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Abstract: The global rollout of 5G technology promises unprecedented data rates, ultra-low
latency, and massive device connectivity. However, the research community often lacks access
to large-scale, real-world datasets needed to model the highly heterogeneous nature of network
performance and user experience (QoE). A complex interplay of radio frequency conditions,
network deployment strategies, and device capabilities shapes these characteristics. While
traditional drive-testing can provide granular data, its utility is limited by spatial and temporal
constraints, making it unsuitable for continuous large-scale analysis. To address this data gap,
this paper introduces OPNet-Sim, a framework for generating realistic, large-scale, multi-
dimensional synthetic datasets that emulate data collected from commercial 5G smartphones.
The design of OPNet-Sim is informed by statistical characteristics and data schemas found in
the literature and public reports on large-scale network measurement. The simulated dataset
encompasses over 1.2 billion synthetic records, emulating data from more than 150,000 unique
devices over 12 months. It includes detailed physical layer measurements (e.g., RSRP, RSRQ,
SINR), key performance indicators (KPIs) such as throughput and latency, device context
information, and network metadata. OPNet-Sim serves as both a benchmark and a synthetic
data resource for researchers in telecommunications and data science. It enables the
development, training, and validation of models for network performance prediction, QoE
estimation for applications such as video streaming, and novel methodologies for network
diagnostics all without the privacy and access constraints associated with real user data. This
paper describes the dataset generation methodology, the structural schema, validation against
established models, and illustrative examples of potential applications.

Keywords: 5G; network performance; Quality of Experience (QoE); large-scale dataset;
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1. Introduction

The fifth generation of mobile networks (5G) is fundamentally designed to
support a diverse range of use cases, from enhanced Mobile Broadband (eMBB) to
Ultra-Reliable Low-Latency Communications (URLLC) and massive Machine-Type
Communications (mMTC) [1,2]. While standardised by the 3rd Generation
Partnership Project (3GPP), the practical realisation of 5G’s potential varies
significantly across different operators, geographical areas, and user environments
[3,4]. Factors such as spectrum allocation (e.g., mid-band 3.5 GHz versus mmWave),
network slicing policies, handover mechanisms, and device-side radio resource
management (RRM) algorithms all contribute to the end-user’s perceived quality of
service (QoS) and Quality of Experience (QoE) [5].

In real-world deployments, these factors rarely function in isolation [3]. Instead,
they interact dynamically in response to user density, mobility patterns, spectrum
interference, and operator-specific configuration strategies [6]. As a result, two cities
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with similar infrastructure investments may exhibit drastically different user
experiences due to differences in propagation environments, traffic models, and device
heterogeneity [7]. This complexity highlights the necessity for research frameworks
that do not merely assess idealised scenarios, but instead capture the full spectrum of
variability observed in real operational networks [8].

Historically, mobile network operators (MNOs) have relied on drive-testing
using specialised equipment in vehicles to benchmark and optimise their networks
[6,7]. While accurate, this method is constrained by its high cost, limited coverage
(typically only major roads), and infrequent, snapshot-like nature. It fails to capture
the continuous, fine-grained experience of actual users indoors, in suburban areas, or
during varying times of the day. The academic community has often been limited by
a lack of large-scale, real-world data, relying on simulations or small-scale
deployments that may not generalise [8,9].

In recent years, the limitations of these traditional measurement approaches have
become increasingly significant as networks evolve toward Al-driven optimisation
and predictive resource allocation [9,10]. Modern algorithms such as those used for
traffic forecasting, beam management, or QoE-aware scheduling require extensive
datasets with diverse spatial and temporal characteristics [11]. Small or sparsely
collected datasets tend to produce fragile models that fail to generalise across different
operating conditions, preventing meaningful progress in data-driven mobile network
research [12]. This has led to an expanding consensus that publicly accessible,
standardised benchmark datasets are essential for ensuring reproducible research
outcomes [13].

