL 1:400 in Europe [108]. 0.25% in Europe [108]. Frequent

Herpesvirus infections, 
toxoplasmosis, atypical 
mycobacteriosis, JCV, 
histoplasmosis, and 
pneumocystis

CD8D 1:250 among Gypsies [71] 0.4% among Gypsies [71] Frequent

Recurrent respiratory 
infections with 
the formation of 
pneumosclerosis

 Table 3. (Continued).
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The heterogeneity in the PMD spread in different world regions is due to the 
founder and selective advantage effects [81]. The founder effect indicates an increased 
incidence of immunodeficiencies in the region of mutation origin, especially in the 
practice of consanguineous marriages, and an abnormally low incidence in other pop-
ulations, especially if they are close to interbreeding with representatives of other 
regions. The founder effect is well observed in MPOD, which occurs with an abnor-
mally high frequency in the Brescia [82] and Friuli–Venezia Giulia [82] Italy regions 
(one case per 500 inhabitants), and is rare in Japan (1:10,000) [83]. The effect of 
selective advantage indicates that the abnormal accumulation of a particular PMD in 
a region may contribute to some minority positive health effects that can paradoxi-
cally be provided by immunodeficiencies. This effect is clear in MBLD. It is actual 
for 30% central Africans [79,80] and reduces the severity of pulmonary tuberculosis 
[84], meningitis [79], and schistosomiasis [85]. For the world population, it is in the 
range of 5–10% [86].

PMD prevalence is dependent on geographical, ethnic, racial, age, and gender fac-
tors. Japan, as a geographically isolated area, has a significantly different prevalence 
of immunodeficiencies [83,87]. Chinese people have a lower frequency of SIgAD 
compared to Europeans [88]. It was found that the differences in FBN frequency for 
different ethnic groups [89]. C6D frequency is 1:1600 among African Americans and 
1:40,000 for Europeans [73]. SIgG2D is more common among children, and SIgG3D 
in adults [90]. NKD can be more severe in women due to estrogen influence [91]. The 
women demonstrate an increasing serum IgD level compared to men [92].

3.4. PMD classification
PMDs can be independent and isolated genetic diseases [109,110]. They can 

also be a component of other genetic diseases with a broader phenotype. PMD, as an 
isolated disease, is the recent report by Hua et al. of a case of SIgAD in a 48-year-
old patient with multiple autoimmune disorders—hemolytic anemia, systemic lupus 
erythematosus, and Hashimoto’s thyroiditis [111]. PMD, as a component of a broader 
genetic disease, was reported by Chaushu et al.: SIgAD in patients with Down syn-
drome, which results in recurrent upper respiratory and gastrointestinal infections 
[112]. Abnormally reduced IgA levels in parotid gland secretions were observed in at 
least 83% of patients with Down syndrome (p < 0.001) [112]. Jeraiby et al. showed 
that in Down syndrome, 69.57% IgG4 deficiency exists [113]. An additional deletion 
of IGHG4 is noted, which causes this immunodeficiency [113]. PMDs can affect 
systemic (most diseases) or local (SsIgAD) immunities [113]. There are quantita-
tive (FBN) [114] and qualitative, or functional immunodeficiencies (MPOD) [115]. 
The same cellular immunodeficiency can be quantitative and qualitative depending 
on the causative mutation: “classical” NKD (cNKD) (GATA2 mutation) and “func-
tional” NKD (fNKD) (FCG3RA3 mutation) [51]. PMD can be divided according to 
the affected immune system branch: phagocytosis [83], natural killer cells (cellular 
component of innate immunity) [51], T-lymphocytes (cellular component of adaptive 
immunity) [20], complement system [116], and immunoglobulins [117] (Panel 1). 
PMDs can be compensated (asymptomatic) [12], subcompensated (low-symptom-
atic “mild symptoms”[20]), and decompensated (clinically manifest; most described 
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cases). Partial and total PMDs can be distinguished by the depth of the decrease in the 
number of immune factors affected. Jamee et al. substantiated the distinction between 
total (serum IgA <7 mg/dL—”selective IgA deficiency” [SIgAD]) and partial IgA 
deficiency (PIgAD—serum IgA concentration is less than the lower limit but above  
7 mg/dL) show that both forms of immunodeficiency are due to an abnormally increased 
number of autoimmune polyendocrinopathies [118]. Sometimes, complete immuno-
deficiency forms were distinguished if the amount of the investigated immune factor 
was non [119]. Among partial immunodeficiencies, some authors distinguished sub-
total (“subtotal C6 and C7 deficiencies” by Orren—C6SD and C7SD) as opposed to 
total C6 and C7 deficiencies (C6Q0, C7Q0) [120] and subnormal (“subnormal IgG2 
deficiency”) [121,122] forms (Figure 1). It is also advisable to distinguish between 
temporary, or transient [123] (such as transient hypogammaglobulinemia of infancy) 
[117] and permanent, or persistent [123] PMDs (most diseases). It can be fixed by 
a combination of several PMDs in one person (combined immunodeficiencies [66] 
such as “combined C6D/C7D” [120]). There are combinations of primary classical 
immunodeficiency and PMD (for example, DiGeorge syndrome and MPOD [124], 
Leukocyte adhesion molecules deficiency type III and NKD [125], or C2 deficiency 
and C8BD [126]), but no specific term for these cases has been proposed yet, except 
the term “complex immunodeficiency” by Wawrzycka-Adamczyk K. et al. [127]. 
Sometimes PMD mimics secondary immunodeficiencies [128]. According to symp-
tom dynamics, it is possible to distinguish between cyclic immune deficiencies (CyN 
with 21-day cycles of manifestation) [49] and immune deficiencies with irregular 
manifestations (most diseases). No term has been proposed for PMDs that a patient 
has acquired after allogeneic bone marrow transplantation, as these are both genetic 
diseases that meet the criteria for primary immunodeficiency and acquired diseases 
that meet the criteria for secondary immunodeficiency [129] (Table 4).

Figure 1. Correlation of different forms of quantitative and qualitative PMD by 
the depth of deficiency of the affected immune factor.
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Table 4. Synopsys of proposed PMD classifications rubrics demonstrating diseases—clinical and laboratory variety.
№ Сlassification rubric Variety
1 By origin of the disease –	 Hereditary, inborn (congenital), acquired
2 By the affected form of immunity –	 Diseases of inborn and adaptive (acquired) immunity
3 By affected branch of immunity –	 Cellular, humoral

4 By affected immune factor/factors More than 30 immunodeficiencies with titles according to name of affected immune factor  
(see panel 1)

5 By family history familial, sporadic
6 By time of debut Intrauterine, at the day of birth, early onset (pediatric-onset), late onset (adult-onset), elderly onset
7 By frequency in population Rare, medium, frequent

8 By genetic nature

Acсоrding to mendelian laws of inheritance:
–	 Mendelian and non-mendelian
–	 According to type of inheritance:
–	 AD, AR, X-linked, codominant
–	 According to number of affected genes:
–	 Monogenic, bigenic, polygenic
–	 According to type of genetic anomaly:
–	 Chromosome aberrations, structure genes mutations, SNPs, mutations in immunoregulatory 

genes, epigenetic disorders
–	 According to pattern of genotype-phenotype relationships: 
–	 Monogenerational patterns of inheritance consistent with single gene, multigenerational patterns 

of inheritance consistent with single gene, multigenerational patterns of inheritance consistent 
with different genes

9 By clinical picture

According to character of clinical manifestation:
–	 Asymptomatic and symptomatic (minor infections, allergic, autoimmune, oncological and severe 

phenotypes)
–	 According to number of clinical syndromes:
–	 Clinically isolated (monosyndromic) or combined (olygo-, polysyndromic; mono-, polymodal)
–	 According to predominant affected compartment:
–	 Cutaneous, oral, gastroenterological, respiratory etc.
–	 According to predominant of associated nosological unit:
–	 PMDs in systemic lupus erythematosus, bronchial asthma, leukemias, sarcoidosis,  

COVID-19 etc.

