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Abstract: The rapid densification of fifth generation radio access networks and the growing 

demand for low-latency services have significantly increased the energy consumption of 

mobile infrastructures, raising critical concerns regarding operational cost and environmental 

sustainability. Multi-access edge computing has been introduced as a key architectural 

paradigm to support stringent latency requirements by deploying computing resources closer 

to base stations. However, the deployment of edge computing does not inherently guarantee 

energy efficiency, as edge platforms may consume substantial baseline power under low 

utilization if orchestration and task placement are not energy-aware. This paper proposes an 

energy-efficient edge computing architecture for 5G networks that integrates real-time energy 

monitoring with load-aware task scheduling at the edge layer. The proposed architecture is 

aligned with standardized 5G edge deployment frameworks and is evaluated using real 

operational base station data, including traffic load, computing utilization, and power 

consumption measurements. By leveraging real data rather than synthetic workloads, the 

proposed approach enables a realistic assessment of energy efficiency under practical 

operating conditions. Experimental results demonstrate that the proposed architecture 

achieves approximately 30% improvement in energy efficiency compared with a 

conventional edge computing deployment without energy-aware scheduling, while 

maintaining comparable latency performance. The findings indicate that data-driven energy-

aware orchestration at the network edge can deliver measurable energy savings in 

commercial 5G environments. This work provides practical insights for mobile network 

operators seeking to reduce the energy footprint of 5G infrastructures and contributes a 

deployable architectural framework for energy-efficient edge computing in next-generation 

mobile networks. 

Keywords: 5G; multi-access edge computing; energy efficiency; green networking; base 

station power; real-world operational data; task placement; ETSI MEC 

1. Introduction 

The large-scale deployment of fifth generation mobile networks has 
fundamentally transformed wireless communication by enabling enhanced mobile 
broadband, ultra-reliable low-latency communication, and massive machine-type 
connectivity [1,2]. These capabilities support emerging applications such as 
immersive multimedia services, industrial automation, and intelligent transportation 
systems. However, the performance improvements offered by 5G networks are 
accompanied by a substantial increase in energy consumption, particularly within the 
radio access network. Dense base station deployment, wider operating bandwidths, 
and advanced signal processing techniques collectively contribute to higher power 
demand compared with previous cellular generations [3,4]. 

From an operational perspective, energy consumption has become one of the 
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dominant cost components for mobile network operators and a critical factor 
influencing network sustainability [5]. Despite the inclusion of energy-saving 
mechanisms in 5G standards, practical deployments indicate that overall network 
energy demand continues to rise due to traffic growth and network densification [6]. 
As a result, improving the energy efficiency of 5G infrastructures has emerged as a 
key research challenge and an urgent engineering requirement rather than a purely 
theoretical optimization objective [7]. 

Multi-access edge computing has been widely recognized as a cornerstone 
technology for supporting low-latency and computation-intensive services in 5G 
networks [8,9]. By deploying computing and storage resources at or near base 
stations, edge computing reduces reliance on centralized cloud infrastructures and 
mitigates backhaul congestion [10]. Standardized edge computing frameworks 
define functional entities and interfaces that facilitate the deployment and 
management of edge applications in operational networks [11]. These frameworks 
provide a practical foundation for integrating edge computing capabilities into 
commercial 5G systems. 

While edge computing improves service responsiveness, its impact on energy 
efficiency is not inherently positive. Edge platforms introduce additional computing 
resources that consume power even during periods of low utilization, and poorly 
coordinated task placement may lead to underutilized servers drawing near-constant 
baseline power [12,13]. Consequently, the net energy effect of edge computing 
depends strongly on orchestration strategies, workload characteristics, and the 
interaction between communication and computation resources [14]. Without 
explicit energy-aware control, the deployment of edge computing may offset 
potential energy savings achieved through reduced data transport [15]. 

A growing body of literature has proposed energy-efficient task offloading and 
resource allocation strategies for edge-enabled networks [16–18]. These studies 
demonstrate that joint optimization of communication and computation resources 
can theoretically reduce energy consumption while satisfying latency constraints. 
However, many existing approaches rely on synthetic traffic models or simulation-
based evaluations that assume idealized workload patterns and simplified power 
models [19,20]. Such assumptions limit the applicability of reported energy 
efficiency gains to real-world network deployments. 

Recent measurement-based studies have highlighted the importance of 
empirical evaluation for understanding energy behavior in 5G systems. Analyses 
based on real network measurements reveal that base station power consumption and 
virtualized platform energy usage are influenced by configuration choices, workload 
variability, and platform idling behavior [21,22]. These findings underscore the 
limitations of purely model-driven evaluations and motivate the need for data-driven 
validation using real operational traces. 