In parallel, operators increasingly integrate machine learning into radio resource
management (RRM) tasks such as link adaptation, beam selection, anomaly detection,
and mobility prediction [14]. These systems require training data that captures the full
operational diversity across environments, seasons, and user groups [15]. Studies such
as Al-Khafaji and Elwiya [16] and Polese et al. [17] emphasise that robust
generalisation in mobile-network Al models is only achievable when datasets reflect
realistic channel variations and cross-layer dependencies. Synthetic but statistically
accurate datasets therefore provide a critical bridge for researchers lacking direct
access to commercial operator datasets [18].

The proliferation of powerful smartphones presents a paradigm shift. Modern
devices are equipped with sophisticated modems capable of reporting a wealth of radio
and performance data [10]. By aggregating this data from a large user base in a
privacy-centric manner, it is possible to construct a dynamic, high-resolution map of
network performance that far surpasses the scope of traditional methods [11,12]. This
approach, often termed ‘crowdsourced network analytics’, enables continuous
monitoring at a fraction of the cost.

Crowdsourced analytics has become a mainstream tool used by industry
contributors such as Opensignal, Ookla, and Tutela, where millions of daily
measurements are aggregated to reveal coverage gaps, congestion patterns, and
technology adoption trends [19-21]. Independent measurement campaigns such as
MOSAIC5G, IMDEA’s MONROE project, and NYU Wireless have shown that large-
scale measurements can uncover RAN misconfigurations, unexpected interference
sources, and suboptimal mobility procedures [22,23]. The success of these frameworks
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demonstrates the immense value of longitudinal, user-centric datasets [24]. However,

the majority of these datasets remain proprietary and inaccessible for open scientific

exploration [25].

Despite this transformative potential, crowdsourced datasets from commercial
entities remain tightly restricted [7]. Privacy regulations, proprietary formats, and
competitive considerations prevent open access [26]. Most researchers therefore rely
on simplified synthetic data or small-scale measurement campaigns that capture only
narrow operational slices [10]. As a result, the broader research community lacks a
consistent foundation for fair benchmarking and comparative evaluation [17]. This
research introduces OPNet-Sim as a direct response to this structural gap by proposing
a synthetic yet empirically grounded representation of large-scale 5G network
behaviour.

To foster reproducible research in mobile network analytics, there is a pressing
need for well-defined, realistic, and publicly available benchmark datasets. While
some commercial entities possess such data, it is rarely accessible due to privacy and
commercial concerns. In this paper, this research presents OPNet-Sim, a framework
and methodology for generating a synthetic, large-scale dataset for 5G performance
analysis [13]. The primary contributions of this research are:

e A Realistic Data Generation Framework: A model-based approach to synthesise
a dataset that captures the complex spatial, temporal, and functional relationships
of real-world 5G network measurements [14].

e A Public Benchmark Dataset: A specific dataset instance comprising over 1.2
billion records, serving as a shared foundation for algorithm development and
comparison [15].

e  Comprehensive Validation: A multi-layer validation pipeline demonstrating the
utility and realism of the synthetic dataset [16].

Beyond these explicit contributions, this research aligns with growing initiatives
in the telecommunications community calling for open benchmarks. The ITU-T Focus
Group on Machine Learning for Future Networks (FG-MLS5G), the 6G Flagship
program, and the Hexa-X project have all acknowledged that reproducing academic
results requires datasets that are accessible, standardised, and reflective of realistic
operating conditions. OPNet-Sim thus contributes to global momentum toward
transparency and interoperability in network Al research.

2. Methods

2.1. Data generation framework

The OPNet-Sim dataset was generated using a structured probabilistic modelling
pipeline implemented in Python. The core objective of the synthesis engine is to
emulate the behaviour of a large-scale measurement campaign while ensuring that the
statistical properties of real-world 5G networks are preserved. Rather than relying
solely on static distributions, the framework integrates interdependent processes that
capture key spatial, temporal, and functional correlations observed in operational RAN
environments. This multi-layer approach reflects the fact that network performance



Computer and Telecommunication Engineering 2025, 3(2), 8434.

emerges not from isolated factors, but from complex interactions among mobility,
load, propagation, and device behaviour.