10
By depth of the immune factor 
damage

–	 Quantitative (numerical) and qualitive (functional)
–	 Total and partial (for quantitative), total: complete and absolute; partial: subtotal, moderate and 

subnormal
–	 complete, profound, moderate (for qualitive)

11 By severity of the patient’s 
condition –	 Mild, moderate and severe (don’t correspond to depth of the immune factor damage)

12 By duration of immunological 
phenotype existence –	 Persistent and transitory

13 By evolutionary scenario of 
development –	 Newly diagnosed, progressive, chronic, oscillating, normalizing, reversible (reversal)

14 By regularity of the disease 
manifestation Irregular, regular (cyclic)

15 By spread of immune system 
damage –	 Systemic and local (skin and mucosal)

16 By combination with other 
diseases –	 Isolated (selective), combined (complex)

17 By curability Treatable, non-treatable
18 By specific rubrics Different in each disease 
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Panel 1: Classification of PMD in humans, taking into account both the affected 
branch of the immune system and affected immune factor
I. Disorders of the cellular branch of innate immunity
A)	 Quantitative:

(a)	 Neutrophil disorders:
–	 Familial benign [47,89,114,130,131] (constitutional, ethnic)  

[132–134] neutropenia (FBN, FCN, FEN), or “Duffy null neutrophil 
count” [78,135–137] or “Duffy null phenotype” [138];

–	 Chronic idiopathic neutropenia (CIN) [139–141], or chronic primary 
neutropenia [142–144];

–	 CyN [49,145–147], or ELANE-related neutropenia [148,149].
(b)	 Disorders of monocytes:

–	 Primary monocytopenia (PM) [150].
(c)	 Disorders of eosinophils:

–	 Chronic idiopathic eosinopenia (CIE) [151–153].
(d)	 Disorders of lymphocytes:

–	 Natural killer cell deficiency (NKD) [51,154–156];
–	 Natural killer T-cell deficiency (NKTD) [157–159];
–	 CD16 molecule deficiency (CD16D) [55,119].

B)	 Qualitative:
–	 Neutrophil MPOD [115];
–	 EPOD [19];
–	 CD64D [50];
–	 Primary perforin deficiency (PPD) [160].

II. Disorders of the humoral branch of innate immunity

–	 Deficiency of proteins of the complement system [161,162], primarily the 
terminal components of the cascade that form the membrane-attacking 
complex [163]—C6D [116], C7D [40,164], C8D [165], C9D [87]; 

–	 Mannose binding protein (lectin) deficiency (MBLD) [86,166,167,168];
–	 Mannose binding lectin associated serine protease 2 deficiency 

(MASP2D) [169];
III. Disorders of the cellular branch of adaptive immunity

–	 Idiopathic CD4+ T-cell lymphocytopenia (ICD4+TL) [15,108, 
170,–172], or so-called “AIDS without HIV” [173,174,175];

–	 CD8D [70].
IV. Disorders of the humoral branch of adaptive immunity
A)	 Hypogammaglobulinemias:

–	 Transient hypogammaglobulinemia of infancy (THI) [117,176–179];
–	 Unclassified hypogammaglobulinemia (UH) [14,176,180];

B)	 Dysimmunoglobulinemias:
(a)	 Selective isotype deficiencies [181]:

–	 Selective (isolated) IgM deficiency (SIgMD) [182–184];
–	 Selective (isolated) IgG deficiency (SIgGD) [185];
–	 Selective (isolated) IgA deficiency (SIgAD) [186–188];
–	 Selective (isolated) secretory IgA deficiency (SsIgAD) [189];
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–	 Selective (isolated) IgE deficiency (SIgED) [190–193], or “very low 
IgE producer” [194], or“undetectable serum IgE” [195], “ultra-low 
IgE” [196], “very low IgE” [197], or “low IgE” [198].

–	 Selective (isolated) IgD deficiency (SIgDD) [104];
(b)	 Selective subclass deficiencies [181]:

–	 Selective (isolated) IgG subclass deficiencies (SIgGSD) [99,199–201]: 
SIgG1D [13], SIgG2D [121,202], SIgG3D [203], SIgG4D [64,204];

–	 Selective (isolated) IgA subclasses deficiencies (SIgASD) [205]: 
SIgA1D [206], SIgA2D [207];

(c)	 Qualitive immunoglobulin deficiency [208]:
–	 Selective specific antibodies deficiency (SSAD) [209,210], including 

anti-polysaccharide antibodies (selective anti-polysaccharide antibod-
ies deficiency, SPAD) [211,212];

–	 Impaired glycosylation of IgA1 [147], or galactosa-deficient IgA1 [213].
(d)	 Other dysimmunoglobulinemias:

–	 Combined deficiencies of immunoglobulins of different classes and/or 
subclasses, such as combined IgA1, IgG2, IgG4, and IgE deficiencies 
in two siblings caused by deletions of the constant regions of heavy 
chains [66].

3.5. PMD clinical manifestations
PMDs are characterized by heterogeneous clinical pictures (so-called “different 

faces” [214]) and variable clinical course [115,215]. Asymptomatic PMD periods 
are associated with compensation mechanisms inside the immune system. In SIgAD, 
sometimes natural IgM molecules can be compensatory increased [216]. IgG and 
IgM cooperate in coating of intestinal bacteria in SIgAD [217]. NKT can compensate 
ICD4+TL in some cases [218]. The thesis of lifelong asymptomatic clinical course as 
a representative sign of PMD was refuted by Koskinen et al., who found that severe 
immune-dependent lesions develop during long-term follow-up in at least of 80% 
cases in initially asymptomatic blood donors with SIgAD [22].

Six key principles are applied to PMD: universality, heterogeneity, variability, 
non-linearity, non-specificity, and ambivalence (Figure 2).

The clinical picture of PMD is compound and includes at least four different 
levels, which are integrated as a whole clinical presentation in each case.

Level I (pentad of five main immunodependent syndromes)

PMDs are characterized by five main and five immunodependent syndromes: 
infectious [219–221], autoimmune [222–224], allergic [225,226], immunoinflam-
matory (for example, persistent immunoinflammatory enteropathy) [193], and 
oncological [227,228].

PMD clinical spectrum is well demonstrated by Picado et al. [193] on SIgЕD 
example: recurrent respiratory infections occurred in 34.6%, pneumonia in 30.7%, 
bronchiectasis in 30.7%, bronchial asthma in 19.2%, autoimmune syndromes in 
34.6% (autoimmune Hashimoto’s thyroiditis of 19%, rheumatoid arthritis of 10%, 
and autoimmune thrombocytopenia and/or neutropenia of 5.7%), eczematous derma-
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Figure 2. The main principles of PMD that will determine their peculiarity.

titis of 15.3%, chronic spontaneous urticaria of 17.3%, persistent immunoinflamma-
tory enteropathy of 21%, and malignant neoplasms with predominance of non-Hod-
gkin’s lymphoma of 13.4% of cases [193].

The results of a systematic review and meta-analysis of randomized controlled 
clinical trials prepared by Vosughimotlagh A. et al. show that in SIgAD, infectious 
manifestations occur in 64.8%, allergic lesions in 26.16%, and autoimmune syn-
dromes in 22.0% of cases [188].
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According to Caka et al., 24% SIgMD cases were asymptomatic, 45% had respi-
ratory and skin infectious manifestations; in 18% autoimmune and immunoinflam-
matory syndromes (Behcet’s syndrome, immune cytopenias, Crohn’s disease, Guil-
lain-Barré syndrome, and type 1 diabetes mellitus) were noted, allergies fixed in 15% 
patients, and in 9% malignant tumors diagnosed [17].

