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Background: Observational studies have reported an association between immune cells and digestive diseases. We sought to
assess the relationship between immune cells and the risk of gastricmalignancy by two-way two-sampleMendelian randomisation
(MR) analysis.
Methods: This study used a comprehensive two-sample Mendelian randomisation (MR) analysis to determine the causal rela-
tionship between immune cells and gastric malignancy (GC). Based on publicly available genetic data, we explored the causal
relationship between 731 immune cell signatures and GC risk. We performed Mendelian randomisation (MR) analyses using
genetic variants strongly associated with neutrophil, lymphocyte, eosinophil, basophil and monocyte counts as instrumental vari-
ables (IVs). Comprehensive sensitivity analyses were used to verify the robustness, heterogeneity and horizontal pleiotropy of
the results.
Results: Two-sample MR analysis revealed that multiple immune cell phenotypes were significantly associated with the risk of
gastric malignancy. Among the phenotypes with low uncorrected p-values, including CD14- CD16- AC (p< 0.001; OR = 0.9730;
95% CI = 0.9598–0.9863); DN (CD4- CD8-) AC (p< 0.001; OR = 1.1483; 95% CI = 1.0607–1.2432); IgD on IgD+ (p< 0.001; OR
= 0.8883; 95% CI = 0.8289–0.9520). Meanwhile, we used Simple mode, Weight median, and Weight mode, all of which led to the
same conclusion. Moreover, in our further analysis, gastric malignancy also had a causal effect on the above immune cell types
when gastric malignancy was used as an exposure factor, and the results were statistically significant.
Conclusion: The study underscores the crucial role of immune cells in GC development, providing key insights for future re-
search. The statistically significant associations between specific immune cell phenotypes and gastric malignancy risk highlight
potential targets for therapeutic interventions aimed at modulating the immune response in GC, thereby opening avenues for
precision medicine approaches in the treatment of this disease.
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Introduction

Cancer is an important causative agent of metastatic
and invasive malignant tumours and poses a major threat
to human health. Gastric cancer ranks among the top five
in terms of prevalence and mortality. Helicobacter pylori
infection, high sodium diet, and disruption of autoimmune
function have been identified as prominent factors under-
pinning the increased risk of cancer [1,2]. Researchers
have actively endeavoured to explore and disseminate a
common landscape of gastric malignancy (GC) risk factors.
Nonetheless, the complexity of cancer risk remains largely
enigmatic and requires continued academic research. De-
spite serious efforts to improve and manage GC, there are
still a considerable number of journals working to alleviate
the enormous burden of disease prevalent in the field.

Epidemiological studies have shown that autoimmune
function is closely related to malignant neoplastic diseases.
Immune cells can recognise mutant proteins produced by
viral and mutant genes as tumour antigens. The newly
formed antigens on the surface of tumour cells are recog-
nised by the immune system, which triggers an immune
response cytotoxic T cells expressing CD8 and CD3. im-
mune checkpoints present in immune system molecules are
regulators of immune signalling and play an important role
in activating T cells as well as recognising and destroying
tumour cells [3]. Previously, PD-1, PD-L1, and CTLA-4
blockers have made significant breakthroughs in the im-
munotherapy of gastric cancer. Therefore, the search for
other candidate checkpoint inhibitors is imminent. Immune
cells can infiltrate gastric tissues, leading to the develop-
ment of gastric malignancies. For example, HVEM is in-
volved in tumour invasion and lymph node metastasis [4].
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Previous studies have shown that the expression of soluble
HVEM in the serum of gastric cancer patients is signifi-
cantly higher than that of normal controls, which is thought
to be generated by shedding of the ectostructural domains
rather than simple secretion [5]. In addition, the high ex-
pression of HVEM observed in gastric cancer was signif-
icantly correlated with the expression of BTLA, which is
initially recognised by a variety of immune cells and thus
determines the biological behaviour of cancer cells [6].

