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Abstract: The global rollout of 5G technology promises unprecedented data rates, ultra-low 

latency, and massive device connectivity. However, the research community often lacks access 

to large-scale, real-world datasets needed to model the highly heterogeneous nature of network 

performance and user experience (QoE). A complex interplay of radio frequency conditions, 

network deployment strategies, and device capabilities shapes these characteristics. While 

traditional drive-testing can provide granular data, its utility is limited by spatial and temporal 

constraints, making it unsuitable for continuous large-scale analysis. To address this data gap, 

this paper introduces OPNet-Sim, a framework for generating realistic, large-scale, multi-

dimensional synthetic datasets that emulate data collected from commercial 5G smartphones. 

The design of OPNet-Sim is informed by statistical characteristics and data schemas found in 

the literature and public reports on large-scale network measurement. The simulated dataset 

encompasses over 1.2 billion synthetic records, emulating data from more than 150,000 unique 

devices over 12 months. It includes detailed physical layer measurements (e.g., RSRP, RSRQ, 

SINR), key performance indicators (KPIs) such as throughput and latency, device context 

information, and network metadata. OPNet-Sim serves as both a benchmark and a synthetic 

data resource for researchers in telecommunications and data science. It enables the 

development, training, and validation of models for network performance prediction, QoE 

estimation for applications such as video streaming, and novel methodologies for network 

diagnostics all without the privacy and access constraints associated with real user data. This 

paper describes the dataset generation methodology, the structural schema, validation against 

established models, and illustrative examples of potential applications. 

Keywords: 5G; network performance; Quality of Experience (QoE); large-scale dataset; 

mobile computing; crowdsourced data; telecommunications 

1. Introduction 

The fifth generation of mobile networks (5G) is fundamentally designed to 
support a diverse range of use cases, from enhanced Mobile Broadband (eMBB) to 
Ultra-Reliable Low-Latency Communications (URLLC) and massive Machine-Type 
Communications (mMTC) [1,2]. While standardised by the 3rd Generation 
Partnership Project (3GPP), the practical realisation of 5G’s potential varies 
significantly across different operators, geographical areas, and user environments 
[3,4]. Factors such as spectrum allocation (e.g., mid-band 3.5 GHz versus mmWave), 
network slicing policies, handover mechanisms, and device-side radio resource 
management (RRM) algorithms all contribute to the end-user’s perceived quality of 
service (QoS) and Quality of Experience (QoE) [5]. 

In real-world deployments, these factors rarely function in isolation [3]. Instead, 
they interact dynamically in response to user density, mobility patterns, spectrum 
interference, and operator-specific configuration strategies [6]. As a result, two cities 
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with similar infrastructure investments may exhibit drastically different user 
experiences due to differences in propagation environments, traffic models, and device 
heterogeneity [7]. This complexity highlights the necessity for research frameworks 
that do not merely assess idealised scenarios, but instead capture the full spectrum of 
variability observed in real operational networks [8]. 

Historically, mobile network operators (MNOs) have relied on drive-testing 
using specialised equipment in vehicles to benchmark and optimise their networks 
[6,7]. While accurate, this method is constrained by its high cost, limited coverage 
(typically only major roads), and infrequent, snapshot-like nature. It fails to capture 
the continuous, fine-grained experience of actual users indoors, in suburban areas, or 
during varying times of the day. The academic community has often been limited by 
a lack of large-scale, real-world data, relying on simulations or small-scale 
deployments that may not generalise [8,9]. 

In recent years, the limitations of these traditional measurement approaches have 
become increasingly significant as networks evolve toward AI-driven optimisation 
and predictive resource allocation [9,10]. Modern algorithms such as those used for 
traffic forecasting, beam management, or QoE-aware scheduling require extensive 
datasets with diverse spatial and temporal characteristics [11]. Small or sparsely 
collected datasets tend to produce fragile models that fail to generalise across different 
operating conditions, preventing meaningful progress in data-driven mobile network 
research [12]. This has led to an expanding consensus that publicly accessible, 
standardised benchmark datasets are essential for ensuring reproducible research 
outcomes [13]. 