Régent et al. indicated that in patients with ICD4 + TL, opportunistic infections 
occur in 65% (in 50% of cases—invasive papillomavirus episodes), in 35%—auto-
immune syndromes, in 12.5%—malignant tumors, and mild symptoms or asymptom-
atic status noted in 20% cases [20].

In the epidemiological study of 18,487 people, a close association of SIgED was 
fixed with bronchial tree hyper-reactivity, otitis media, and bronchial asthma in chil-
dren and chronic sinusitis, autoimmune syndromes, and neoplasia in both children 
and adults [191].

Epidemiological study of 34,809 patients (21,875 children and 12,934 adults) 
demonstrated the association of SIgED and malignancies (26%) and autoimmune 
diseases (15.4% of cases) [197].

The development mechanisms of immunopathology in PMD are diverse. One 
reason for the development of allergic, autoimmune, and immunoinflammatory 
pathologies is the suppression of γ-IFN-mediated Th1 activity [229]. Secondary dys-
function of regulatory T-cells is also possible [229].

In PMDs, the infectious syndrome is an important, but often not such dramatic 
clinical phenomenon as in classical immune system diseases [230,231]. Infectious 
episodes may be atypical [232–236]. Some PMDs have a rather narrow spectrum 
of infectious manifestations, such as deficiencies of complement terminal proteins, 
which selectively increased the risk of meningococcal meningitis by 1000–10000 
times [165], or SPAD, which developed almost exclusively pneumococcal lesions of 
the respiratory system [76].

Most known PMDs have a wide range of infectious manifestations. For exam-
ple, MBLD develops bacterial [237], viral [238], fungal [239], and protozoal [240] 
lesions. Different PMDs are characterized by certain close associations with certain 
infectious agents such as MPOD selectively promotes the development of severe 
Candida lesions [36], NKD promotes predominantly herpes and papillomavirus 
infections [51], and ICD4+TL to intracellular opportunistic agents [107,108,241], 
such as cytomegaly, toxoplasmosis, aspergillosis, histoplasmosis, atypical mycobac-
teriosis, JCV and pneumocystis lesions [242–246] (Table 5).

Figure 3 shows the most indicative results of paraclinical studies of various 
organs and systems in patients with PMD from the author’s own clinical practice 
to demonstrate the diversity, multitropy, and severity of organ and system lesions 
in these diseases of the immune system, as well as the absence of paraclinical 
pathognomonic signs.

In a population-based cohort study involving 2100 patients with SIgAD and 
18,653 control persons, a significantly higher incidence of type 1 diabetes mellitus 
(5.9% vs. 0.57%), Crohn’s disease (2.4% vs. 0.42%), ulcerative colitis (1.7% vs. 
0.46%), rheumatoid arthritis (2.2% vs. 0.5%), juvenile idiopathic arthritis (0.76% vs. 
0.09%), systemic lupus erythematosus (0.57% vs. 0.06%), and autoimmune thyroid 
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Table 5. Differences in the main microbial factors depending on the affected immune factor in PMD.
PMD Affected immune factor Type of immunity Branch of immune system Microbes

FBN, CIN, CyN Neutrophils Innate Phagocytosis Staphylococcus, Streptococcus, 
Candida spp.

MPOD Neutrophils, monocytes Innate Phagocytosis Candida spp.
EPOD Eosinophils Innate Phagocytosis No
NKD, NKTD, 
CD16D NK, NKT-cells Innate Cellular Herpesviruses, papillomaviruses

THI, UH, class 
and subclass 
deficiencies

Immunoglobulins Acquied Humoral Pyogenic Gram-positive cocci

SPAD Immunoglobulins Acquied Humoral Pneumococcal infections

ICD4 + TL T-helpers Acquied Cellular
Herpesviruses, toxoplasmosis, 
atypical mycobacteriosis, JCV, 
histoplasmosis, pneumocystis

CD8D Cytotoxic T-cell Acquied Cellular Herpesviruses, respiratory 
viruses, Staphylococcus aureus

MBLD Mannose binding lectin Innate Complement

Staphylococcus aureus, 
Streptococcus pyogenes, 
Haemophilus influenzae, 
Pseudomonas aeruginosa, 
Escherichia coli

MASPD Serin protease type 2 associated 
with mannose binding lectin Innate Complement

Staphylococcus spp., 
Streptococcus spp., 
Mycobacterium tuberculosis

C6D, C7D, C8D, 
C9D

Proteins 6, 7, 8, 9 of 
complement system Innate Complement Neisseria spp.

disease (2.46% vs. 0.59%) [100]. The results of meta-analyses of randomized con-
trolled clinical trials indicate an association of MBLD with rheumatoid arthritis [247] 
and systemic lupus erythematosus [2].

The results of a meta-analysis of randomized controlled clinical trials by Gao et 
al. indicated that MBLD doubled the risk of sepsis in children (SMD = 1.00, 95%CI 
= 0.35 ∼ 1.65, P = 0.003) as an example of immunoinflammatory syndrome [248]. 

Speaking about the allergic syndrome in PMD, the systematic review of ran-
domized controlled clinical trials by Borta et al. indicated the development of atopic 
bronchial asthma in patients with MBLD [249].

Controlled studies indicated an association of SIgED with malignancy 
[190,196]. Therefore, the European Academy of Allergy and Clinical Immunology 
recommended that ultra-low serum IgE concentration had to be considered as a pre-
dictor of tumor growth syndrome [196]. The large population-based cohort study 
(2,320 patients with SIgAD and 23130 controls) demonstrated the association of 
SIgAD and cancer (especially gastrointestinal) HR = 1.64; CI = 1.07–2.50 [250] 
(Figure 4).

Level II (compound secondary syndromes)

PMDs lead to the development of a number of additional integral syndromes 
with complex pathogenesis, which are the result of the combined effect of the pentad 
immunodependen syndromes in ontogenesis such as sudden unexpected death [251], 
inborn anatomy anomalies [180], poor nutrition status [252], decrease of life quality 
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Figure 3. Semiotics of primary minor immunodeficiency manifestations according to 
paraclinical examinations (own observations):
Horizontal chest CT scan: bilateral interstitial pneumonitis in a patient with SIgMD; B. Anterior chest 
X-ray: pulmonary sarcoidosis in NKTD; C. Ophthalmoscopic picture of toxoplasma chorioretinitis in 
MPOD; D. MRI of the lumbosacral spine in sagittal projection in T2-weighted mode: lumbar myelitis 
of HSV-2 etiology in NKD; E. Optical coherence tomography data: local disorganization of neuroretinal 
layers in HHV-7-induced ANA-positive uveitis in MBLD; F. MRI of the brain in horizontal projection 
in FLAIR mode showing diffuse VZV-induced vasculopathy of small cerebral arteries in NKD; G. MRI 
of the brain in horizontal projection in T2-weighted mode, demonstrating the pattern of HHV-8-induced 
ventriculitis in ICD4+TL; H. Ultrasonographic data visualizing the phenomenon of pathological thick-
ening of the carotid artery intima-media complex as a manifestation of VZV-induced vasculopathy in 
NKD; I. MRI of the cervical spine in sagittal projection in T2-weighted mode with a pattern of HHV-8-
induced myelitis in ICD4+TL (own observations).
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[253], accumulation of pathological structural changes in organs [189], fertility dis-
orders [254], hemocoagulatory disturbances [255], endocrine disorders [118], intesti-
nal dysfunction [256], premature aging [257], increased mortality [258], the nervous 
[42] and psychical [259,260] disorders.

A large, controlled study showed a decrease in health-related quality of life in 
patients with SIgAD. The most significant risk factors for poor quality of life were 
the number of antibiotic courses per year (p < 0.001), the number of medications 
taken daily (p < 0.01), allergic rhinoconjunctivitis (p < 0.05), chronic musculoskele-
tal symptoms (p < 0.05), and anxiety and/or insomnia (p < 0.005) [253].