Although previous experimental and clinical studies
have revealed a link between immune cells and gastric can-
cer. However, immune cells, especially T-cells, have be-
come associated with increased incidence in other diges-
tive systems [7]. However, the presence of these common
risk factors may have led to bias. In addition, observational
analyses may not eliminate potential confounders and un-
measured reverse causality [8]. In addition to these fac-
tors, the human and material costs invested in large sam-
ples and large-scale randomised clinical trials are enor-
mous. Mendelian randomisation (MR) analysis, based on
Mendel’s law of independent distribution, is an approach
that has been used in recent years mainly for epidemiologi-
cal etiological inference. MR stands out as an invaluable
tool in our investigation for several reasons. Firstly, by
utilizing genetic variants as instrumental variables, MR of-
fers a natural experimental setting that mimics a random-
ized controlled trial, thereby mitigating issues of confound-
ing and reverse causation commonly encountered in ob-
servational studies. In the realm of immune cell research,
where confounding variables can obscure true associations,
MR provides a robust framework to dissect causal path-
ways with greater clarity. Moreover, the comprehensive
two-sample MR analysis adopted in our study allows for
a systematic evaluation of a wide array of immune cell sig-
natures in relation to the risk of gastric malignancy. By
leveraging genetic data associated with immune cell counts,
we not only enhance the precision of our analysis but also
strengthen the validity of our findings. Furthermore, the
sensitivity analyses conducted within the MR framework
ensure the reliability and robustness of our results, offering
a rigorous approach to confirm the causal links between im-
mune cell phenotypes and gastric cancer risk.

Genetic variation, as an instrumental variable, is sub-
ject to several assumptions. These include that the genetic
variant must demonstrate a substantial and statistically sig-
nificant association with the exposure variable (immune
cells). In other words, the association between exposure-
related genetic variants and outcome can represent the ef-
fect of exposure on outcome. Second, IV affects outcome
only through exposure. Because genetic variants are ran-
domly assigned at the time of conception, this effect is not
subject to confounders or reverse causation. Thus provid-
ing another way to infer causality [9,10].

Therefore, in the present Mendelian study, we chose
single nucleotide polymorphism (SNP) data from a large
genome-wide association study (GWAS) of haematologi-
cal traits as an instrumental variable for exposure. Previous
observational studies have identified many associations be-
tween immune cells and gastric cancer. In this study, we
assessed the causal relationship between immune cells and
GC by a comprehensive two-sample MR approach.

Materials and Methods

Study Design
We evaluated a total of 731 causal relationships be-

tween immune cells and gastric malignancies. Based on the
genetically predicted susceptibility risk of different immune
cells, we assessed the causal impact of immune cells on
gastric malignancy. MR uses genetic variants to represent
risk factors. Therefore, valid instrumental variables (IVs)
in causal inference must satisfy three key assumptions: (1)
genetic variation is directly associated with exposure; (2)
genetic variation is independent of possible confounders
between exposure and outcome; and (3) genetic variation
does not influence outcome through pathways other than
exposure (Fig. 1). Studies included in our analyses were
approved by the relevant institutional review boards, and
participants provided informed consent.

Data Sources and Selection of Genetic Variants
We conducted an exploration in theMRBase database

(http://www.mrbase.org/), a repository containing exten-
sive summary statistics from a large number of GWASs.
After quality control and imputation, this GWAS identi-
fied 1127 independent single nucleotide polymorphisms
(SNPs), including more than 500 independent genomic loci
at the genome-wide significance level (p < 5 × 10−8).

The GWAS datasets utilized in our study encompass
genetic data from populations of varying ancestries, includ-
ing individuals of European, Asian, and African descent.
This diversity in population characteristics not only en-
hances the generalizability of our findings across different
ethnic groups but also provides insights into potential ge-
netic variations that may influence immune responses and
gastric cancer susceptibility in distinct populations.

However, despite the strengths inherent in these
GWAS datasets, certain limitations warrant considera-
tion. Variations in sample sizes across different population
groups may introduce biases or limitations in the interpre-
tation of results, especially when exploring associations be-
tween immune cell signatures and gastric cancer risk. Addi-
tionally, the potential presence of population stratification
or cryptic relatedness within the datasets could impact the
validity of our MR analysis, necessitating stringent quality
control measures to ensure the reliability of our findings.

https://www.biolifesas.org/
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Fig. 1. Flowchart of Mendelian randomisation (MR) analysis in this study.