In parallel, operators increasingly integrate machine learning into radio resource 
management (RRM) tasks such as link adaptation, beam selection, anomaly detection, 
and mobility prediction [14]. These systems require training data that captures the full 
operational diversity across environments, seasons, and user groups [15]. Studies such 
as Al-Khafaji and Elwiya [16] and Polese et al. [17] emphasise that robust 
generalisation in mobile-network AI models is only achievable when datasets reflect 
realistic channel variations and cross-layer dependencies. Synthetic but statistically 
accurate datasets therefore provide a critical bridge for researchers lacking direct 
access to commercial operator datasets [18]. 

The proliferation of powerful smartphones presents a paradigm shift. Modern 
devices are equipped with sophisticated modems capable of reporting a wealth of radio 
and performance data [10]. By aggregating this data from a large user base in a 
privacy-centric manner, it is possible to construct a dynamic, high-resolution map of 
network performance that far surpasses the scope of traditional methods [11,12]. This 
approach, often termed ‘crowdsourced network analytics’, enables continuous 
monitoring at a fraction of the cost. 

Crowdsourced analytics has become a mainstream tool used by industry 
contributors such as Opensignal, Ookla, and Tutela, where millions of daily 
measurements are aggregated to reveal coverage gaps, congestion patterns, and 
technology adoption trends [19–21]. Independent measurement campaigns such as 
MOSAIC5G, IMDEA’s MONROE project, and NYU Wireless have shown that large-
scale measurements can uncover RAN misconfigurations, unexpected interference 
sources, and suboptimal mobility procedures [22,23]. The success of these frameworks 
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demonstrates the immense value of longitudinal, user-centric datasets [24]. However, 
the majority of these datasets remain proprietary and inaccessible for open scientific 
exploration [25]. 

Despite this transformative potential, crowdsourced datasets from commercial 
entities remain tightly restricted [7]. Privacy regulations, proprietary formats, and 
competitive considerations prevent open access [26]. Most researchers therefore rely 
on simplified synthetic data or small-scale measurement campaigns that capture only 
narrow operational slices [10]. As a result, the broader research community lacks a 
consistent foundation for fair benchmarking and comparative evaluation [17]. This 
research introduces OPNet-Sim as a direct response to this structural gap by proposing 
a synthetic yet empirically grounded representation of large-scale 5G network 
behaviour. 

To foster reproducible research in mobile network analytics, there is a pressing 
need for well-defined, realistic, and publicly available benchmark datasets. While 
some commercial entities possess such data, it is rarely accessible due to privacy and 
commercial concerns. In this paper, this research presents OPNet-Sim, a framework 
and methodology for generating a synthetic, large-scale dataset for 5G performance 
analysis [13]. The primary contributions of this research are: 

 A Realistic Data Generation Framework: A model-based approach to synthesise 

a dataset that captures the complex spatial, temporal, and functional relationships 
of real-world 5G network measurements [14]. 

 A Public Benchmark Dataset: A specific dataset instance comprising over 1.2 
billion records, serving as a shared foundation for algorithm development and 
comparison [15]. 

 Comprehensive Validation: A multi-layer validation pipeline demonstrating the 
utility and realism of the synthetic dataset [16]. 
Beyond these explicit contributions, this research aligns with growing initiatives 

in the telecommunications community calling for open benchmarks. The ITU-T Focus 
Group on Machine Learning for Future Networks (FG-ML5G), the 6G Flagship 
program, and the Hexa-X project have all acknowledged that reproducing academic 
results requires datasets that are accessible, standardised, and reflective of realistic 
operating conditions. OPNet-Sim thus contributes to global momentum toward 
transparency and interoperability in network AI research. 

2. Methods 

2.1. Data generation framework 

The OPNet-Sim dataset was generated using a structured probabilistic modelling 
pipeline implemented in Python. The core objective of the synthesis engine is to 
emulate the behaviour of a large-scale measurement campaign while ensuring that the 
statistical properties of real-world 5G networks are preserved. Rather than relying 
solely on static distributions, the framework integrates interdependent processes that 
capture key spatial, temporal, and functional correlations observed in operational RAN 
environments. This multi-layer approach reflects the fact that network performance 



Computer and Telecommunication Engineering 2025, 3(2), 8434.  

4 

emerges not from isolated factors, but from complex interactions among mobility, 
load, propagation, and device behaviour. 