Patients with PMD can accumulate pathological structural changes in organs at a 
young age, such as bronchiectasis in SIgGSD [189] or bronchial tree remodeling due 
to bronchiolar damage in SsIgAD [189].

A population-based cohort study (613 women with SIgAD and 5,758 pregnant 
women without immunodeficiency) showed a high rate of low birthweight, prematu-
rity, and caesarean section in women with SIgAD [254].

A population-based study of 57,133 people showed that MBLD doubled the risk 
of myocardial infarction in persons aged 29–62 (OR = 2.04, 95%CI = 1.29 – 3.24) as 
an example of premature aging [255].

The development of autoimmune polyendocrinopathies in SIgAD (9.4% of all 
cases of multiple endocrine gland involvement) leads to secondary disruption of 
endocrine homeostasis regulations [118]. The cross-sectional clinical study showed 
that anterior pituitary insufficiency and executive endocrine disorders were typical 
for humoral immunodeficiencies, including SIgGSD and SPAD [261].

PMDs can induce persistent intestinal dysbiosis [256] and bacterial over-
growth syndrome [262], chronic inflammatory enterocolitis with atypical histo-
logical changes [67], and intestinal lymphoid nodular hyperplasia [263], persistent 
malabsorption syndrome [264] and pathological permeability of the intestinal wall 

Figure 4. Principal scheme of core PMDs clinical picture—so-called main pentad of immunodependent syndromes.
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(leaky gut syndrome) [262] as well as celiac [265] and Moyamoya [266] diseases, 
which can exist outside of a direct relationship with existing infectious, allergic, and 
autoimmune syndromes.

Patients with SIgED more often affected by hypertension [34 (37.7%) vs. 187 
(18.2%), p < 0.001], carotid stenosis [5 (4.9%) vs. 7 (0.7%), p = 0.003], coronary heart 
disease [26 (25.2%) vs. 87 (8.4%), p < 0.001], cerebrovascular [3 (2.9%) vs. 5 (0.5%), 
p = 0.029], and peripheral vascular disease [4 (3.9%) vs. 9 (0.9%), p = 0.024] [257]. 

According to the results of a population study, death risk in the first years after 
SIgAD diagnosis increased by 10 to 15 times [258].

PMD can affect both the central and peripheral nervous systems. Rudolph  
et al. showed that MPOD leads to autonomic dysfunction with impaired regulation of 
vascular tone, as the affected enzyme is involved in the regulation of the nitric oxide 
system [267]. Gibson et al. demonstrated that MBLD was an independent predictor 
for cerebral palsy development [42]. 

There is an association of SIgAD with obsessive-compulsive syndrome [260] 
and autism spectrum disorders [268]. MBLD can be associated with panic attacks and 
bipolar disorders [269]. A population-based study of 14 million respondents showed 
that primary humoral immunodeficiencies (including SIgGSD and SPAD) are asso-
ciated with various physical disorders and suicidal behavior in adulthood develop-
ment [270]. Data from a cohort study (1973–2013) of 4,294,169 participants indi-
cated primary humoral immunodeficiency in mothers, including selective SIgGSD 
and SPAD, led to an increased incidence of physical illness and suicidal behavior in 
children [271].

Level III (modification of another disease)

PMD, manifested by a pentad of major syndromes and secondary to inducing a 
number of additional phenomena with complex pathogenesis, can affect other genetic 
[165] and nongenetic [166] human diseases with modifying diseases’ manifestations 
and course, and causing the nosological interaction phenomenon.

PMD can modify [263] and critically complicate, including: by infectious syn-
drome [272], another genetic disease as Down syndrome and cystic fibrosis. PMDs 
can facilitate the transmission of highly virulent infectious pathogens (such as HIV) 
[273], modulate negative classical infections clinical course with complications: viral 
(including COVID-19 [274] and RSV [275]), bacterial (including brucellosis) [276], 
or protozoan (including leishmaniasis) [277], and even due to death [278,279]. PMD 
can aggravate somatic diseases (liver cirrhosis [280], gastritis or peptic ulcer [43], 
or pneumonia [281,282]). Garcia-Laorden et al. in a clinical trial (of 848 persons 
with community-acquired pneumonia and 1,447 controls) showed that people with 
primary MBLD had more severe sepsis (P = .007), more frequent acute respiratory 
failure (P = .009), multiorgan dysfunction (P = 036), intensive care unit admissions 
(P = .020), and higher mortality (P = .003) [283]. However, the severity of some 
diseases can be paradoxically reduced, for example, mild schistosomiasis in patients 
with MBLD [85] or protection from COVID-19 complications in SIgAD [284].

Level IV (modification of paraclinical data and interventions)
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PMDs can affect the information content of diagnostic tests [285] and instrumental 
examinations [286], the efficiencies of therapeutic [287,288] and preventive actions 
[289], surgical interventions [290], and contraception [91]. MPOD can cause pseudo-
neutropenia in automated blood formula calculation [285], EPOD prevents the forma-
tion of eosinophilia in rheumatoid arthritis exacerbations [291], SIgED complicates the 
serological diagnosis of atopic allergy [292], SIgAD—celiac disease [293], and SIgMD 
leads to errors in blood group determination by the ABO system [294]. MPOD causes 
pseudo-genitive dihydrorhodamine test results in diagnostics of the chronic granuloma-
tous disease [77]. ICD4 + TL due to a false positive diagnosis of AIDS [295].

NKD makes an impact on CT findings in pulmonary alveolar proteinosis [296] 
and MBLD on radiocontrast-induced renal damage [286].

Patients with PMD have a higher need for drugs [253], impaired drug biotrans-
formation [106], reduced effectiveness of therapy [288] because of lower intestinal 
drug absorption [264], impaired tolerance to drugs [297, 298] with induction of side 
effects [299,300–302].

PMDs can reduce the immunization effect of vaccines [289,303,304]. PMDs 
increase the need for vaccination [212] and frequency of vaccine-associated side 
effects [305,306].

Koturoglu et al. [287] noted, MBLD is a significant reason for adenoidecto-
mies and tonsillectomies in children due to recurrent bacterial infections of the upper 
respiratory tract lymphatic organs. SIgMD [307] due to early postoperative infec-
tions and CyN [308] changes the perioperative curative strategy in surgery. FBN and 
CyN can complicate dental interventions [309]. PMDs influence on the choice of 
anesthesia [310].

NKD is a contraindication to oral contraceptives [91].
PMDs can induce complications in medical procedures such as allogeneic hema-

topoietic stem cell transplantation [311], bone marrow transplantation [129], and 
solid organ transplantation [312] (Figure 5).

3.6. PMD diagnosis
There are several fundamental stages in PMD diagnosis:

1)	 Physical examination for assessing the current state of the patient’s health.
2)	 Anamnesis examination considering the frequency and severity of infectious, 

allergic, immunoinflammatory, autoimmune, and neoplastic episodes that may 
be associated with immunodeficiencies, as well as the atypical course of other 
diseases that may have been affected by immunodeficiency [115,313–315].

3)	 Performing general clinical laboratory tests, including searching for screening 
signs of PMD (decreased serum gamma-fraction of proteins in hypogamma-
globulinemia [316], decreased number of large granular lymphocytes in NKD, 
NKTD [51], etc.).

4)	 Study of the laboratory phenotype of immunodeficiency underlying immuno-
deficiency diseases and related manifestations, considering the peculiarities of 
laboratory diagnostics in such patients [317–320].
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Figure 5. Compound clinical picture of PMD with multilevel structure.

5)	 Integral health assessment to determine the presence and severity of additional 
phenomena associated with immunodeficiencies, such as fertility disorders, 
manifestations of premature aging, etc. [321,322].