At the foundational layer, OPNet-Sim constructs synthetic city-level
infrastructures reflecting typical European deployment patterns. Each city model
includes approximate tower densities, sectorisation layouts, carrier configurations, and
technology layers (LTE, NR-NSA, NR-SA). Although the dataset does not attempt to
replicate specific operator deployments, these layout models are built to reflect
realistic propagation constraints and cell spacing reported in measurement campaigns
and regulator databases. This enables the dataset to maintain plausible mid-band, low-
band, and anchor-carrier coverage distributions.

On top of this physical layer, a mobility simulation engine generates user
trajectories using a combination of Markovian state transitions and distance-based
constraints. The framework differentiates between stationary, pedestrian, vehicular,
and high-speed mobility, each with distinct transition probabilities and spatial
movement patterns. These models were calibrated using insights from existing
mobility datasets and urban behaviour studies. As a result, the temporal continuity of
RSRP, SINR, and throughput often overlooked in naive synthetic datasets is preserved
in OPNet-Sim.

The dynamic network state layer simulates fluctuating load conditions, resource
scheduling variability, interference patterns, and technology-specific constraints such
as LTE-NR dual-connectivity behaviour. These temporal fluctuations are crucial for
producing heavy-tailed throughput and latency distributions comparable to real 5G
systems. For example, load spikes occurring during commuting hours influence both
uplink and downlink KPIs, while low-load periods provide opportunities for higher
scheduling ratios and stable latency.

Finally, event-driven modem triggers determine when NetworkSnapshot records
are generated. This mechanism draws inspiration from how real phones log diagnostic
data only when relevant radio or application events occur. By adopting this behaviour,
OPNet-Sim reproduces the fine-grained but non-uniform temporal sampling observed
in crowdsourced datasets.
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Figure 1. Overview of the OPNet-Sim data generation framework.
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Together, these layered components enable OPNet-Sim to simulate realistic
performance variations across users, time periods, technology layers, and cities,
resulting in a dataset suitable for machine learning, benchmarking, and large-scale
modelling tasks. Figure 1 shows that the overview of the OPNet-Sim data generation
framework.

2.2. Simulated metrics and dimensions

Each generated record, termed a NetworkSnapshot, contains a comprehensive set
of metrics. The schema, outlined in Table 1, was designed to be congruent with those
used in industrial and academic measurement studies to ensure practical relevance.

Table 1. Core metrics contained in each OPNET NetworkSnapshot record.

Dimension Metric Description Unit
Metadata timestamp Unix epoch timestamp of the measurement. ms
device id Anonymised, salted hash of the device IMEI. -

location_geohash  Geohash (precision 6, ~1.2km?) of the device location. -

0s_version Device operating system version. -
device_model OPPO device model identifier. -
Radio Access Network network type Access technology (e.g., LTE, NR_NSA, NR_SA). -
(RAN) serving_plmn Public Land Mobile Network identifier. -
serving_cell id Anonymised serving cell identity. -
srp Reference Signal Received Power. dBm
srq Reference Signal Received Quality. dB
sinr Signal to Interference plus Noise Ratio. dB
ssb_rsrp SSB Reference Signal Received Power (for 5G). dBm
band Operating frequency band. -
Performance KPIs throughput_dl_avg Average downlink throughput during the session. Mbps
throughput ul_avg Average uplink throughput during the session. Mbps
latency min Minimum round-trip time (RTT) to a control server. ms
latency avg Average RTT. ms
latency _jitter Jitter (standard deviation of RTT). ms
Device Context screen_state Whether the device screen is ON or OFF. -

mobility_state Inferred state (e.g., STATIONARY, WALKING, -
VEHICLE).

battery level Device battery level. %

The inclusion of these fields reflects the intention of this research to support a
wide range of downstream analysis tasks, from simple KPI summarisation to advanced
machine learning applications. For instance, the combination of RSRP, RSRQ, and
SINR allows detailed modelling of radio link quality, while throughput and latency
metrics provide insights into user-perceived performance. Device context metrics,
such as mobility state and screen state, enable studies of behavioural modulation in
network demand and QoE outcomes.