At the foundational layer, OPNet-Sim constructs synthetic city-level 
infrastructures reflecting typical European deployment patterns. Each city model 
includes approximate tower densities, sectorisation layouts, carrier configurations, and 
technology layers (LTE, NR-NSA, NR-SA). Although the dataset does not attempt to 
replicate specific operator deployments, these layout models are built to reflect 
realistic propagation constraints and cell spacing reported in measurement campaigns 
and regulator databases. This enables the dataset to maintain plausible mid-band, low-
band, and anchor-carrier coverage distributions. 

On top of this physical layer, a mobility simulation engine generates user 
trajectories using a combination of Markovian state transitions and distance-based 
constraints. The framework differentiates between stationary, pedestrian, vehicular, 
and high-speed mobility, each with distinct transition probabilities and spatial 
movement patterns. These models were calibrated using insights from existing 
mobility datasets and urban behaviour studies. As a result, the temporal continuity of 
RSRP, SINR, and throughput often overlooked in naive synthetic datasets is preserved 
in OPNet-Sim. 

The dynamic network state layer simulates fluctuating load conditions, resource 
scheduling variability, interference patterns, and technology-specific constraints such 
as LTE–NR dual-connectivity behaviour. These temporal fluctuations are crucial for 
producing heavy-tailed throughput and latency distributions comparable to real 5G 
systems. For example, load spikes occurring during commuting hours influence both 
uplink and downlink KPIs, while low-load periods provide opportunities for higher 
scheduling ratios and stable latency. 

Finally, event-driven modem triggers determine when NetworkSnapshot records 
are generated. This mechanism draws inspiration from how real phones log diagnostic 
data only when relevant radio or application events occur. By adopting this behaviour, 
OPNet-Sim reproduces the fine-grained but non-uniform temporal sampling observed 
in crowdsourced datasets. 

 
Figure 1. Overview of the OPNet-Sim data generation framework. 
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Together, these layered components enable OPNet-Sim to simulate realistic 
performance variations across users, time periods, technology layers, and cities, 
resulting in a dataset suitable for machine learning, benchmarking, and large-scale 
modelling tasks. Figure 1 shows that the overview of the OPNet-Sim data generation 
framework. 

2.2. Simulated metrics and dimensions 

Each generated record, termed a NetworkSnapshot, contains a comprehensive set 
of metrics. The schema, outlined in Table 1, was designed to be congruent with those 
used in industrial and academic measurement studies to ensure practical relevance. 

Table 1. Core metrics contained in each OPNET NetworkSnapshot record. 

Dimension Metric Description Unit 

Metadata timestamp Unix epoch timestamp of the measurement. ms 

device_id Anonymised, salted hash of the device IMEI. - 

location_geohash Geohash (precision 6, ~1.2km²) of the device location. - 

os_version Device operating system version. - 

device_model OPPO device model identifier. - 

Radio Access Network 
(RAN) 

network_type Access technology (e.g., LTE, NR_NSA, NR_SA). - 

serving_plmn Public Land Mobile Network identifier. - 

serving_cell_id Anonymised serving cell identity. - 

rsrp Reference Signal Received Power. dBm 

rsrq Reference Signal Received Quality. dB 

sinr Signal to Interference plus Noise Ratio. dB 

ssb_rsrp SSB Reference Signal Received Power (for 5G). dBm 

band Operating frequency band. - 

Performance KPIs throughput_dl_avg Average downlink throughput during the session. Mbps 

throughput_ul_avg Average uplink throughput during the session. Mbps 

latency_min Minimum round-trip time (RTT) to a control server. ms 

latency_avg Average RTT. ms 

latency_jitter Jitter (standard deviation of RTT). ms 

Device Context screen_state Whether the device screen is ON or OFF. - 

mobility_state Inferred state (e.g., STATIONARY, WALKING, 
VEHICLE). 

- 

battery_level Device battery level. % 

The inclusion of these fields reflects the intention of this research to support a 
wide range of downstream analysis tasks, from simple KPI summarisation to advanced 
machine learning applications. For instance, the combination of RSRP, RSRQ, and 
SINR allows detailed modelling of radio link quality, while throughput and latency 
metrics provide insights into user-perceived performance. Device context metrics, 
such as mobility state and screen state, enable studies of behavioural modulation in 
network demand and QoE outcomes. 