In this context, there remains a clear gap between energy-efficient edge 
computing architectures proposed in the literature and solutions that have been 
validated under realistic operating conditions. Practical deployment requires 
architectures that are compatible with standardized edge frameworks and capable of 
adapting to dynamic traffic patterns observed in commercial networks [11,23]. 
Energy optimization mechanisms must therefore be designed with both architectural 
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feasibility and empirical performance in mind. 
Motivated by these challenges, this paper presents an energy-efficient edge 

computing architecture for 5G networks that is evaluated using real base station 
operational data. The proposed approach integrates real-time energy monitoring with 
load-aware task scheduling at the edge layer, enabling dynamic adaptation to traffic 
fluctuations while preserving quality of service constraints [11,24]. By grounding the 
design in standardized edge computing frameworks and validating performance 
using real-world measurements, this work aims to bridge the gap between theoretical 
energy-efficient designs and deployable solutions for commercial 5G infrastructures. 

The main contributions of this study are summarized as follows. First, an 
energy-aware edge computing architecture aligned with standardized 5G edge 
deployment models is proposed. Second, a data-driven evaluation methodology 
based on real base station traffic load, computing utilization, and power consumption 
measurements is developed. Third, experimental results demonstrate that the 
proposed architecture achieves approximately 30% improvement in energy 
efficiency compared with a conventional edge computing baseline without energy-
aware scheduling. Finally, the study provides practical insights to support the 
deployment of energy-efficient edge computing solutions in operational 5G 
environments. 

2. Related work 

2.1. Energy consumption and efficiency in 5G networks 

Energy efficiency has become a central research topic in the evolution of 5G 
networks due to the increasing operational cost and environmental impact associated 
with dense radio access deployments [1,2]. Compared with legacy cellular systems, 
5G base stations employ wider carrier bandwidths, advanced antenna configurations, 
and complex baseband processing pipelines, all of which contribute to higher power 
consumption [3]. Studies on green communications have emphasized that 
improvements in spectral efficiency do not automatically translate into proportional 
gains in energy efficiency, particularly under conditions of traffic growth and 
network densification [4,5]. 

Recent research has examined energy-saving mechanisms at the radio access 
network level, including adaptive transmission schemes, cell sleeping strategies, and 
traffic-aware resource management [6–8]. While these techniques can reduce energy 
consumption under specific conditions, empirical analyses indicate that base stations 
continue to draw substantial baseline power even during low traffic periods, limiting 
achievable savings [9]. Consequently, energy optimization efforts have increasingly 
shifted toward system-level approaches that jointly consider communication, 
computation, and operational factors [10]. 

2.2. Multi-access edge computing architectures in 5G 

Multi-access edge computing has been widely adopted to address the stringent 
latency and bandwidth requirements of emerging 5G services [11,12]. By colocating 
computing resources with base stations or aggregation points, MEC reduces end-to-
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end latency and alleviates backhaul congestion [13]. Standardized edge computing 
frameworks define functional entities, service interfaces, and deployment models 
that facilitate the integration of edge platforms into commercial 5G networks [14]. 

Survey studies have provided comprehensive overviews of MEC architectures, 
orchestration mechanisms, and deployment challenges [15,16]. These works 
highlight that MEC performance is highly dependent on orchestration decisions, 
including application placement, resource scaling, and mobility support. However, 
most architectural discussions focus primarily on quality of service and scalability, 
with energy efficiency often treated as a secondary consideration or implicitly 
assumed to improve through reduced data transport [17]. 

2.3. Energy-aware task offloading and resource allocation 

A significant body of literature has explored energy-aware task offloading and 
resource allocation strategies in edge-enabled networks [18–20]. These approaches 
typically formulate optimization problems that balance communication energy, 
computation energy, and latency constraints. Results from simulation-based studies 
suggest that joint optimization of computation and communication resources can 
yield notable energy savings compared with cloud-only or static offloading strategies 
[21]. 

More recent works have investigated adaptive and learning-based approaches to 
energy-efficient edge orchestration, including heuristic algorithms and reinforcement 
learning techniques [22,23]. While these methods demonstrate promising 
performance under controlled conditions, their evaluations are commonly based on 
synthetic workloads and simplified power models. As a result, the reported energy 
efficiency improvements may not accurately reflect behavior in operational 5G 
networks with heterogeneous hardware platforms and fluctuating traffic patterns 
[24]. 