6)	 Conducting differential diagnosis and formulating a primary clinical diagnosis.
7)	 Performing karyotyping, chromosomal microarray, and/or molecular genetic 

testing to identify chromosomal aberrations, mutations, or SNPs of genes asso-
ciated with immunodeficiency [323,324].
It is important to have a proper immunological observation with including 

the determination of all laboratory parameters related to the identification of com-
mon immune system diseases. Currently, there are a few laboratory centers where 
immunological tests meet the current requirements for PMD diagnosis. Below is a 
list of tests that should be included in the so-called “ideal” immunological observa-
tion for the diagnosis of PMD: 
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–	 A common analysis of blood with a leukocyte formula.
–	 Serum immunoglobulin class concentrations (IgM, IgG, IgA, IgE, IgD).
–	 Serum IgG subclasses concentrations (IgG1, IgG2, IgG3, IgG4).
–	 Serum IgA subclasses concentrations (IgA1, IgA2).
–	 Concentration of secretory IgA in saliva, urine, and/or feces.
–	 Serum titer/concentration measurement for specific antibodies to infectious 

agents, e.g., anti-pneumococcal antibodies, including before and after anti-pneu-
mococcal vaccine introduction.

–	 The number of CD3 + CD4 + T-lymphocytes in the blood.
–	 The number of CD3 + CD8 + T-lymphocytes in the blood.
–	 The number of CD3 + CD16 +CD56+ lymphocytes in the blood.
–	 The number of CD3–CD16 +CD56+ lymphocytes in the blood.
–	 The number of CD3–CD19 + B lymphocytes in the blood.
–	 The number of CD64+ cells in the blood.
–	 The concentration of complement system proteins in blood serum (C6–C9).
–	 The concentration of mannose-binding lectin in the blood serum.
–	 Serum concentration of serine proteases 1 and 2 associated with mannose-binding 

lectin.
–	 Neutrophil MPOD activity in the blood.
–	 Eosinophilic peroxidase activity in the blood (Table 6).

3.7. PMD treatment
Lifestyle modifications and symptomatic treatment of comorbidities (anxiety, 

depression, or insomnia) can significantly improve the life quality of PMD patients 
[253]. Prophylactic or occasional antibiotic therapy can be used to prevent or treat 
bacterial infections in immunocompromised patients. In case of viral and fungal dis-
eases, antiviral and antimycotic drugs can be prescribed. It seems obvious that the 
strategy of antimicrobial chemotherapy does not adequately affect the risk of aller-
gic, autoimmune, and neoplastic PMD complications. Repeated vaccination with a 
23-valent conjugate antipneumococcal vaccine and a nonconjugate Hemophilus influ-
enzae vaccine can be used in SPAD [212]. The drug OM-85 BV (broncho-vaxom) has 
undergone several controlled trials to reduce the frequency of infections in patients 
with SIgAD and SIgGSD [338].

For patients with severe PMD who fail to reduce the frequency of infectious 
episodes with an antimicrobial treatment strategy, basic immunotherapy is recom-
mended according to the results of controlled trials and clinical reports (level of 
evidence C, except for intravenous immunoglobulin for humoral immunodeficien-
cies—B) (panel 2). The advantage of basic immunotherapy is not only the systemic 
effect on the infectious process but can help with allergic, autoimmune, and neoplas-
tic complications of PMD.

In humoral PMD, 5–10% normal human IgG-containing intravenous immuno-
globulin is used as a basic substitutional (replacement or reconstitution [339]) immu-
notherapy [340,341] with low incidence of side effects [342,343]. During the saturation 
phase, immunoglobulin is introduced dosage of 600–800 mg/kg/month, and during the 
maintenance phase, 200–400 mg/kg/month under the control of the results of immuno-



24

Journal of Biological Regulators and Homeostatic Agents 2026, 40(1), 3683.

Table 6. Methods of measurement, reference values of laboratory parameters, and criteria for immunodeficiency in the 
diagnosis of PMD.
Indicator Method Reference values Immunodeficiency criteria Units Availability
FBN, CIN, CyN CBA 2.0–4.5 [47] ˂2.0 [47] x109/L Available

THI, UH

ELISA, nephelometry, 
Mancini immune-
diffusion, 
radioimmunoassay

Total serum 
concentration of all Ig 
classes from 7.0 to 18.0 

˂7.0 [14] or less than 2 SD from the 
lower limit of normal range for each 
class of immunoglobulin [94]

g/L Available

SIgMD 0.8–1.6

0.8–0.4—”unclassified primary 
antibody deficiency” (unPAD) [325], 
“possible sIgMdef” (PIgMD) [18]—
below 2 SD from the lower limit 
of normal range [10]; ˂0.4—total 
immunodeficiency, SIgMD [95], or 
“truly sIgMdef” [184]

g/L Available

SIgGD 6–15 ˂6 [185] g/L Available

SIgAD 0.6–2.5 0.6–0.07—partial, ˂0.07—total 
immunodeficiency [118] g/L Available

SIgЕD ELISA 30–100

10–5—partial, 5–0—total 
immunodeficiency (classic ELISA) 
[326]; lower 2.0 (modern high-
sensitive ELISA) [195, 193]

IU/mL, or 
kU/L Available

SIgDD ELISA 14–85 [92] ˂14 [92] mg/L Rare

SIgG1D ELISA, IBA 60–70

˂60, ˂3.6 g/L [90], or less than 
2SD of the age median [122]; or 
IgG1:IgG2:IgG3:IgG4 is equivalent 
22:8:2:1 (better demonstrates subclass 
deficiency than absolute and relative 
values) [327]

% Rare

SIgG2D ELISA, IBA 20–30

˂20 or ˂1.2 g/L [90]; or less than 
2SD of the age median [122]; or 
˂IgG1:IgG2:IgG3:IgG4 is equivalent 
22:8:2:1[327]

% Rare

SIgG3D ELISA, IBA 5–8

˂5 or ˂0.3 g/L [90] or less than 
2SD of the age median [122] or 
˂IgG1:IgG2:IgG3:IgG4 is equivalent 
22:8:2:1 [327]

% Rare

SIgG4D ELISA, IBA 1–3% ˂1 or ˂0.06 g/L [90] or 
IgG1:IgG2:IgG3:IgG4 =22:8:2:1 [327] % Rare

SIgA1D ELISA IgA1: IgA2 is equivalent 
9:1 [328] ˂9:1 [328] – Rare

SIgA2D ELISA IgA2:IgA1=1:9 [328] ˂1:9 [328] – Rare

SsIgAD Micro-ELISA, immune-
turbidometry 4–30 [329] ˂4 [329] mg/dL Available

SPAD ELISA
IgM = 37–75; IgG = 
26–79; IgA = 13–44 
[330]

Absent or reduced serum 
concentration of specific 
antibodies to the causative agent 
of recurrent infections, especially 
antipolysaccharide antibodies in 
pneumococcal lesions, absence or 
reduced response to the multivalent 
antipneumococcal vaccine [331] 
(<0.035 μg/mL) [90]

U/mL Rare

CD4 + TL FC 500–1,500 [108] ˂500 [108] Cells/µL Available
NKD FC 5–15 [51] ˂5 (75 × 109/L) [51] % Available
NKTD FC 3–8 [53] ˂3 (45 × 109 /L) [53] % Available
CD8D FC 21–35 ˂21 (315 × 109/L) [70] % Available
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Indicator Method Reference values Immunodeficiency criteria Units Availability

C6D

Hemolytic assay 
(СHA50, AHA50, 
LHA50), SDS-PAGE, 
IBA, ELISA 

45 (±16) or 20–80 [120]
˂0.03 for the total form and range 
from 0 to 37 and even from 0 to 79 for 
the subtotal form [120]

mcg/mL Rare

C7D 90 (±36) or 30–180 [332] ˂0.03 for the total form [332], 0–27 and 
even 0–69 for the subtotal form [120] µg/mL Rare