This research also emphasises extensibility: the dataset schema can accommodate 
additional fields, such as beam index, carrier aggregation configuration, or 
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application-layer metadata, if required by future researchers. The current configuration 
balances richness with universality, ensuring compatibility with most commercially 
deployed devices and modem reporting schemes. 

2.3. Privacy and ethics considerations 

Since OPNet-Sim is entirely synthetic, it bypasses all critical privacy concerns 
associated with real user data. All identifiers, locations, and network elements are 
computer-generated. From a privacy-engineering perspective, synthetic datasets like 
OPNet-Sim offer strong formal guarantees against re-identification attacks. Unlike 
anonymised real datasets where unique mobility traces or rare device characteristics 
may allow adversarial reconstruction synthetic data contains no hidden mappings to 
real individuals. Therefore, risks such as membership inference, linkage attacks, or 
adversarial deanonymisation are eliminated by design. 

Nonetheless, this research stresses the importance of transparency and 
responsible interpretation. While synthetic, the dataset is meant to approximate real 
distributions rather than replicate specific operator deployments. Users are cautioned 
not to treat OPNet-Sim as ground truth for operational decisions but rather as a 
research tool for benchmarking, modelling, and experimentation. 

3. Data records 

The OPNet-Sim dataset is released as a collection of compressed Parquet files, 
organised by simulated city and month to facilitate efficient access. The Parquet 
format was chosen for its columnar storage efficiency, which enables rapid querying 
and analysis with frameworks like Apache Spark or Pandas. 

3.1. Dataset structure 

The OPNet dataset is organised hierarchically by city and month to facilitate 
efficient data access and management. The root directory contains metadata files 
including a ̀ README.txt` with a dataset overview, `schema.json` describing the data 
schema, and `data_dictionary.csv` providing detailed variable descriptions.  

The primary data is partitioned into city-specific subdirectories (London, 
Manchester, Birmingham, Glasgow, Leeds), each containing monthly Parquet files 
spanning from June 2023 to May 2024 (12 months per city). This temporal partitioning 
enables researchers to query specific time periods of interest efficiently. Additionally, 
an ̀ analysis_scripts/` directory provides Python utilities for data loading, fundamental 
analysis, coverage mapping, and QoE evaluation. 

The generated dataset comprises approximately 1.2 billion records distributed 
across 60 monthly files (5 cities × 12 months), with each Parquet file containing ~20 
million records. This structure optimises for both storage efficiency and query 
performance in big data processing frameworks. 

3.2. Data volume and summary statistics 

Table 2 provides a high-level summary of the key synthesized metrics across the 
entire dataset, demonstrating that the generated data spans a realistic range of values. 
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Table 2. OPNet-Sim dataset summary statistics. 

Statistic RSRP (dBm) RSRQ (dB) SINR (dB) DL throughput (Mbps) Latency (ms) 

Mean –98.5 –11.2 15.8 87.4 38.2 

Std. Dev. 12.3 4.1 8.5 112.1 24.7 

5th Percentile –118.0 –16.0 3.0 5.1 18.0 

Median –97.0 –10.8 16.1 52.3 32.0 

95th Percentile –80.0 –7.0 28.5 285.6 75.0 

The distribution of connection technologies (Figure 2) shows the evolving nature 
of 5G deployment, with a significant portion of connections still relying on 4G LTE, 
often in Non-Standalone (NSA) mode. 

 
Figure 2. Simulated distribution of connection types across the OPNet-Sim dataset. 

Beyond these aggregate statistics, this research conducted detailed per-city and 
per-operator analyses to confirm that the synthetic dataset preserves meaningful 
performance variance. For example, cities with denser mid-band deployments exhibit 
stronger RSRP distributions and narrower SINR spread, while regions with mixed 
LTE and NR layers display multimodal throughput characteristics similar to those 
reported in real-world crowdsourced datasets. Such fidelity is crucial for enabling 
downstream tasks such as operator comparison, technology transition modelling, and 
cell-edge performance prediction. 