2.4. Measurement-based and realistic evaluations 

To address the limitations of simulation-driven studies, several recent works 
have emphasized the importance of measurement-based evaluation for understanding 
energy behaviour in 5G systems [25,26]. Empirical analyses using real network 
measurements have shown that configuration choices, virtualization overhead, and 
workload dynamics significantly affect energy consumption at both the radio access 
and edge computing layers [27]. These findings highlight that energy efficiency 
gains observed in simulations may not be directly transferable to real deployments. 

Despite these advances, measurement-based studies that jointly consider edge 
computing orchestration and base station energy consumption remain limited. 
Existing empirical works often focus on either radio access energy modeling or 
virtualized network function power consumption in isolation, without explicitly 
addressing energy-aware task placement at the network edge [28,29]. This separation 
leaves an important gap in understanding how edge computing architectures can be 
designed and operated to achieve energy efficiency under realistic operating 
conditions. 
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2.5. Summary and research gap 

The reviewed literature demonstrates substantial progress in understanding 5G 
energy consumption, MEC architectures, and energy-aware task offloading 
strategies. However, three key limitations persist. First, many proposed energy-
efficient edge computing solutions rely on simulation-based evaluations that do not 
capture real-world traffic variability and platform behavior. Second, energy 
efficiency is often addressed at the algorithmic level without sufficient consideration 
of standardized deployment frameworks and architectural feasibility. Third, 
empirical studies integrating real base station operational data with energy-aware 
edge orchestration remain scarce. 

These gaps motivate the present study, which proposes an energy-efficient edge 
computing architecture aligned with standardized 5G MEC frameworks and 
validates its performance using real base station operational data. By grounding the 
analysis in realistic measurements and deployable architectural principles, this work 
aims to provide actionable insights for improving the energy efficiency of 
commercial 5G networks. 

3. System architecture 

This section presents the proposed energy-efficient edge computing architecture 
for 5G networks. The design follows standardized multi-access edge computing 
deployment principles and is intended to be compatible with commercial 5G radio 
access and core network environments [11,14]. The key objective of the architecture 
is to reduce energy consumption at the network edge while maintaining service 
latency and reliability requirements through energy-aware orchestration and task 
placement. 

3.1. Architectural overview 

The proposed architecture adopts a hierarchical structure consisting of the 5G 
radio access network, an edge computing layer, and a centralized cloud layer. Edge 
computing resources are deployed in close proximity to 5G base stations, enabling 
low-latency processing of delay-sensitive tasks while reducing backhaul traffic 
[12,15]. Unlike conventional MEC deployments that prioritize performance metrics 
alone, the proposed architecture explicitly integrates energy monitoring and energy-
aware control into the orchestration loop. 

Figure 1 illustrates the overall architecture and its main functional components. 
At the access layer, 5G base stations provide wireless connectivity and generate 
traffic that may be processed locally, offloaded to the edge, or forwarded to the 
cloud. The edge layer hosts virtualized computing resources and a set of control 
modules responsible for monitoring energy consumption, scheduling tasks, and 
managing resource activation. The cloud layer provides large-scale computing and 
storage capabilities for delay-tolerant or computation-intensive tasks. 
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Figure 1. Energy-efficient edge computing architecture for 5G networks. 

3.2. Functional components 

3.2.1. Energy monitoring module 

The energy monitoring module is responsible for collecting real-time power 
consumption data from edge computing nodes and associated infrastructure. 
Measurements include processor utilization, memory usage, and platform-level 
power consumption, which together provide a comprehensive view of energy 
behaviour at the edge [21,25]. By continuously tracking these metrics, the system 
can identify periods of underutilization and excessive energy draw. 

Energy telemetry is exposed to the orchestration layer through standardized 
interfaces, allowing energy awareness to be incorporated into scheduling and 
placement decisions. This design aligns with recent efforts to introduce energy 
observability into network and cloud platforms and supports closed-loop energy 
optimization [26]. 

3.2.2. Load-aware task scheduler 

The load-aware task scheduler determines where incoming computational tasks 
should be executed based on current system conditions. Decisions consider traffic 
load, available computing resources, latency constraints, and measured energy 
consumption [18,22]. Tasks can be executed locally at the edge, migrated to 
neighbouring edge nodes, or forwarded to the centralized cloud depending on their 
performance and energy profiles. 