This research also emphasises extensibility: the dataset schema can accommodate
additional fields, such as beam index, carrier aggregation configuration, or
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application-layer metadata, if required by future researchers. The current configuration
balances richness with universality, ensuring compatibility with most commercially
deployed devices and modem reporting schemes.

2.3. Privacy and ethics considerations

Since OPNet-Sim is entirely synthetic, it bypasses all critical privacy concerns
associated with real user data. All identifiers, locations, and network elements are
computer-generated. From a privacy-engineering perspective, synthetic datasets like
OPNet-Sim offer strong formal guarantees against re-identification attacks. Unlike
anonymised real datasets where unique mobility traces or rare device characteristics
may allow adversarial reconstruction synthetic data contains no hidden mappings to
real individuals. Therefore, risks such as membership inference, linkage attacks, or
adversarial deanonymisation are eliminated by design.

Nonetheless, this research stresses the importance of transparency and
responsible interpretation. While synthetic, the dataset is meant to approximate real
distributions rather than replicate specific operator deployments. Users are cautioned
not to treat OPNet-Sim as ground truth for operational decisions but rather as a
research tool for benchmarking, modelling, and experimentation.

3. Data records

The OPNet-Sim dataset is released as a collection of compressed Parquet files,
organised by simulated city and month to facilitate efficient access. The Parquet
format was chosen for its columnar storage efficiency, which enables rapid querying
and analysis with frameworks like Apache Spark or Pandas.

3.1. Dataset structure

The OPNet dataset is organised hierarchically by city and month to facilitate
efficient data access and management. The root directory contains metadata files
including a 'README.txt® with a dataset overview, ‘schema.json’ describing the data
schema, and "data_dictionary.csv' providing detailed variable descriptions.

The primary data is partitioned into city-specific subdirectories (London,
Manchester, Birmingham, Glasgow, Leeds), each containing monthly Parquet files
spanning from June 2023 to May 2024 (12 months per city). This temporal partitioning
enables researchers to query specific time periods of interest efficiently. Additionally,
an "analysis_scripts/ directory provides Python utilities for data loading, fundamental
analysis, coverage mapping, and QoE evaluation.

The generated dataset comprises approximately 1.2 billion records distributed
across 60 monthly files (5 cities x 12 months), with each Parquet file containing ~20
million records. This structure optimises for both storage efficiency and query
performance in big data processing frameworks.

3.2. Data volume and summary statistics

Table 2 provides a high-level summary of the key synthesized metrics across the
entire dataset, demonstrating that the generated data spans a realistic range of values.
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Table 2. OPNet-Sim dataset summary statistics.

Statistic RSRP (dBm) RSRQ (dB) SINR (dB) DL throughput (Mbps) Latency (ms)
Mean -98.5 -11.2 15.8 87.4 382
Std. Dev. 123 4.1 8.5 112.1 24.7
5th Percentile -118.0 -16.0 3.0 5.1 18.0
Median -97.0 -10.8 16.1 523 32.0
95th Percentile -80.0 -7.0 28.5 285.6 75.0

The distribution of connection technologies (Figure 2) shows the evolving nature
of 5G deployment, with a significant portion of connections still relying on 4G LTE,
often in Non-Standalone (NSA) mode.

NR_SA (5G Standalone) NR_NSA (5G Non-Standalone)

TE

Figure 2. Simulated distribution of connection types across the OPNet-Sim dataset.

Beyond these aggregate statistics, this research conducted detailed per-city and
per-operator analyses to confirm that the synthetic dataset preserves meaningful
performance variance. For example, cities with denser mid-band deployments exhibit
stronger RSRP distributions and narrower SINR spread, while regions with mixed
LTE and NR layers display multimodal throughput characteristics similar to those
reported in real-world crowdsourced datasets. Such fidelity is crucial for enabling
downstream tasks such as operator comparison, technology transition modelling, and
cell-edge performance prediction.