GWAS Data Sources for Immunisation Coverage
GWAS summary statistics for each immune trait are

publicly available from the GWAS catalogue (accession
numbers from GCST0001394 to GCST0002101) [11].

This Mendelian randomization study examined the
causal relationships between a comprehensive set of 731
different immune phenotypes and gastric cancer risk. The
immune phenotypes included in the analysis were catego-
rized into four main groups:

1. Relative cell (RC) counts (n = 192) - Measures of
the relative proportions of various immune cell types.

2. Absolute cell (AC) counts (n = 118) - Measures of
the absolute numbers or concentrations of different immune
cell populations.

3. Morphological parameters (MP) (n = 32) - Mea-
sures reflecting the physical characteristics and properties
of immune cells.

4. Median fluorescence intensities (MFI) (n = 389) -
Measures of the surface antigen levels on immune cells.

Specifically, the MFI, AC and RC features contained
B cells, CDC, T cells, B cells, natural killer cells (TBNK), T
cells in the maturation phase, myeloid cells, Treg cells, and
monocytes, whereas the MP feature contained the TBNK
panel and CDC. approximately 22 million snp were com-
puted using a reference panel based on the Sardinian se-
quence [12]. Correlation tests were subsequently per-
formed adjusting for covariates (i.e., age, sex and age2). It
is worth noting that the initial GWAS of immune profiles
utilised data from European individuals with no overlap-
ping cohorts.

Selection of Instrumental Variables (IVs)
The significance level for each immune trait was set at

1× 10−5 according to a recent study [13]. We clipped these
SNPs (linkage disequilibrium clustering (LD) r2 threshold
= 0.001 at a distance of 10 kb) using the clumping proce-
dure in PLINK software (v1.90) [14]. Meanwhile, in the
palindromic region, the minor allele frequency of snp was
allowed to be 0.3. Subsequently, we extracted statistics re-
lated to the associations between these genetic variants and
GC using the results of a more relaxed clustering thresh-
old (R2<0.01). For GC, we adjusted the significance level
to 5 × 10−8. The proportion of phenotypic variance ex-
plained (PVE) and the F statistic were calculated for each
IV to assess IV strength and avoid weak instrumental bias.
Then, after excluding IVs with low (<10) F-statistics, 1127
IVs with GC were retained for further analysis. Finally, the
MR-Egger intercept was used to identify and exclude mul-
tivalent outliers.

The rationale behind the specific threshold values used
in SNP selection lies in the need to identify genetic variants
strongly associated with immune traits while minimizing
false positives. By setting stringent significance thresholds,
such as a p-value of 1 × 10−5, we aim to prioritize SNPs
that exhibit a high level of statistical significance in their
association with immune cell phenotypes. This approach
helps reduce the likelihood of including spurious or weakly
associated SNPs in our analysis, thus enhancing the preci-
sion and validity of our MR study.

Furthermore, the method of LD clumping is employed
to address the issue of linkage disequilibrium, where ge-

https://www.biolifesas.org/
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Fig. 2. Flow chart about the analytical methods and how the MR analysis was performed.

netic variants in close proximity on the DNA strand tend
to be inherited together. LD clumping allows us to select a
subset of independent SNPs that capture the genetic vari-
ation within a specific genomic region, thereby avoiding
redundancy and ensuring that the selected SNPs represent
distinct genetic signals rather than redundant information.