C8D 72.5 (±3.54) [75]
˂0.03 for the total form, 13.0 (±0.64), 
12.0 (±0.86) and 15.0 (±1.17) as 
examples of subtotal deficit [75]

µg/mL Rare

C9D 28.5–99 [76] ˂0.03 for the total form [76] µg/mL Rare

MBLD ELISA 1000–4500 [333]

1,000–500—partial, ˂500—total, 
˂50—complete immunodeficiency 
[335]; or very low (˂100), low 
(200–999) [334]

ng/mL Rare

MASP2D ELISA 100–1200 [335] ˂100 [105] ng/mL Rare

MPOD

ELISA, FC, western 
blot, guaiacol 
peroxidation, alanine 
decarboxylation test 

18–23 [336] ˂18 [336] conventional 
units Rare

EPOD Immunohistochemistry 1.25–80 [25,337] ˂1.25 [25,337] ng/mL Rare
CBA—Common blood analysis
ELISA—Enzyme-linked immunosorbent assay
IBA—Immunoblotting analysis
FC—Fluid cytometry
SDS-PAGE—Sodium dodecyl sulphate poly acrylamide gel electrophoresis

globulin concentration measuring [344,345]. In intravenous immunoglobulin intoler-
ance, 10% normal human IgG-containing immunoglobulin for the intramuscular route 
at a dosage of 25–50 mg/kg/week can be used as an exception to the rule [346]. Normal 
human IgG-containing immunoglobulin enriched with IgA and IgM can be used for 
the treatment of isolated deficiencies in these immunoglobulin classes, but the evi-
dence base for the effectiveness of this drug is limited to case reports and the results of 
small, controlled trials [347]. Immunoglobulin therapy is more than just a replacement 
treatment. The immunoglobulin drugs can modulate antibody production by affecting 
B-lymphocytes’ Fc-receptors, suppress allergic [348–351], autoimmune, and some 
neoplastic [352] complications associated with PMD.

Figure 6 shows data from the author’s clinical practice, which demonstrates 
a dramatic positive dynamic of paraclinical signs of severe lesions of organs and 
systems after the addition of targeted immunotherapy, taking into account not the 
form of associated immune-dependent lesions, but the form of causal immunodefi-
ciency. The data in this figure clearly demonstrate the enormous potential of stratify-
ing immune-dependent diseases by causal PMDs to ensure targeted immunotherapy 
of PMDs as an etiological factor of immune-dependent syndromes.

In MBLD, as well as in deficiencies of complement proteins C6–C9, fresh frozen 
or cryopreserved human blood plasma from a compatible donor is used in an intra-
venous drip (dosage of 10–15 mL/kg once every 2 weeks) due to enough content of 
necessary immune factors in healthy human blood serum [353]. Natural [354] and 
recombinant [355] human mannose-binding protein successfully passed several con-
trolled trials in MBLD. It has advantages over plasma due to greater selectivity and 
better tolerability [355].

Table 6. (Continued).
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Figure 6. Results of immunotherapy of immunodependent manifestations in primary 
minor immunodeficiencies (own observations): 
Elimination of EBV-induced bilateral interstitial pneumonitis in a child with SIgED with intravenous 
immunoglobulin therapy (A—before treatment, В—after treatment). Achievement of remission of 
refractory recurrent herpes zoster in a patient with MBLD on the background of cryopreserved blood 
plasma (C, D—before treatment, E—after immunotherapy). Positive dynamics of HHV-6-associated 
multifocal leukoencephalitis during the use of rhIFNγ in MPOD (F, G). Regression of EBV-induced 
cerebellitis on the background of rhIFN-α2b immunotherapy for NKD (H—before treatment, I—1 
month, J—2 months after the immunotherapy started). Elimination of CMV-induced thalamic enceph-
alitis on the background of rhIFN-α2b immunotherapy for NKD (K—before immunotherapy, L—after 
immunotherapy). 
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In case of cellular immunodeficiencies, cytokine therapy—natural, lympho-
blastoid, recombinant α–, β–- and γ-interferons (rhIFN–α, –β, –γ), recombinant 
human interleukin-2 and -7 (rhIL2, rhIL-7)—is used as basic immunotherapy 
[306,356–358]. The peptide-based immunotherapeutic agent thymosin-α1 (Thα1) 
was successfully tested in clinical trials for ICD4 + TL [359] and NKTD [360] in 
humans. The controlled trial demonstrated a clear benefit of the long-term continuous 
immunomodulatory effect of rhIFN-γ in MPOD [336].

In case of primary neutropenia, natural and recombinant human granulocyte and 
granulocyte-macrophage colony-stimulating factors (rhG-CSF, rhGM-CSF) are pre-
scribed as basic immunotherapeutic agents (dosage of 5–10 μg/kg by subcutaneous, 
intramuscular injections, or intravenous infusions) from 3 times a week to twice a 
month depending of the neutropenia severity, under the blood neutrophil granulo-
cytes count control [361,362]. In contrast to Costman’s disease, such therapy does 
not increase the risk of myelocytic leukaemia development in PMD [78].

Several successful attempts have been made to transplant allogeneic bone 
marrow into patients with severe ICD4+TL, NKD, SIgAD, and SIgGSD, which 
ensured complete restoration of the immunological phenotype. Suga et al. reported 
a successful bone marrow transplantation in an 8-year-old boy with severe SIgG1D 
from an HLA-identical MLC-negative sister, as neither prophylactic antibiotic ther-
apy nor intravenous immunoglobulin reduced the frequency of infectious episodes. 
After transplantation, there was a recovery of serum IgG1 concentration and full 
compensation of the clinical status [363]. However, there were cases of PMDs’ 
unexpected transmission from the donor to the recipient, such as SIgG2D, which 
indicates the need for a thorough immunological examination of the donors before 
transplantations [129]. Rarely, allogeneic hematopoietic stem cells have also been 
successfully transplanted in the case of NKD caused by a GATA2 mutation [364]. 
However, in PMDs, in case mutant genes were expressed outside the immune sys-
tem (for example, in hepatocytes in MBLD), bone marrow transplantation can  
be ineffective. 

Panel 2: Immunotherapeutic agents as basic therapy for PMD in humans
Cellular immunodeficiencies:

–	 Preparations of natural (leukocyte), lymphoblastoid, and recombinant (α2a–, 
α2b–) human IFN-alpha (nhIFN–α, lhIFN–α, rhIFN–α2a, rhIFN–α2b) in a dose 
of 1–3 million IU, intramuscular or subcutaneous once every 48 h [358,365–
368];

–	 Recombinant human IFN–beta1a (rhIFNβ1a), dosage 22–44 μg (6–12 million 
IU), three times a week by intramuscular or subcutaneous injections [369];

–	 Recombinant human IFN–γ (rhIFNγ), dosage of 500,000–2 million IU, intra-
muscular or subcutaneous use, once every 48 h [306,370,371];

–	 Recombinant human IL–2 (rhIL–2), dosage of 1.5 million MO per day; four 
subcutaneous injections with an interval of 3 weeks for a course [357,372,373];

–	 Recombinant human IL–7 (rhIL–7), dosage of 10 µg/kg [61,356,374];
–	 Thymosin-alpha1 (Thα1), dosage of 1.6 μg twice a week by intramuscular or 

subcutaneous [359,360,375];
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–	 Preparations of natural α/β-defensins combined by alarmines/adrenomedullin 
[53,376] or isolated [377–380], dosage of 2 mL of standardized solution by 
intramuscular route, once every 24 or 48 h; 

–	 Human dialyzable leukocyte extract (hDLE) for intramuscular administration of 
4 mL once a week [3381] and oral of 1 fl of standardized solution once a week 
[382,383];

–	 polyinosinic-polycytidylic acid (poly I:C, Poly(I)-Poly(C)), dosage of 10 mg/
mL, intranasal [384];

–	 Reduced L-glutathione (rL-GTH), dosage of 1,000–2,000 mg per day per os 
[364,385–387];

–	 Glycyrrhizic acid (GA) at a dose of 400–1600 mg per day per os [24];
–	 Adoptive T-cell transfer [389];
–	 Transplantation of allogeneic human hematopoietic cells [364, 390, 391];
–	 Cord blood transplantation [392];
–	 Allogenic bone-marrow transplantation [363].