To further assess distribution realism, this research compared KPI distributions 
particularly SINR, RSRP, and latency against publicly available datasets such as the 
FCC MBA dataset, the IMDEA MONROE measurement campaign, and Opensignal’s 
published performance summaries. These comparisons indicate that OPNet-Sim’s KPI 
percentiles fall within empirically observed ranges. For example, the 5th percentile 
RSRP values in OPNet-Sim align closely with measurements reported by NYU 
Wireless in dense urban studies, where deep coverage holes commonly yield values 
below –115 dBm. Similarly, the heavy-tailed latency distributions observed in OPNet-
Sim resemble those reported in Ookla’s 2023 Global Speedtest Market Report, 
confirming the accuracy of OPNet-Sim’s congestion modelling. 

Furthermore, the dataset’s scale 1.2 billion records enables robust machine 
learning studies. Model training for tasks such as KPI prediction, QoE inference, and 
anomaly detection often requires millions of samples to ensure stable optimisation. 
OPNet-Sim provides this volume while retaining realistic variance across spatial, 
temporal, and technological dimensions. 
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High-volume datasets are increasingly required for AI models used in mobility 
prediction, resource scheduling, and QoE inference. Studies such as Nguyen et al. [27] 
emphasise that dataset size is strongly correlated with model generalisability in RAN 
intelligence applications. The billions of samples in OPNet-Sim therefore offer a 
statistically rich environment for training supervised, unsupervised, and reinforcement 
learning models, including GNNs, LSTMs, and transformer architectures used in 
5G/6G research. 

4. Technical validation 

To ensure the OPNET dataset is of high quality and suitable for research, we 
implemented a multi-stage validation pipeline. 

4.1. Data quality checks 

Automated scripts verified the generated data for internal consistency: 

 Plausibility Ranges: Records with impossible values (e.g., RSRP > –40 dBm) 
were filtered out during generation. 

 Logical Correlations: We enforced correlations between metrics (e.g., high RSRP 
generally leads to higher throughput) based on established network theory. 
Additional validation ensured that technology-specific fields (e.g., SSB-RSRP) 

were present only in NR modes and absent in LTE records. This research also 
validated temporal coherence by confirming that successive readings from the same 
device followed expected autocorrelation patterns. These checks reduce the risk of 
synthetic artefacts such as abrupt metric jumps unrelated to mobility or cell transitions 
that could distort downstream analysis. 

4.2. Face validity against published studies 

This research compared the statistical properties of OPNet-Sim with findings 
from published measurement studies [28]. For instance, the comparative performance 
of 5G NSA vs. SA modes in our dataset (Table 3) aligns with qualitative and 
quantitative findings in the literature. To further strengthen confidence in realism, this 
research replicated well-known empirical patterns: 

 the non-linear relationship between SINR and throughput, 

 the degradation of RTT stability during vehicular mobility, 

 the improved uplink performance in SA-mode due to optimised scheduling, 

 and the wider throughput variance in NSA deployments due to LTE–NR dual-
connectivity constraints. 

Table 3. Comparative performance of 5G deployment modes. 

KPI 5G Non-Standalone (NSA) 5G Standalone (SA) 

Median RSRP (dBm) –96.5 –94.2 

Median SINR (dB) 15.8 18.5 

Median DL Throughput (Mbps) 68.4 145.2 

Median Latency (ms) 35.1 21.8 
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These behavioural consistencies demonstrate that OPNet-Sim offers not only 
statistically aligned distributions, but also realistic functional relationships between 
KPIs an essential requirement for enabling accurate model benchmarking. 

More specifically, throughput-vs-SINR curves generated using OPNet-Sim were 
found to follow the sigmoidal trend described in foundational works such as Polese et 
al. [17]. Furthermore, OPNet-Sim’s uplink latency distributions under NR Standalone 
(SA) mode closely match those measured by Narayanan et al. [28], wherein 5G SA 
consistently demonstrated sub-25 ms median latency across mobility states. These 
validations enhance confidence that OPNet-Sim reflects real technology-layer 
behaviour. 

The dataset further reproduces multi-modal throughput distributions commonly 
seen in deployed 5G networks due to fragmentation across LTE, NSA, and SA 
technologies. Similar patterns are documented in both the Ericsson Mobility Report 
[29] and academic field studies such as Liu et al. [22]. This correspondence between 
OPNet-Sim and empirical sources strengthens the argument for its utility as a 
benchmark dataset. 