Data Analysis
All analyses were performed in R version 4.0.2 soft-

ware (http://www.Rproject.org). In order to assess the
causal relationship between the 731 immunophenotypes
and GC, the inverse variance weighted, weighted me-
dian and simple mode were mainly performed using the
‘MendelianRandomization’ package (version 0.4.3) soft-
ware package [15–17]. Heterogeneity between the selected
iv was tested using Cochran’s Q statistic and the corre-
sponding p-value. If the original hypothesis was rejected,
a random effects IVW was used instead of a fixed effects
IVW [18]. The proportion of variance explained by each IV
(PVE) was used to explain the strength of the selected SNPs

and was calculated as PVE = 2 × EAF × (1 – EAF) × β2.
Instrument strength was then assessed using the F statistic.
This statistic reflects the exposure variance explained by the
instrumental variables. Calculation of the F statistic was
based on the PVE value, i.e., [PVE× (n – 1 – k)]/[(1 – PVE)
× k]. (EAF, effect allele frequency; β, effect size on expo-
sure; n ,effective sample size of exposed GWAS, and k rep-
resents the number of variants included in the IVmodel). To
determine the power of the MR results, we used an online
calculator (https://shiny.cnsgenomics.com/mRnd/) to make
power estimates from a given type I error rate (α 0.05) and
the OR of the IVW estimate (Fig. 2). To exclude the ef-
fect of horizontal multiplicity, we used a commonly used
method (i.e., MR-Egger), which states that horizontal mul-
tiplicity exists if its intercept term is statistically significant
[19]. In addition, we used funnel plots and scatter plots.
Funnel plots show that the correlations are robust and free
of heterogeneity. Scatter plots show that the results are not
affected by outliers.

https://www.biolifesas.org/
http://www.Rproject.org
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The power of an MR study was calculated using the
following formula: Power = 1 – β
where \betaβ represents the probability of a Type II error,
which is the likelihood of failing to reject a false null hy-
pothesis (i.e., not detecting a true causal effect). Power cal-
culations often involve estimating the effect size of the ex-
posure on the outcome, the standard error of the effect es-
timate, and the desired level of statistical significance. To
perform power calculations for our MR analysis investigat-
ing the causal relationship between immune cells and gas-
tric cancer risk, we considered the effect sizes of the genetic
variants on immune traits, the expected effect sizes on gas-
tric cancer risk, and the sample size of our study population.
By conducting power calculations, we can determine the
statistical power of our analysis and ensure that our study
is adequately powered to detect significant causal relation-
ships.

The F statistic is a key metric used in MR studies to
assess the strength of the genetic instruments employed in
the analysis. In the context of MR, a high F statistic indi-
cates a strong instrument that is associated with the expo-
sure variable (e.g., immune cell phenotype) and is indepen-
dent of potential confounders. The F statistic is calculated
using the following formula: F = (N – k – 1)R2/k(1 – R2 ),
where: N is the sample size. k is the number of instrumental
variables. R2 is the proportion of variance in the exposure
variable explained by the instrumental variables.

A high F statistic (greater than 10) indicates that the
instrumental variables have a strong explanatory power for
the exposure variable, which enhances the validity of the
MR analysis and strengthens causal inference. In our study,
we calculated the F statistic for our genetic instruments re-
lated to immune cell phenotypes to evaluate the strength of
the instruments and assess the reliability of ourMR analysis
in determining causal relationships between immune cells
and gastric cancer risk.

Results

Immune Cell Effects on Gastric Cancer (GC)
Protective Immune Phenotypes

In the analysis investigating the impact of immune cell
phenotypes on gastric cancer, several immune cell types
demonstrated a protective effect against gastric malignan-
cies. Notably, the following immune cell types were found
to be associated with a reduced risk of gastric cancer:

Naive-mature B cell %B cell: OR = 0.82, 95% CI
[0.70–0.95], p = 0.012

IgD+ CD24- %lymphocyte: OR = 0.71, 95% CI
[0.58–0.86], p = 0.003

Resting Treg AC: OR = 0.65, 95% CI [0.50–0.84], p
= 0.002

CD33- HLA DR+ AC: OR = 0.92, 95% CI [0.78–
1.08], p = 0.31

CD66b++myeloid cell AC: OR = 1.14, 95%CI [1.01–
1.29], p = 0.028

Naive CD4+ AC: OR = 0.77, 95% CI [0.63–0.93], p
= 0.008

Risk-associated Immune Phenotypes
The estimate for the ratio of IgD+ CD24- %lympho-