Unlike static offloading strategies, the scheduler adapts dynamically to traffic 
fluctuations and platform utilization. During low-load periods, tasks may be 
consolidated onto fewer edge nodes, allowing idle servers to enter low-power states. 
During peak load conditions, additional resources can be activated to maintain 
quality of service [10,24]. 
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3.2.3. Resource management and activation 

The resource management component controls the activation and deactivation 
of virtualized computing resources at the edge. Virtual machines or containers can be 
scaled up or down in response to workload demand, and unused resources can be 
placed into energy-saving states when appropriate [27]. This mechanism addresses 
the baseline power consumption issue commonly observed in edge platforms 
operating at low utilization. 

Resource management decisions are coordinated with the task scheduler to 
ensure that energy savings do not compromise service latency or reliability. By 
jointly optimizing resource activation and task placement, the architecture achieves a 
balanced trade-off between performance and energy efficiency. 

3.2.4. Cloud coordination layer 

The centralized cloud layer serves as a fallback and overflow processing 
environment for tasks that exceed edge capacity or are not latency-sensitive. 
Coordination between the edge and cloud layers enables flexible workload 
distribution and supports scalability across large network deployments [16]. From an 
energy perspective, the cloud layer absorbs excess demand while allowing edge 
resources to be selectively activated based on local conditions. 

3.3. Control and data flow 

The operation of the proposed architecture follows a closed-loop control 
process. Incoming traffic is first classified based on application requirements. The 
task scheduler evaluates current system state using inputs from the energy 
monitoring module and resource manager, and then assigns tasks to appropriate 
execution locations. Energy consumption and performance metrics are continuously 
fed back to the scheduler, enabling adaptive adjustment of orchestration policies over 
time [19]. 

This closed-loop design distinguishes the proposed architecture from 
conventional MEC deployments, which typically rely on static or performance-
driven orchestration. By embedding energy awareness into the control loop, the 
architecture enables sustained energy efficiency improvements under realistic and 
time-varying operating conditions. 

3.4. Design rationale and practical considerations 

The proposed architecture is designed to be deployable within existing 5G 
infrastructures without requiring fundamental changes to radio access protocols or 
core network functions. By aligning with standardized edge computing frameworks 
and leveraging virtualized computing platforms, the architecture can be 
incrementally introduced alongside existing MEC deployments [11,14]. 

From an operational perspective, the architecture supports gradual adoption by 
allowing operators to enable energy-aware scheduling on selected edge nodes and 
expand deployment as confidence and data availability increase. This practical 
orientation is essential for translating energy efficiency research into actionable 
solutions for commercial 5G networks. 
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4. Energy and system model 

This section presents the energy and system models used to analyze and 
evaluate the proposed energy-efficient edge computing architecture. The models are 
designed to reflect realistic operating conditions in 5G networks and to remain 
consistent with standardized edge computing deployments and measurement-based 
observations reported in recent studies [1,4,21]. 

4.1. System model 

Consider a 5G network composed of a set of base stations, each co-located with 
an edge computing node. User traffic arriving at a base station generates 
computational tasks that may be processed locally at the edge node or forwarded to 
the centralized cloud. Tasks are characterized by their computational demand, 
latency sensitivity, and data size, which collectively influence offloading and 
scheduling decisions [18]. 

The system operates in discrete time intervals corresponding to monitoring and 
control cycles. At each interval, the edge controller observes the current traffic load, 
resource utilization, and energy consumption, and then determines task placement 
and resource activation decisions. This time-slotted abstraction is commonly adopted 
in edge computing studies and aligns with practical orchestration cycles in 
operational platforms [15,22]. 

4.2. Base station and edge energy consumption model 

The total energy consumption of a base station with an associated edge node is 
modeled as the sum of communication-related energy and computation-related 
energy. This decomposition reflects empirical observations from measurement-based 
studies of 5G systems [21,25]. 

The communication energy component accounts for radio frequency 
transmission, baseband signal processing, and auxiliary functions. Although radio 
energy consumption varies with traffic load, a substantial portion of base station 
power draw remains static due to hardware and cooling requirements [9,16]. This 
behavior motivates system-level approaches that reduce unnecessary activation of 
additional computing resources. 

The computation energy component captures the power consumed by edge 
servers executing offloaded tasks. Computation energy is modeled as a function of 
processor utilization and execution time, with an additional baseline power 
component representing idle and low-utilization operation [12,27]. Measurement-
based analyses indicate that edge platforms may draw a significant fraction of peak 
power even when lightly loaded, highlighting the importance of consolidation and 
resource deactivation strategies [21]. 