Humoral immunodeficiencies (antibody deficiencies):
–	 Immunoglobulin replacement therapy (5–10% IgG-containing normal human 

immunoglobulin for intravenous infusions at a dose of 200–800 mg/kg per 
month [344,349,393,394] and for intramuscular use at a dose of 25–50 mg/kg 
per week [346], (or even subcutaneously [395,396]);

–	 Normal IgG-containing human immunoglobulin enriched with IgA and IgM 
molecules, dosage of 100–400 mg/kg per month by intravenous infusions 
[347,397–399];

–	 Fresh frozen and cryopreserved human blood plasma, dosage of 10–15 mL/kg 
by intravenous infusions once every two weeks, considering the blood group 
type [400];

–	 Transfer factor based on bovine colostrum standardized immune extract, dosage 
from 1 to 60 g per day per os [401–403];

–	 Microbial lysate medicines, including OM-85 BV at a dose of 3.5–7 µg per day 
per os, a course of 10 days with 20-day intervals [338] and natural beta-glucan 
at a dose of 900–1800 mg per day per os [404–406];

–	 Vaccination with 23-valent conjugate antipneumococcal vaccine [212].
Phagocytic immunodeficiencies:

–	 Recombinant human IFN-gamma (rhIFNγ), dosage of 500,000 IU by intramus-
cular or subcutaneous injections once every 48 h [336,407];

–	 Muramyldil(tri)peptide (MDP, MTP) at a dose of 2 mg by intramuscular injec-
tions once every 5 days [408,409].
Deficiencies of complement proteins:

–	 Fresh frozen and cryopreserved human blood plasma, dosage of 10–15 mL/kg 
by intravenous infusions once every 2 weeks, considering the blood group type 
[353,354,410];

–	 natural and recombinant human mannose-binding protein (nhMBL, rhMBL)  
(in progress) [354,355];

–	 vaccination with MenB-4C antimeningococcal vaccine [165].
Neutropenia
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–	 Natural and recombinant human granulocyte colony-stimulating factor (rhG-
CSF, or filgastim, lenograstim) by intramuscular or subcutaneous injections in a 
dose of 10-15 μg/kg 2-3 times a week [313,362,411–413];

–	 Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-
CSF or sargramostim), dosage of 2-3 µg/kg by intramuscular or subcutaneous 
injections [361];

–	 Human leukocyte mass [414].

4. Discussion

4.1. Conception of PMDs in humans
This systematic review summarizes the deep and diverse scientific knowledge 

on PMD in humans, having analyzed all the main clinical attributes of this pathology, 
from etiology to treatment. The accumulated data allow us to form a theory about 
PMD. The basis of this theory may be the idea of ​​the heterogeneity and complexity of 
the phenomenon of immunocompromise in humans. Along with the classic primary 
immunodeficiencies, rare extreme experiments of nature, there are a large number of 
minor diseases of the immune system, which are widely represented in the population 
and form a different pattern of immunocompromise among carriers. These PMDs, 
by their combined frequency among people and diversity, can explain the origin and 
heterogeneity of immune-dependent pathology in humans, the association of this 
pathology with microbial triggers, as well as the tendency to increase its frequency 
in the population. It can be said that PMD is a universal model of the etiological fac-
tor of immune-dependent pathology on a population scale. Recognizing the concept 
of PMD, we transfer immune-dependent syndromes from the category of idiopathic 
to the category of symptomatic. This fundamentally changes both theoretical ideas 
about immune-dependent syndromes and has important practical consequences.

The essence of the concept lies in the fact that PMD, due to the loss of one or 
more immune factors, forms a state of immune imbalance, which in the long term can 
lead to the formation of two interrelated phenomena. The first of them is a decrease 
in immune resistance due to the loss of the function of the affected immune factor. 
This reduced immune resistance in the clinic is realized in the form of infectious and 
oncological syndromes. The second phenomenon is called immune dysregulation. 
This condition is formed due to the loss of reciprocal relationships between immune 
factors that balance the system, with the loss of one of them. Immune dysregula-
tion, in turn, manifests itself clinically in the form of immunoinflammatory, allergic, 
and autoimmune syndromes. This is how the main immune-dependent syndromes in 
PMD are formed.

The relationship between the phenomena of reduced immune resistance and 
immune dysregulation is obvious. For example, infectious agents that can accumulate 
in the body of people with PMD as a result of decreased immune resistance can act as 
triggers of autoimmunity in conditions of immune dysregulation, and the autoimmune 
reaction itself, mediated by immune dysregulation, can exacerbate the phenomenon of 
reduced immune resistance due to additional consumption of the affected immune fac-
tor when it is involved in the implementation of immune reactions of autoaggression 
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Figure 7. Elementary schematic diagram of the mechanism of induction of autoim-
munity in immunocompromised individuals with PMD (for example, system SIgAD-
EBV-SLE in IFH1 carrier).

(synergistic effect). However, antagonistic forms of interaction are also possible, 
when the loss of an immune factor that causes reduced immune resistance can weaken 
the effector mechanisms of immune-dependent syndromes, if the key component of 
these mechanisms is the lost immune factor. It can be said that the complex interaction 
between the phenomena of reduced immunoresistance and immune dysregulation as 
a manifestation of the dialectical law of struggle and unity of opposites is a kind of 
internal engine that determines the dynamics of the development of the clinical phe-
notype of PMD during the interaction of a person with environmental factors during 
ontogenesis (Figure 7).

4.2. Scientific advancement
No systematic review has been published on the problem of PMD to date. There-

fore, this is the first generalization of scientific data in more than 60 years of scien-
tific research. The need for such a generalization has long been overdue. The data 
obtained allows us to create a foundation for the study of PMD in humans by summa-
rizing and systematizing the scientific data accumulated to date, showing where we 
are currently on the path of continuous scientific discoveries, to understand the accu-
mulated evidence, identify its advantages, disadvantages, and gaps, and choose the 
optimal paths for further clinical research. The presented systematic review allows 
us to take a deeper look at the causes of the development of immune-dependent 
pathology in humans, the trend of increasing the frequency of such lesions in modern 
humans, and to improve our knowledge of the mechanisms of development of asso-
ciated with PMDs infectious pathology, malignant neoplasms, ways of disruption 
of immune tolerance with the development of autoimmune and allergic pathology, 
as well as to find ways and means of better management of the pathological pro-
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cess. Therefore, these data enrich the arsenal of knowledge of many disciplines—
clinical immunology, infectious diseases, oncology, rheumatology, allergology, and 
many others. At the same time, this will allow us to revise the existing concepts 
of infectious, oncological, allergic, and autoimmune pathology in humans, making 
significant adjustments to the ideas about the origin of this pathology, factors of pre-
disposition and prevention, identification of individual risk of formation, diversity 
of pathogenesis pathways, as well as diagnostic and treatment algorithms. The data 
presented in this systematic review allows us to initiate additional clinical studies not 
only in clinical immunology regarding the diagnosis of PMD, the study of their het-
erogeneity, improvement of approaches to diagnosis and treatment, but also in related 
disciplines—oncology, infectious diseases, allergology, rheumatology to assess the 
heterogeneity and multivariate nature of these phenomena, differences in pathogen-
esis, clinical picture, informativeness of diagnostic tests and effectiveness of thera-
peutic interventions. It is possible to study the heterogeneity of immune-dependent 
syndromes depending on different causal PMDs, which affects both the mechanism 
of development of immune-dependent pathology, prevalence in the population, gen-
der- and age-dependent differences, possibility of approbation of new diagnostic, 
treatment and prophylactic approaches, and other important clinical attributes.