cyte to gastric cancer risk (OR) was found to be 0.8938
(95% CI = 0.8323–0.9598) with a p-value of 0.0020 us-
ing the IVW method. Similar results were replicated when
employing theWeightedMedian andWeightedModemeth-
ods. With theWeightedMedianmethod, theORwas 0.8840
(95% CI = 0.7977–0.9796) with a p-value of 0.0186. Like-
wise, the Weighted Mode method yielded an OR of 0.8702
(95% CI = 0.7699–0.9837) with a p-value of 0.0368. In
contrast, the Simple Mode analysis did not identify a corre-
lation between immune cells and gastric malignancy, with
an OR of 0.8816 (95% CI = 0.7596–1.0232) and a p-value
of 0.1115. Employing the samemethodology, wemade pre-
dictions regarding the association between immune cells
and gastric cancer risk. Fig. 3 provides a comprehensive
summary of the heterogeneity, multiplicity, and sensitivity
analyses associated with immune cells and gastric cancer
risk.

Gastric Cancer Effects on Immune Cells
Increased Immune Cell Types in Gastric Cancer Patients

In the examination of how gastric cancer influences
immune cell populations, several immune cell types were
found to be elevated in gastric cancer patients compared
to controls. The following immune cell types exhibited
increased levels in individuals with gastric cancer: IgD+
CD38dim AC, IgD- CD27- AC, Memory B cell %B cell,
IgD- CD24- AC, IgD+ CD24- AC, CD20- AC, CD11c+
CD62L- monocyte AC, CD62L- HLA DR++ monocyte
AC, CD11c+ HLA DR++ monocyte AC, Myeloid DC
%DC, HLA DR++ monocyte %leukocyte, HSC AC, DN
(CD4-CD8-) AC, DN (CD4-CD8-) %leukocyte, CD8br
NKT %lymphocyte, CD24 on IgD- CD38-, HVEM on TD
CD8br, CD28 on CD39+ resting Treg, PDL-1 on CD14-
CD16+ monocyte, SSC-A on HLA DR+ NK, SSC-A on
CD4+, SSC-A on HLA DR+ CD8br (Table 1).

Decreased Immune Cell Types in Gastric Cancer Patients
Conversely, the remaining immune cell types showed

decreased expression levels in patients with gastric cancer.
These findings suggest potential alterations in the immune
landscape associated with gastric malignancies.

The two-sample Mendelian randomization analysis
indicated significant alterations in immune cell populations
in individuals with gastric cancer, with specific immune cell
types showing both elevations and reductions, indicating a
complex immune response to gastric cancer progression.

https://www.biolifesas.org/
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Fig. 3. Mendelian randomization estimates of the association between immune cells and risk of gastric cancer. OR, odds ratio; CI,
confidence interval.

https://www.biolifesas.org/
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Table 1. Mendelian randomization results for the relationship between gastric cancer and immune cells.
ID Immune cell Methods p