4.3. Energy consumption breakdown 

Figure 2 illustrates the conceptual breakdown of energy consumption in a 5G 
base station with an edge computing node. The figure highlights the contributions of 
communication, computation, and baseline energy consumption, as well as the 
control loop through which energy-aware orchestration decisions are applied. 
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Figure 2. Energy consumption breakdown and control loop for energy-aware edge 
computing. 

This breakdown emphasizes that reducing energy consumption requires more 
than optimizing radio transmission alone. Instead, effective energy savings emerge 
from coordinated control of communication and computation resources, particularly 
by minimizing baseline energy draw during periods of low demand [4,10]. 

4.4. Task execution and offloading model 

Each computational task is associated with a processing requirement and a 
latency constraint. Tasks that are latency-sensitive are prioritized for execution at the 
edge, while delay-tolerant tasks may be forwarded to the cloud when edge resources 
are constrained or when energy savings can be achieved through consolidation 
[14,18]. 

The energy cost of executing a task at the edge depends on execution time and 
processor utilization. In contrast, cloud execution incurs additional communication 
energy and delay but may benefit from higher energy efficiency due to economies of 
scale at centralized data centers [16]. The proposed architecture balances these trade-
offs by dynamically selecting execution locations based on real-time energy and load 
conditions. 

4.5. Energy-aware optimization objective 

The primary objective of the proposed system is to minimize overall energy 
consumption while satisfying latency and capacity constraints. Rather than focusing 
on instantaneous power reduction, the optimization targets energy efficiency over 
time, reflecting practical operational goals [6,20]. 

At each control interval, the scheduler seeks to reduce unnecessary baseline 
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power consumption by consolidating workloads and deactivating idle resources, 
subject to service quality constraints. This objective aligns with operator 
perspectives that emphasize sustainable operation and long-term energy reduction 
rather than short-term performance gains [5]. 

4.6. Discussion of model assumptions 

The proposed energy and system models intentionally balance realism and 
tractability. While the models abstract certain hardware-specific details, they are 
grounded in empirical observations reported in recent measurement-based studies of 
5G and edge computing systems [21,22]. Importantly, model parameters are 
calibrated using real base station operational data in the experimental evaluation, 
ensuring that the analysis reflects practical deployment conditions. 

By combining standardized architectural assumptions with data-driven 
calibration, the proposed modeling approach supports meaningful evaluation of 
energy efficiency improvements achievable in real-world 5G edge deployments. 

5. Data and methodology 

This section describes the real base station dataset, data preprocessing 
procedures, and experimental methodology used to evaluate the proposed energy-
efficient edge computing architecture. The overall goal is to ensure that the reported 
energy efficiency results are grounded in realistic operational conditions and can be 
meaningfully interpreted by network operators and researchers [21,25] 

5.1. Real base station dataset 

The evaluation is based on operational data collected from commercial 5G base 
stations equipped with edge computing capabilities. The dataset was obtained from a 
live network environment under routine operation and reflects realistic traffic 
patterns, computing utilization, and energy consumption behavior. To protect 
commercial sensitivity and user privacy, all data were anonymized and aggregated 
prior to analysis, and no user-identifiable information was accessed or processed. 

The dataset covers an extended observation period, allowing both peak and off-
peak operating conditions to be analyzed. Key measurements include traffic load at 
the base station, utilization of edge computing resources, and corresponding power 
consumption. Such multi-dimensional operational data (summarized in Table 1) are 
essential for capturing the interaction between communication and computation 
energy consumption in edge-enabled 5G systems [21]. 

Table 1. Summary of the real base station dataset. 

Attribute Description 

Network type Commercial 5G radio access network 

Deployment Base stations with co-located edge computing nodes 

Observation period Multiple consecutive months 

Time granularity Aggregated monitoring intervals 
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Table 1. (Continued). 

Attribute Description 

Traffic metrics Uplink and downlink traffic load 

Compute metrics CPU utilization, task execution load 

Energy metrics Platform-level power consumption 

Data handling Anonymized and aggregated 

5.2. Data preprocessing 

Prior to analysis, the raw operational data were preprocessed to ensure 
consistency and reliability. Missing values resulting from temporary monitoring 
interruptions were identified and handled using interpolation or exclusion depending 
on duration and impact. Outliers associated with maintenance windows or abnormal 
operating conditions were removed to avoid biasing the energy analysis [26]. 

All metrics were time-aligned to a common monitoring interval, enabling direct 
comparison between traffic load, compute utilization, and power consumption. 
Normalization was applied where necessary to account for differences in scale across 
metrics. These preprocessing steps follow best practices in measurement-based 
performance analysis and are consistent with prior empirical studies of network 
energy consumption [21]. 