4.3. Clinical implications 
It should be recognized that at present, most PMDs are ignored in clinical prac-

tice. There are no requirements for identifying the causes of immune-dependent 
diseases, which are still considered idiopathic phenomena. This narrows the pos-
sibilities of using a multidisciplinary approach and the possibilities of personalized 
medicine, and deprives access to etiological treatment. The introduction of the con-
cept and classification of PMD into clinical practice can revolutionize the clinical 
management of patients with immune-dependent pathology. First, the conceptual 
approach changes. It is currently postulated that primary immunodeficiencies are 
rare phenomena. The concept of PMD indicates the opposite, that primary immu-
nodeficiency is a component of the routine practice of a doctor. This increases the 
requirements for the level of knowledge of general practitioners, as well as specialists 
in immune-dependent pathology, in clinical immunology. This requires improving 
access to immunological services, increasing the number of laboratories, expand-
ing the range of available immunological tests, and wider coverage of patients with 
immunodependent pathologies under the supervision of general practitioners with 
immunological examinations. This also necessitates significant changes in the inter-
pretation of immunological examination results—it is necessary not to ignore the 
detected PMDs, but to recognize their clinical significance in accordance with the 
evidence accumulated so far, to carry out genetic verification of the diagnosis, to 
include the detected PMDs in the structure of clinical diagnoses as an ethologi-
cal factor of associated immunodependent pathology, to stratify immune-mediated 
syndromes by forms of causal PMDs and, conversely, different forms of PMD by 
types of associated immunodependent pathology, to more widely involve multidisci-
plinary groups including clinical immunologists, to add etiotropic immunotherapy to 
the conventional pathogenetic and symptomatic therapy of immunodependent syn-
dromes, which is the basic therapy of causal immunodeficiency, opening the way to 
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complex personalized treatment. Corresponding changes should be made to statisti-
cal documentation and electronic databases of medical histories, as well as to clinical 
guidelines and recommendations.

4.4. Limitations
It is necessary to admit that PMDs are studied heterogeneously, along with 

deeply studied immunodeficiencies, such as SIgAD, MBLD. There are nosologies 
that have been reported quite a bit, for example, EPOD, SIgDD. For some forms of 
PMD, there are still no thorough reviews, systematic reviews, and meta-analyses. 
During the long period covered by this systematic review, different laboratory mea-
surement methods, units, and different diagnostic criteria for some PMDs were used, 
which makes it difficult to compare and generalize the results. Some immunotherapy 
methods that have been tested for certain PMDs have not yet undergone randomized 
controlled clinical trials. All these features create certain limitations in the systemati-
zation of knowledge about PMDs, and the correction of these shortcomings should 
be the subject of further clinical research.

4.5. Directions for further research
Analysis of the accumulated scientific data in the field of PMD studies allows 

us to identify gaps and contradictions that should be the subject of further scientific 
research. Efforts should be directed to identify new forms of PMD in order to form 
a holistic picture of the spectrum of these diseases, expand the list of genetic abnor-
malities underlying these or other PMDs, conduct an in-depth study of the patho-
genetic mechanisms of the development of immune-dependent pathology in PMD, 
clarify data on the correlation between laboratory and clinical phenotype, validate 
clinical and laboratory criteria for the diagnosis of PMD, improve laboratory tests for 
the identification of certain forms of PMD, and also develop additional methods of 
immunotherapy. The goal of such research should be the development of means of 
primary and secondary prevention of PMD on a population scale to achieve control 
over the associated immune-dependent pathology.

5. Conclusion
The presented systematic review summarizes the accumulated data on PMD in 

humans over the past 65 years. This is the first attempt to systematize knowledge 
on this problem throughout the entire period of its study. Due to the work carried 
out, it was possible to propose a definition of the term PMD, outline the main differ-
ences from classical immunodeficiencies, propose diagnostic criteria for PMD, out-
line their genetic heterogeneity, differences in prevalence in the population, present 
the classification of these diseases, demonstrate the structure of the clinical picture, 
and approaches to diagnosis and treatment. Thus, all clinical attributes of PMD as 
human diseases were worked out. This allowed us to form a scientific concept of 
PMD, which can form the basis of both the modern doctrine of PMD in humans and 
ideas about the state of immunocompromise and immunodependent pathology. The 
obtained data have significant scientific and practical significance and determine the 
optimal directions of further scientific research in this area.
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Al et al. [197] in their population-based study ask an important question: “Is 
There a Clinical Significance of Very Low Serum Immunoglobulin E Level?” ulti-
mately demonstrating a sharp increase in the frequency of allergic, autoimmune, and 
oncological syndromes in individuals with this PMD. Thus, physicians should be 
well informed about the problem of PMD, and this pathology should be widely diag-
nosed in clinical practice in diverse immune-dependent pathologies. Currently, it is 
believed that PMDs are common genetic immune diseases that lead to form infectious, 
allergic, autoimmune, immunoinflammatory, and oncological syndromes, some inte-
gral phenomena with a complex pathogenesis (premature aging, fertility disorders, 
endocrine dysregulation, etc.), modify the course of genetic, infectious and somatic 
diseases, and create difficulties in diagnostic, therapeutic, and preventive interven-
tions. Due to their high frequency in the population (and for some nosological forms, 
extremely high) and a sufficient degree of manifestation, PMDs form a great burden 
on the medical care system, society, and the state, including financial costs, being 
mostly a hidden phenomenon that is often ignored in clinical practice. The concept of 
PMD provides information on the etiology of various immunodependent syndromes 
in humans, which are currently considered mostly idiopathic, and, at the same time, 
allows for not only pathogenetic and symptomatic but also etiotropic treatment in 
such cases. Such an approach’s introduction into clinical practice could revolutionize 
the diagnosis and treatment of PMD-associated immunodependent diseases. This will 
allow uniting seemingly heterogeneous immunodependent syndromes by a single eti-
ological factor, implementing an integrative approach to patients’ health assessment 
and clinical management. Therefore, the expected benefit from the proper imple-
mentation of PMD diagnostics among patients with immune-dependent diseases and, 
accordingly, the coverage of these individuals with targeted immunotherapy may be 
an important step towards improving the health of modern humans. Scientific efforts 
in this direction are difficult to overestimate.

However, the doctrine of PMD was formed spontaneously, so there are certain 
difficulties in systematizing knowledge on this problem. Taietti et al., on the example 
of SIgMD, demonstrate the achievements, controversies, and gaps in the modern 
scientific view on PMD [399]. Therefore, scientific research into PMDі in humans 
should be intensified.

Despite certain difficulties, the existing evidence base allows for an appropri-
ate diagnostic and treatment process for PMDs. Vo Ngoc et al. referred to the “long 
and winding road” of scientific research and clinical understanding of PMDs on the 
SIgAD example [415], emphasizing the unprecedented philosophical and organiza-
tional challenges faced by scientists and clinicians in dealing with these diseases 
[416,417]. We have effective and safe immunotherapeutic approaches to PMDs now 
[418,419]. “Forgotten”, “ignored”, and “underestimated” PMD should become a 
more frequent object of clinical research and an important component of the routine 
clinical practice of medical specialists of various profiles, which can bring medical 
care for immuno-compromised patients to a qualitatively new level [420–424]. It is 
necessary to intensify further research into the key clinical attributes of PMD, which 
will allow the application of etiotropic personalized strategies for the management of 
patients with immune-dependent pathology, achieving eradication or, at least, deeper 
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control over the pathological process, and allowing for more effective primary and 
secondary prevention of immune-mediated pathology at the population scale through 
the integration of related medical disciplines.
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