To further assess distribution realism, this research compared KPI distributions
particularly SINR, RSRP, and latency against publicly available datasets such as the
FCC MBA dataset, the IMDEA MONROE measurement campaign, and Opensignal’s
published performance summaries. These comparisons indicate that OPNet-Sim’s KPI
percentiles fall within empirically observed ranges. For example, the 5th percentile
RSRP values in OPNet-Sim align closely with measurements reported by NYU
Wireless in dense urban studies, where deep coverage holes commonly yield values
below —115 dBm. Similarly, the heavy-tailed latency distributions observed in OPNet-
Sim resemble those reported in Ookla’s 2023 Global Speedtest Market Report,
confirming the accuracy of OPNet-Sim’s congestion modelling.

Furthermore, the dataset’s scale 1.2 billion records enables robust machine
learning studies. Model training for tasks such as KPI prediction, QoE inference, and
anomaly detection often requires millions of samples to ensure stable optimisation.
OPNet-Sim provides this volume while retaining realistic variance across spatial,
temporal, and technological dimensions.
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High-volume datasets are increasingly required for Al models used in mobility
prediction, resource scheduling, and QoE inference. Studies such as Nguyen et al. [27]
emphasise that dataset size is strongly correlated with model generalisability in RAN
intelligence applications. The billions of samples in OPNet-Sim therefore offer a
statistically rich environment for training supervised, unsupervised, and reinforcement
learning models, including GNNs, LSTMs, and transformer architectures used in
5G/6G research.

4. Technical validation

To ensure the OPNET dataset is of high quality and suitable for research, we
implemented a multi-stage validation pipeline.

4.1. Data quality checks

Automated scripts verified the generated data for internal consistency:

e  Plausibility Ranges: Records with impossible values (e.g., RSRP > —40 dBm)
were filtered out during generation.

o  Logical Correlations: We enforced correlations between metrics (e.g., high RSRP
generally leads to higher throughput) based on established network theory.
Additional validation ensured that technology-specific fields (e.g., SSB-RSRP)

were present only in NR modes and absent in LTE records. This research also
validated temporal coherence by confirming that successive readings from the same
device followed expected autocorrelation patterns. These checks reduce the risk of
synthetic artefacts such as abrupt metric jumps unrelated to mobility or cell transitions
that could distort downstream analysis.

4.2. Face validity against published studies

This research compared the statistical properties of OPNet-Sim with findings
from published measurement studies [28]. For instance, the comparative performance
of 5G NSA vs. SA modes in our dataset (Table 3) aligns with qualitative and
quantitative findings in the literature. To further strengthen confidence in realism, this
research replicated well-known empirical patterns:

e the non-linear relationship between SINR and throughput,

e the degradation of RTT stability during vehicular mobility,

e the improved uplink performance in SA-mode due to optimised scheduling,

e and the wider throughput variance in NSA deployments due to LTE-NR dual-
connectivity constraints.

Table 3. Comparative performance of 5G deployment modes.

KPI 5G Non-Standalone (NSA) 5G Standalone (SA)
Median RSRP (dBm) —96.5 —94.2

Median SINR (dB) 15.8 185

Median DL Throughput (Mbps) 68.4 145.2

Median Latency (ms) 35.1 21.8
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These behavioural consistencies demonstrate that OPNet-Sim offers not only
statistically aligned distributions, but also realistic functional relationships between
KPIs an essential requirement for enabling accurate model benchmarking.

More specifically, throughput-vs-SINR curves generated using OPNet-Sim were
found to follow the sigmoidal trend described in foundational works such as Polese et
al. [17]. Furthermore, OPNet-Sim’s uplink latency distributions under NR Standalone
(SA) mode closely match those measured by Narayanan et al. [28], wherein 5G SA
consistently demonstrated sub-25 ms median latency across mobility states. These
validations enhance confidence that OPNet-Sim reflects real technology-layer
behaviour.

The dataset further reproduces multi-modal throughput distributions commonly
seen in deployed 5G networks due to fragmentation across LTE, NSA, and SA
technologies. Similar patterns are documented in both the Ericsson Mobility Report
[29] and academic field studies such as Liu et al. [22]. This correspondence between
OPNet-Sim and empirical sources strengthens the argument for its utility as a
benchmark dataset.