5.3. Baseline and comparison scenarios 

To assess the effectiveness of the proposed architecture, three representative 
scenarios were defined: 

Cloud-centric processing, in which computational tasks are forwarded to the 
centralized cloud without edge processing. 

Conventional edge computing, where tasks are processed at the edge based on 
performance considerations but without energy-aware scheduling. 

Proposed energy-aware edge computing, which integrates real-time energy 
monitoring and load-aware task scheduling. 

These scenarios reflect common deployment strategies and provide a 
meaningful basis for evaluating the incremental benefits of energy-aware 
orchestration at the network edge [10,18]. 

5.4. Evaluation metrics 

Energy efficiency is evaluated using metrics that capture both absolute and 
relative performance. The primary metric is energy efficiency defined as the ratio 
between completed computational workload and total energy consumption over a 
given period. This metric reflects the ability of the system to deliver useful work per 
unit of energy consumed and is widely adopted in green networking research [4,6]. 

Secondary metrics include average task latency and resource utilization. These 
metrics ensure that energy savings are not achieved at the expense of unacceptable 
service degradation. By jointly considering energy and performance indicators, the 
evaluation provides a balanced assessment of system behavior under realistic 
operating conditions [14,20]. 
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5.5. Experimental workflow 

Figure 3 summarizes the experimental workflow used in this study. Operational 
data are first collected and preprocessed, after which baseline and proposed 
scheduling strategies are applied to the same traffic traces. Energy consumption and 
performance metrics are then computed and compared across scenarios. 

 
Figure 3. Experimental workflow for data-driven energy efficiency evaluation. 

This trace-driven evaluation approach ensures that all compared scenarios are 
exposed to identical traffic conditions, isolating the impact of orchestration strategies 
on energy efficiency. Such methodology is widely regarded as essential for credible 
performance evaluation in networked systems research [21,26]. 

5.6. Reproducibility and practical considerations 

Although the dataset originates from a commercial deployment, the 
methodology itself is independent of vendor-specific implementations. The modeling 
assumptions, preprocessing steps, and evaluation metrics are described in sufficient 
detail to enable replication using alternative datasets with similar characteristics. 
This focus on methodological transparency enhances the practical relevance of the 
results and supports broader adoption of energy-aware edge computing techniques in 
5G networks. 

6. Experimental results and performance evaluation 

This section presents the experimental results obtained from the real base 
station dataset and evaluates the performance of the proposed energy-aware edge 
computing architecture. The evaluation focuses on energy efficiency as the primary 
metric, while latency and resource utilization are examined to ensure that energy 
savings are not achieved at the expense of service quality [4,14]. 
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6.1. Overall energy efficiency improvement 

Energy efficiency is first evaluated by comparing the three scenarios defined in 
Section 5: cloud-centric processing, conventional edge computing without energy-
aware scheduling, and the proposed energy-aware edge computing architecture. For 
each scenario, energy efficiency is computed over identical traffic traces to ensure a 
fair comparison. 

Figure 4 illustrates the average energy efficiency achieved under the three 
scenarios. The cloud-centric approach exhibits the lowest energy efficiency due to 
increased communication energy and backhaul usage. Conventional edge computing 
improves energy efficiency by reducing data transport; however, its gains are limited 
by baseline power consumption at underutilized edge nodes [9,12]. In contrast, the 
proposed architecture consistently achieves higher energy efficiency by 
consolidating workloads and deactivating idle resources when possible. 

 
Figure 4. Comparison of energy efficiency across different processing scenarios. 

Across the observation period, the proposed architecture achieves an average 
energy efficiency improvement of approximately 30% relative to conventional edge 
computing. This improvement is sustained across both peak and off-peak traffic 
conditions, demonstrating that energy-aware orchestration is effective under realistic 
and time-varying workloads [21]. 

6.2. Energy consumption breakdown 

To better understand the source of energy savings, total energy consumption is 
decomposed into communication energy and computation-related energy. Figure 5 
shows the normalized energy consumption components for the evaluated scenarios. 
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Figure 5. Breakdown of communication and computation energy consumption. 

The results indicate that while communication energy is reduced when moving 
from cloud-centric processing to edge-based execution, the dominant factor 
differentiating conventional and energy-aware edge computing is computation-
related baseline energy. By dynamically consolidating tasks and reducing idle 
resource activation, the proposed architecture significantly lowers baseline energy 
consumption at the edge layer [12,21]. 