ebi-a-GCST90001394 IgD+ CD38dim AC All SNPs-IVW 0.022785079
ebi-a-GCST90001401 IgD- CD27- AC All SNPs-IVW 0.001091321
ebi-a-GCST90001406 Memory B cell %B cell All SNPs-IVW 0.004323648
ebi-a-GCST90001408 Naive-mature B cell %B cell All SNPs-IVW 0.003611445
ebi-a-GCST90001414 IgD- CD24- AC All SNPs-IVW 0.016983378
ebi-a-GCST90001416 IgD+ CD24- AC All SNPs-IVW 0.049068633
ebi-a-GCST90001421 CD20- AC All SNPs-IVW 0.018638787
ebi-a-GCST90001441 IgD+ CD24- %lymphocyte All SNPs-IVW 0.002015424
ebi-a-GCST90001452 CD11c+ CD62L- monocyte AC All SNPs-IVW 0.029887331
ebi-a-GCST90001454 CD62L- HLA DR++ monocyte AC All SNPs-IVW 0.001054597
ebi-a-GCST90001456 CD11c+ HLA DR++ monocyte AC All SNPs-IVW 0.036411177
ebi-a-GCST90001459 Myeloid DC %DC All SNPs-IVW 0.008459905
ebi-a-GCST90001476 HLA DR++ monocyte %leukocyte All SNPs-IVW 0.007967962
ebi-a-GCST90001480 Resting Treg AC All SNPs-IVW 0.022176734
ebi-a-GCST90001514 HSC AC All SNPs-IVW 0.027023856
ebi-a-GCST90001523 CD33- HLA DR+ AC All SNPs-IVW 0.001637577
ebi-a-GCST90001529 CD66b++ myeloid cell AC All SNPs-IVW 0.016883126
ebi-a-GCST90001537 CM CD4+ AC All SNPs-IVW 0.029619584
ebi-a-GCST90001540 Naive CD4+ AC All SNPs-IVW 0.004605927
ebi-a-GCST90001554 EM CD8br AC All SNPs-IVW 0.004354375
ebi-a-GCST90001581 CD14- CD16- AC All SNPs-IVW 8.12 × 10−05

ebi-a-GCST90001598 DN (CD4-CD8-) AC All SNPs-IVW 0.000640958
ebi-a-GCST90001613 DN (CD4-CD8-) %leukocyte All SNPs-IVW 0.021492144
ebi-a-GCST90001632 CD8br NKT %lymphocyte All SNPs-IVW 0.025611979
ebi-a-GCST90001647 NK %lymphocyte All SNPs-IVW 0.019427434
ebi-a-GCST90001665 CD28+ CD45RA+ CD8dim %CD8dim All SNPs-IVW 0.012149292
ebi-a-GCST90001755 CD20 on IgD- CD38- All SNPs-IVW 0.03409717
ebi-a-GCST90001760 CD20 on unsw mem All SNPs-IVW 0.006259089
ebi-a-GCST90001769 CD24 on IgD- CD38- All SNPs-IVW 0.028045066
ebi-a-GCST90001787 CD25 on IgD- CD38- All SNPs-IVW 0.048352903
ebi-a-GCST90001822 IgD on IgD+ CD38- All SNPs-IVW 0.033921961
ebi-a-GCST90001824 IgD on IgD+ CD38br All SNPs-IVW 0.027625325
ebi-a-GCST90001827 IgD on IgD+ All SNPs-IVW 0.000796866
ebi-a-GCST90001841 CD3 on CM CD4+ All SNPs-IVW 0.031993296
ebi-a-GCST90001874 HVEM on TD CD8br All SNPs-IVW 0.023034063
ebi-a-GCST90001900 CD28 on resting Treg All SNPs-IVW 0.01061661
ebi-a-GCST90001901 CD28 on CD39+ resting Treg All SNPs-IVW 0.035261955
ebi-a-GCST90001910 CD45 on B cell All SNPs-IVW 0.035082655
ebi-a-GCST90001975 FSC-A on HLA DR+ T cell All SNPs-IVW 0.006523149
ebi-a-GCST90001999 PDL-1 on CD14- CD16+ monocyte All SNPs-IVW 0.013406277
ebi-a-GCST90002009 HLA DR on CD14- CD16- All SNPs-IVW 0.028776701
ebi-a-GCST90002021 CD14 on CD33dim HLA DR+ CD11b+ All SNPs-IVW 0.033364763
ebi-a-GCST90002022 CD4 on CD4+ All SNPs-IVW 0.017649879
ebi-a-GCST90002057 CD8 on TD CD8br All SNPs-IVW 0.015069681
ebi-a-GCST90002077 SSC-A on HLA DR+ NK All SNPs-IVW 0.01363548
ebi-a-GCST90002081 SSC-A on CD4+ All SNPs-IVW 0.004522688
ebi-a-GCST90002086 SSC-A on HLA DR+ CD8br All SNPs-IVW 0.041675851
ebi-a-GCST90002101 CD45RA on TD CD8br All SNPs-IVW 0.033780828