5. Usage notes

The OPNET dataset is a versatile resource that can be utilised for a wide array of
research endeavours. Below are several prominent use cases.

5.1. Use Case 1: 5G coverage and performance modelling

Researchers can use the RF measurements (RSRP, SINR) to build high-resolution
coverage and quality maps for different operators and technologies. Machine learning
models can be trained to predict signal strength based on location, land use, and
topography. The dataset allows for a comparative analysis of 5G NSA vs. SA
performance in real-world settings, as shown in the preliminary study in Table 3.

Additional examples of coverage-related tasks enabled by OPNet-Sim include:

e prediction of signal dead zones through geospatial interpolation,
e identification of potential small-cell deployment sites,
e and exploration of spectral efficiency under different load patterns.

Because OPNet-Sim contains multi-city data, researchers can also investigate
generalisation studies training models in one city and evaluating performance in
another to understand domain transfer behaviour, a topic increasingly important for
scalable network analytics.

5.2. Use Case 2: Quality of Experience (QoE) inference

By correlating network KPIs with device context, one can model the QoE for
specific applications. For instance, the mobility_state and throughput dl avg can be
used to predict video streaming quality (e.g., likelihood of rebuffering). A simple
analysis (Figure 3) shows how throughput stability degrades with increasing mobility,
which directly impacts QoE for real-time applications.
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Throughput Stability vs. Mobility
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Figure 3. Throughput stability vs. mobility.

This research highlights that OPNet-Sim can support a wide range of QoE

modelling paradigms:

e  session-level QoE prediction,

e real-time QoE estimation under mobility,

o  buffer-level video QoE inference,

e and predictive congestion-aware QoE degradation alerts.

The inclusion of mobility state and temporal continuity makes OPNet-Sim
especially valuable for streaming and gaming QoE research, where user motion alters
both signal quality and application demand.

QokE inference has increasingly shifted toward ML-based prediction frameworks.
Techniques documented by Hossfeld et al. [30], such as the VMAF neural quality
index, require detailed temporal KPI sequences patterns reproduced faithfully by
OPNet-Sim. As a result, researchers can simulate video streaming stalls, adaptive
bitrate (ABR) fluctuations, and waveform switching patterns under controlled
conditions.

In gaming QoE, OPNet-Sim supports modelling of latency spikes, jitter bursts,
and packet delay variation key parameters affecting cloud gaming as shown in
Claypool et al. [31]. The dataset’s mobility-aware measurements also allow
researchers to explore user-experience degradation during transitions between indoor
and outdoor environments, a phenomenon widely observed in empirical studies.

5.3. Use Case 3: Network anomaly detection

The longitudinal and large-scale nature of OPNET makes it ideal for detecting
large-scale network outages or performance degradation events [32]. By analysing the
temporal patterns of KPIs or connection failure rates for a specific operator within a
particular city, one can identify anomalies that deviate from the normal baseline. This
can be a powerful tool for independent network monitoring [33,34]. OPNet-Sim
enables controlled benchmarking of anomaly detection algorithms because this
research can programmatically inject synthetic faults such as:

e  RAN misconfiguration,
e  Dbackhaul congestion,

10
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e  tower outages,
e  spectrum interference bursts,
e  or scheduler degradation.

Since the timing and magnitude of these anomalies are known, researchers can
compute exact precision, recall, and detection latency metrics that are impossible to
obtain reliably from proprietary real-world datasets.

5.4. Limitations

While OPNet-Sim provides a comprehensive synthetic representation of multi-
city 5G network measurements, several limitations must be acknowledged to guide
appropriate interpretation and future development. First, although OPNet-Sim models
radio metrics such as RSRP, RSRQ, SINR, throughput, and latency with realistic
distributions, it does not generate physical-layer channel matrices or beam-domain
characteristics such as MIMO correlation, spatial signatures, or antenna radiation
patterns. These attributes are essential for studies on advanced beamforming, channel
estimation, RIS-assisted propagation, and link-level optimisation. Researchers
focusing on these areas may therefore require integration with established 3GPP-
compliant channel simulators such as QuaDRiGa or NYUSIM to supplement OPNet-
Sim with spatially resolved channel coefficients.