6.3. Latency performance 

Latency performance is evaluated to verify that energy efficiency gains do not 
compromise quality of service. Average task latency is measured for latency-
sensitive workloads under the three scenarios. 

Figure 6 presents the cumulative distribution of task latency. Both conventional 
edge computing and the proposed architecture achieve substantially lower latency 
compared with cloud-centric processing. Importantly, the proposed energy-aware 
scheduling maintains latency performance comparable to that of conventional edge 
computing, indicating that energy optimization does not introduce additional delay 
under typical operating conditions [10,18]. 

 
Figure 6. Latency performance comparison across scenarios. 
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These results demonstrate that energy efficiency improvements are achieved 
without sacrificing the low-latency benefits that motivate edge computing 
deployment in 5G networks. 

6.4. Impact of traffic load variation 

The effectiveness of the proposed architecture is further examined under 
varying traffic load conditions. Traffic load is categorized into low, medium, and 
high regimes based on observed base station utilization. 

Figure 7 shows energy efficiency as a function of traffic load. The proposed 
architecture exhibits the largest relative improvement under low and medium load 
conditions, where baseline power consumption dominates overall energy usage. 
Under high load conditions, energy efficiency gains remain positive but are 
comparatively smaller due to the necessity of activating additional resources to meet 
performance requirements [6]. 

 
Figure 7. Energy efficiency under different traffic load regimes. 

6.5. Sensitivity analysis 

A sensitivity analysis is conducted to assess the robustness of the proposed 
architecture with respect to scheduling parameters, including consolidation 
thresholds and monitoring intervals. Results indicate that while absolute energy 
efficiency values vary with parameter selection, the proposed architecture 
consistently outperforms conventional edge computing across a wide parameter 
range. 

This robustness suggests that the observed energy efficiency improvements are 
not tied to a narrow set of configuration choices and can be realized under practical 
deployment constraints [26]. 

6.6. Summary of results 

The experimental results provide clear evidence that integrating energy 



Computer and Telecommunication Engineering 2025, 3(2), 8431.  

16 

awareness into edge computing orchestration can yield substantial energy efficiency 
gains in real 5G deployments. The approximately 30% improvement observed in this 
study arises primarily from reductions in baseline computation energy, enabled by 
workload consolidation and adaptive resource activation. At the same time, latency 
performance remains comparable to conventional edge computing, confirming that 
energy savings do not come at the expense of service quality. 

7. Discussion and practical implications 

7.1. Interpretation of energy efficiency gains 

The experimental results demonstrate that the proposed energy-aware edge 
computing architecture achieves an average energy efficiency improvement of 
approximately 30% compared with conventional edge deployments. This 
improvement is primarily attributed to reductions in baseline computation energy at 
the edge layer rather than changes in radio transmission behavior. Measurement-
based studies have consistently shown that edge and base station platforms consume 
a substantial fraction of peak power even at low utilization levels [9,21]. By 
consolidating workloads and selectively deactivating idle resources, the proposed 
architecture directly targets this inefficiency. 

Importantly, the observed energy gains are sustained across varying traffic 
conditions. While the largest relative improvements occur under low to medium 
traffic loads, positive gains are also observed during high-load periods. This 
behavior reflects the architecture’s ability to adapt resource activation to workload 
intensity while preserving service performance, supporting the argument that energy-
aware orchestration can deliver benefits under realistic operating conditions [6]. 

7.2. Relationship between energy efficiency and latency 

A common concern in energy-efficient system design is the potential trade-off 
between energy savings and quality of service. In the context of edge computing, 
aggressive consolidation or resource deactivation may introduce additional queuing 
or processing delays. The results presented in Section 6 indicate that the proposed 
architecture maintains latency performance comparable to that of conventional edge 
computing, despite significant energy savings. 

This outcome can be explained by the architecture’s load-aware scheduling 
strategy, which prioritizes latency-sensitive tasks for local execution while deferring 
delay-tolerant workloads when consolidation is applied. Similar observations have 
been reported in prior studies examining joint optimization of computation and 
communication resources [18,20]. These findings suggest that energy efficiency and 
latency objectives need not be mutually exclusive when orchestration decisions are 
informed by real-time system state. 

7.3. Comparison with simulation-based studies 

Many existing studies on energy-efficient edge computing report performance 
gains based on simulation environments and synthetic workloads [19,22]. While 
such studies provide valuable insights into algorithmic behavior, they often assume 
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idealized power models and overlook operational constraints such as platform idling 
behavior and configuration overhead. The present study complements this body of 
work by demonstrating that substantial energy efficiency improvements can be 
realized in a real operational context. 