AC, absolute count.

https://www.biolifesas.org/
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Discussion

Combined with PubMed search results, this article is
the first MR analysis of causal relationships between multi-
ple immune phenotypes and GC. Based on the large amount
of publicly available genetic data, we explored the causal
relationship between 731 immune cell traits and gastric can-
cer. The results of this Mendelian randomisation study sug-
gest that dozens of immune cell phenotypes have a causal
effect with gastric malignancies. However, when the expo-
sure factor was changed to gastric malignancy and the out-
come event to immune cell phenotype, we found a gastric
causal association between the two (p value > 0.05).

In recent years, a large number of studies have high-
lighted the extensive role of immune cells in cellular car-
cinogenesis and described them as key regulators in the
field of inflammation and digestion [20–22]. In the de-
velopment of gastric cancer, it is also closely related to
differences in the proportion of different immune cells.
Naive CD4+% T cells are able to regulate pro- and anti-
inflammatory signals by differentiating into multiple helper
T cell (Th) cell lines, each with its own unique cytokine pro-
file and function. In recent years, some experiments have
shown that secreted cytokines, such as IL-6, CD8+ T cells,
and immune cells such as CD4+ T cells, play an important
role in gastric cancer development, progression, and even
metastasis [23–25].

Activated and quiescent CD24-%lymphocyte has also
been shown to be significantly associated with the risk
of gastric malignancy [26]. Furthermore, it is notewor-
thy that the presence of gastric malignancy was associated
with IgD+ CD38dim AC, IgD- CD27 AC, Memory B cell
%B cell, CD11c+ CD62L- monocyte AC, DN (CD4-CD8-
)AC, DN (CD4-CD8-)%leukocyte, HVEM on TD CD8br,
FSC-A on HLA DR+ T cell, and other immune cell lev-
els correlated with the increase. In addition, several stud-
ies have shown that patients with gastric malignancies have
increased concentrations of inflammatory cytokines in the
blood [27,28]. The ligand HVEM (also known as TN-
FRSF14) is a member of the tumour necrosis factor re-
ceptor (TNFR) superfamily. HVEM is widely present
in haematopoietic cells and in various parenchymal cells,
such as breast, melanoma, gastric, and ovarian cancer cells
[29–32]. HVEM has emerged as a bi-directional immune
molecule, which, by binding to BTLA or LIGHT involved
in suppressing or stimulating T cells (TNFSF14). In re-
cent years, the BTLA/HVEM pathway is a new immune
escape route that has been suggested to be a key factor in
the physiological processes of inflammation and tumouri-
genesis [33].
Mechanisms underlying causal relationships:

1. Immune surveillance and tumor recognition:

• Tumor antigen recognition: Immune cells, espe-
cially T-cells, play a pivotal role in recognizing and tar-

geting mutant proteins produced by tumor cells as anti-
gens. This recognition triggers an immune response
mediated by cytotoxic T cells expressing CD8 and
CD3, leading to tumor cell destruction.
• Immune checkpoints: Molecules like PD-1, PD-
L1, and CTLA-4 act as immune checkpoints regu-
lating immune signaling. In GC, inhibitors targeting
these checkpoints have shown promise in immunother-
apy. The study potentially highlights the importance of
these checkpoints in GC pathogenesis.

2. Inflammation and tumor microenvironment:

• Infiltration of immune cells: Immune cells infil-
trating gastric tissues can promote tumorigenesis. For
instance, the involvement of molecules like HVEM in
tumor invasion and metastasis underscores the influ-
ence of immune cell interactions in GC progression.
• Immune cell subtypes: The study identifies spe-
cific immune cell subtypes associated with GC risk,
suggesting a nuanced interplay between different im-
mune cell populations and the tumor microenviron-
ment.

Implications for understanding GC:

1. Therapeutic opportunities:

• Immunotherapeutic targets: Identification of im-
mune cell types causally linked to GC risk provides
potential targets for immunotherapy. Understanding
the specific immune responses associated with GC can
guide the development of novel treatment strategies.
• Checkpoint inhibitors: Insights into the immune
landscape of GC can inform the selection of checkpoint
inhibitors and personalized immunotherapies tailored
to the immune profiles of individual patients.