Second, the dataset currently focuses on sub-6 GHz deployments and does not
include propagation phenomena specific to millimetre-wave (mmWave) or terahertz
(THz) frequencies. Realistic modelling of mmWave behaviour requires representing
rapid signal blockage, human-body shadowing, atmospheric absorption, narrow-beam
alignment, and sensitivity to small-scale mobility. These characteristics significantly
influence high-frequency coverage and reliability, especially for 5G-Advanced and
6G systems. As global networks continue to adopt wider bandwidths and directional
transceivers in the mmWave and THz ranges, future versions of OPNet-Sim may need
to incorporate frequency-dependent propagation models, blockage events, and beam-
management dynamics to support emerging research directions.

Third, OPNet-Sim does not explicitly model user-level application traffic
patterns, protocol-layer retransmissions, or scheduling interactions beyond aggregate
KPIs. While the current abstraction is appropriate for studies on coverage, throughput
prediction, QoE inference, and anomaly detection, it limits investigations into
congestion-control behaviour, session-layer dynamics, per-app performance, and
latency-critical application modelling. Incorporating packet-level traces, PDCP
throughput, HARQ feedback, or transport-layer congestion statistics may enable richer
assessments of user-perceived performance in scenarios such as cloud gaming,
adaptive video streaming, or ultra-low-latency robotics.

Additionally, the dataset does not attempt to replicate the exact configurations of
specific operators, vendors, or regulatory environments. Tower locations, spectrum
holdings, and scheduling policies are synthetically generated rather than derived from
commercial deployments. While this preserves privacy and avoids proprietary
constraints, it also means OPNet-Sim should not be interpreted as a precise
representation of any real operator’s network. Instead, it provides a statistically
plausible environment for experimentation and benchmarking.

11
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Finally, as with all synthetic datasets, OPNet-Sim relies on modelling
assumptions that may oversimplify rare events, extreme outliers, or unexpected
network behaviours. Continuous refinement and community feedback will be essential
for improving fidelity and extending OPNet-Sim to next-generation wireless systems.

6. Conclusion

This research has presented OPNet-Sim, a framework for generating realistic,
large-scale synthetic datasets for use in 5G network research. OPNet-Sim mirrors the
statistical properties of real-world measurements while preserving privacy and
enabling reproducible experimentation. Looking forward, OPNet-Sim can evolve
alongside the telecommunications landscape. As 5G-Advanced and early 6G
architectures emerge introducing features such as Al-native optimisation loops, joint
communication—sensing capabilities, and non-terrestrial network integration future
versions of the dataset may incorporate new KPIs, mobility models, and spectrum
regimes. This research envisions OPNet-Sim becoming part of a broader open
benchmarking ecosystem, where researchers worldwide can evaluate models on
shared tasks such as link adaptation prediction, beam-selection learning, outage
forecasting, and QoE inference. By lowering access barriers, OPNet-Sim democratizes
participation in mobile network research and supports the development of more
transparent, reproducible, and collaborative scientific practices. Ultimately, the aim of
this research is not only to provide a dataset, but also to inspire a methodological
framework through which future synthetic datasets covering 5G, 6G, and beyond can
be developed to accelerate innovation in network analytics and improve user
experience across diverse communication environments. Beyond its immediate
technical contributions, OPNet-Sim also provides a foundation for methodological
consistency across future studies in mobile network intelligence. As the research
community increasingly adopts data-driven workflows, the availability of a common,
openly accessible dataset enables fair comparison among competing models and
encourages rigorous benchmarking standards. This shared foundation reduces
fragmentation in experimental methodologies and helps mitigate the reproducibility
challenges that have historically limited progress in network performance modelling.
By enabling researchers to test hypotheses under controlled yet realistic conditions,
OPNet-Sim supports a more systematic accumulation of empirical knowledge and
strengthens.
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