5. Usage notes 

The OPNET dataset is a versatile resource that can be utilised for a wide array of 
research endeavours. Below are several prominent use cases. 

5.1. Use Case 1: 5G coverage and performance modelling 

Researchers can use the RF measurements (RSRP, SINR) to build high-resolution 
coverage and quality maps for different operators and technologies. Machine learning 
models can be trained to predict signal strength based on location, land use, and 
topography. The dataset allows for a comparative analysis of 5G NSA vs. SA 
performance in real-world settings, as shown in the preliminary study in Table 3. 

Additional examples of coverage-related tasks enabled by OPNet-Sim include: 

 prediction of signal dead zones through geospatial interpolation, 

 identification of potential small-cell deployment sites, 

 and exploration of spectral efficiency under different load patterns. 
Because OPNet-Sim contains multi-city data, researchers can also investigate 

generalisation studies training models in one city and evaluating performance in 
another to understand domain transfer behaviour, a topic increasingly important for 
scalable network analytics. 

5.2. Use Case 2: Quality of Experience (QoE) inference 

By correlating network KPIs with device context, one can model the QoE for 
specific applications. For instance, the mobility_state and throughput_dl_avg can be 
used to predict video streaming quality (e.g., likelihood of rebuffering). A simple 
analysis (Figure 3) shows how throughput stability degrades with increasing mobility, 
which directly impacts QoE for real-time applications. 
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Figure 3. Throughput stability vs. mobility. 

This research highlights that OPNet-Sim can support a wide range of QoE 
modelling paradigms: 

 session-level QoE prediction, 

 real-time QoE estimation under mobility, 

 buffer-level video QoE inference, 

 and predictive congestion-aware QoE degradation alerts. 
The inclusion of mobility state and temporal continuity makes OPNet-Sim 

especially valuable for streaming and gaming QoE research, where user motion alters 
both signal quality and application demand. 

QoE inference has increasingly shifted toward ML-based prediction frameworks. 
Techniques documented by Hossfeld et al. [30], such as the VMAF neural quality 
index, require detailed temporal KPI sequences patterns reproduced faithfully by 
OPNet-Sim. As a result, researchers can simulate video streaming stalls, adaptive 
bitrate (ABR) fluctuations, and waveform switching patterns under controlled 
conditions. 

In gaming QoE, OPNet-Sim supports modelling of latency spikes, jitter bursts, 
and packet delay variation key parameters affecting cloud gaming as shown in 
Claypool et al. [31]. The dataset’s mobility-aware measurements also allow 
researchers to explore user-experience degradation during transitions between indoor 
and outdoor environments, a phenomenon widely observed in empirical studies. 

5.3. Use Case 3: Network anomaly detection 

The longitudinal and large-scale nature of OPNET makes it ideal for detecting 
large-scale network outages or performance degradation events [32]. By analysing the 
temporal patterns of KPIs or connection failure rates for a specific operator within a 
particular city, one can identify anomalies that deviate from the normal baseline. This 
can be a powerful tool for independent network monitoring [33,34]. OPNet-Sim 
enables controlled benchmarking of anomaly detection algorithms because this 
research can programmatically inject synthetic faults such as: 

 RAN misconfiguration, 

 backhaul congestion, 
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 tower outages, 

 spectrum interference bursts, 

 or scheduler degradation. 
Since the timing and magnitude of these anomalies are known, researchers can 

compute exact precision, recall, and detection latency metrics that are impossible to 
obtain reliably from proprietary real-world datasets. 

5.4. Limitations 

While OPNet-Sim provides a comprehensive synthetic representation of multi-
city 5G network measurements, several limitations must be acknowledged to guide 
appropriate interpretation and future development. First, although OPNet-Sim models 
radio metrics such as RSRP, RSRQ, SINR, throughput, and latency with realistic 
distributions, it does not generate physical-layer channel matrices or beam-domain 
characteristics such as MIMO correlation, spatial signatures, or antenna radiation 
patterns. These attributes are essential for studies on advanced beamforming, channel 
estimation, RIS-assisted propagation, and link-level optimisation. Researchers 
focusing on these areas may therefore require integration with established 3GPP-
compliant channel simulators such as QuaDRiGa or NYUSIM to supplement OPNet-
Sim with spatially resolved channel coefficients. 