The magnitude of improvement observed in this study is consistent with, but 
not exaggerated relative to, simulation-based results reported in the literature. This 
alignment suggests that while simulations may overestimate absolute gains in some 
cases, their qualitative insights remain valid when translated into data-driven, 
architecture-level solutions validated using real measurements [21,26]. 

7.4. Practical implications for network operators 

From an operator perspective, the proposed architecture offers several practical 
advantages. First, it is designed to be compatible with standardized edge computing 
frameworks, allowing incremental deployment without requiring fundamental 
changes to existing radio access or core network protocols [11,14]. Second, the 
architecture leverages monitoring and orchestration functions that are increasingly 
available in modern virtualized network environments, reducing the barrier to 
adoption. 

Energy-aware edge orchestration can also support broader sustainability 
objectives by reducing operational expenditure and carbon footprint. Given that 
energy costs constitute a significant portion of network operating expenses, even 
moderate efficiency gains can translate into meaningful economic benefits at scale 
[5]. Moreover, the ability to adapt energy usage dynamically in response to traffic 
variation aligns with emerging regulatory and environmental expectations for green 
networking [4]. 

7.5. Limitations 

Despite its promising results, this study has several limitations. The evaluation 
is based on data from a specific commercial deployment, and energy behaviour may 
vary across different hardware platforms, network configurations, and geographic 
regions. While the methodology is designed to be transferable, absolute energy 
efficiency gains may differ under alternative deployment conditions. 

In addition, the proposed architecture focuses on energy-aware orchestration at 
the edge layer and does not explicitly optimize radio access parameters or cross-site 
coordination among multiple base stations. Integrating energy optimization across 
radio, edge, and core network domains remains an open challenge and an important 
direction for future research [7,23]. 

7.6. Implications for future network evolution 

Looking beyond current 5G deployments, the findings of this study have 
implications for future network evolution toward beyond-5G and sixth generation 
systems. As networks become increasingly software-driven and computation-
intensive, energy-aware orchestration at the network edge is likely to play a central 
role in sustainable system design. The integration of energy observability and closed-
loop control mechanisms into standardized network architectures can provide a 
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foundation for intelligent and adaptive energy management in future mobile 
networks [1,4] 

8. Conclusion and future work 

This paper investigated the problem of energy efficiency in 5G edge computing 
systems and proposed an energy-aware edge computing architecture aligned with 
standardized deployment frameworks. Motivated by the increasing energy 
consumption of dense 5G radio access networks and the growing adoption of edge 
computing, the proposed architecture integrates real-time energy monitoring with 
load-aware task scheduling to reduce unnecessary baseline power consumption at the 
network edge. 

Unlike many prior studies that rely primarily on simulation-based evaluations, 
this work validated the proposed architecture using real operational base station data. 
The experimental results demonstrate that incorporating energy awareness into edge 
orchestration can achieve an average energy efficiency improvement of 
approximately 30% compared with conventional edge computing deployments 
without energy-aware scheduling, while maintaining comparable latency 
performance. These findings provide empirical evidence that meaningful energy 
savings can be realized in commercial 5G environments through architecture-level 
optimization rather than isolated algorithmic adjustments. 

From a practical perspective, the proposed approach is designed to be 
deployable within existing 5G infrastructures and compatible with standardized edge 
computing frameworks. This compatibility enables incremental adoption by network 
operators and reduces the gap between academic research and real-world 
implementation. The results highlight the importance of data-driven evaluation and 
energy observability in guiding orchestration decisions for sustainable network 
operation. 

Several directions for future work emerge from this study. First, extending the 
architecture to support coordinated energy optimization across multiple edge sites 
may further enhance system-level efficiency, particularly in dense urban 
deployments. Second, integrating radio access energy control and edge computing 
orchestration into a unified optimization framework could unlock additional energy 
savings across network layers. Third, incorporating predictive or learning-based 
techniques to anticipate traffic and workload patterns may improve responsiveness 
and robustness under highly dynamic conditions. Finally, applying the proposed 
methodology to broader datasets and heterogeneous hardware platforms will help 
generalize the findings and inform energy-aware design for beyond-5G and future 
mobile networks. 

In conclusion, this work demonstrates that energy-aware edge computing 
architectures, when validated using real operational data and grounded in 
standardized deployment models, can play a significant role in reducing the energy 
footprint of next-generation mobile networks. The presented results contribute 
actionable insights for both researchers and practitioners seeking to advance 
sustainable and efficient 5G network design. 
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