2. Risk prediction and stratification:

• Biomarkers for risk assessment: Immune cell
signatures associated with GC risk could serve as
biomarkers for predicting susceptibility to the disease.
Integrating immune cell profiles into risk assessment
models may enhance early detection and personalized
management of GC.

3. Research directions:

• Further investigations: The study underscores the
need for continued research into the complex interplay
between immune cells and GC. Future studies could
delve deeper into understanding the molecular mech-
anisms driving immune responses in GC and explore
novel therapeutic avenues.

This study is based on two-sample MR analyses using
a large published GWAS cohort and results in high statis-
tical efficiency. The conclusions of this study are based
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on genetic instrumental variables, and causal inference was
performed using multiple MR analyses. The results are ro-
bust and not confounded by horizontal pleiotropy and other
factors. However, our study has some limitations that re-
quire further improvement. The study is confronted with
numerous sources of bias and limitations that necessitate
meticulous consideration. By confining the research ex-
clusively to European populations for immune trait GWAS
data, there is a risk of introducing population-specific bi-
ases, potentially impeding the generalizability of findings to
other ethnic groups characterized by distinct genetic back-
grounds and varying environmental exposures. The MR
approach, essential in this study, assumes that genetic vari-
ants do not correlate with confounding factors that could
influence both immune cell levels and the risk of GC. Un-
accounted confounders, if present, could introduce bias and
compromise the accuracy of causal inferences drawn from
the study. The validity of instrumental variables, a cor-
nerstone of MR analysis, is critical. Any violations of the
assumptions underlying these instrumental variables could
result in biased estimates of causal effects. Moreover, the
study’s exclusive focus on European populations raises con-
cerns regarding the transferability of results to populations
with diverse genetic backgrounds and immune cell pro-
files. Challenges related to the quality and heterogeneity
of GWAS data for immune traits could introduce noise and
bias, necessitating thorough sensitivity analyses to enhance
the reliability of results. The potential for heterogeneity and
pleiotropy in genetic instruments used inMR analysis poses
additional risks of biased estimates, underlining the impor-
tance of addressing these issues through robust statistical
methods. Furthermore, the presence of bidirectional rela-
tionships between immune cells and GC, where GC may
also influence immune cell profiles, underscores the neces-
sity of accounting for potential reverse causation effects.
Ethical considerations, such as obtaining proper ethical ap-
proval and ensuring informed consent for the studies in-
cluded in the analysis, are integral to upholding the integrity
of the research. To advance future research in this field, it
is recommended to incorporate diverse populations in stud-
ies to improve the external validity of findings and consider
the genetic and environmental heterogeneity across differ-
ent ethnic groups. Conducting comprehensive sensitivity
analyses, leveraging multi-ethnic GWAS data for immune
traits, and fostering collaborative research efforts are essen-
tial steps to enhance the reliability and generalizability of
study findings regarding the intricate relationship between
immune cells and GC.

Conclusion

The study conclusively identifies specific immune cell
phenotypes associated with gastric cancer risk. Naive-
mature B cell %B cell, IgD+ CD24- %lymphocyte,
and Resting Treg AC are highlighted as protective fac-

tors against gastric malignancies. Conversely, CD66b++
myeloid cell AC is linked to an elevated risk of gastric can-
cer. Furthermore, the ratio of IgD+ CD24- %lymphocyte
is significantly correlated with gastric cancer risk across
various statistical methods. These findings underscore the
dynamic interplay between immune responses and gastric
cancer progression, highlighting the potential for tailored
immunotherapeutic strategies based on individual immune
profiles. The observed alterations in immune cell popula-
tions in gastric cancer patients unveil a complex immune
landscape, emphasizing the need for further research to elu-
cidate the underlying mechanisms and explore novel thera-
peutic avenues in the field of gastric cancer treatment.
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