Second, the dataset currently focuses on sub-6 GHz deployments and does not 
include propagation phenomena specific to millimetre-wave (mmWave) or terahertz 
(THz) frequencies. Realistic modelling of mmWave behaviour requires representing 
rapid signal blockage, human-body shadowing, atmospheric absorption, narrow-beam 
alignment, and sensitivity to small-scale mobility. These characteristics significantly 
influence high-frequency coverage and reliability, especially for 5G-Advanced and 
6G systems. As global networks continue to adopt wider bandwidths and directional 
transceivers in the mmWave and THz ranges, future versions of OPNet-Sim may need 
to incorporate frequency-dependent propagation models, blockage events, and beam-
management dynamics to support emerging research directions. 

Third, OPNet-Sim does not explicitly model user-level application traffic 
patterns, protocol-layer retransmissions, or scheduling interactions beyond aggregate 
KPIs. While the current abstraction is appropriate for studies on coverage, throughput 
prediction, QoE inference, and anomaly detection, it limits investigations into 
congestion-control behaviour, session-layer dynamics, per-app performance, and 
latency-critical application modelling. Incorporating packet-level traces, PDCP 
throughput, HARQ feedback, or transport-layer congestion statistics may enable richer 
assessments of user-perceived performance in scenarios such as cloud gaming, 
adaptive video streaming, or ultra-low-latency robotics. 

Additionally, the dataset does not attempt to replicate the exact configurations of 
specific operators, vendors, or regulatory environments. Tower locations, spectrum 
holdings, and scheduling policies are synthetically generated rather than derived from 
commercial deployments. While this preserves privacy and avoids proprietary 
constraints, it also means OPNet-Sim should not be interpreted as a precise 
representation of any real operator’s network. Instead, it provides a statistically 
plausible environment for experimentation and benchmarking. 
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Finally, as with all synthetic datasets, OPNet-Sim relies on modelling 
assumptions that may oversimplify rare events, extreme outliers, or unexpected 
network behaviours. Continuous refinement and community feedback will be essential 
for improving fidelity and extending OPNet-Sim to next-generation wireless systems. 

6. Conclusion 

This research has presented OPNet-Sim, a framework for generating realistic, 
large-scale synthetic datasets for use in 5G network research. OPNet-Sim mirrors the 
statistical properties of real-world measurements while preserving privacy and 
enabling reproducible experimentation. Looking forward, OPNet-Sim can evolve 
alongside the telecommunications landscape. As 5G-Advanced and early 6G 
architectures emerge introducing features such as AI-native optimisation loops, joint 
communication–sensing capabilities, and non-terrestrial network integration future 
versions of the dataset may incorporate new KPIs, mobility models, and spectrum 
regimes. This research envisions OPNet-Sim becoming part of a broader open 
benchmarking ecosystem, where researchers worldwide can evaluate models on 
shared tasks such as link adaptation prediction, beam-selection learning, outage 
forecasting, and QoE inference. By lowering access barriers, OPNet-Sim democratizes 
participation in mobile network research and supports the development of more 
transparent, reproducible, and collaborative scientific practices. Ultimately, the aim of 
this research is not only to provide a dataset, but also to inspire a methodological 
framework through which future synthetic datasets covering 5G, 6G, and beyond can 
be developed to accelerate innovation in network analytics and improve user 
experience across diverse communication environments. Beyond its immediate 
technical contributions, OPNet-Sim also provides a foundation for methodological 
consistency across future studies in mobile network intelligence. As the research 
community increasingly adopts data-driven workflows, the availability of a common, 
openly accessible dataset enables fair comparison among competing models and 
encourages rigorous benchmarking standards. This shared foundation reduces 
fragmentation in experimental methodologies and helps mitigate the reproducibility 
challenges that have historically limited progress in network performance modelling. 
By enabling researchers to test hypotheses under controlled yet realistic conditions, 
OPNet-Sim supports a more systematic accumulation of empirical knowledge and 
strengthens. 

Conflict of interest: The author declares no conflict of interest. 
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