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Abstract: The rapid densification of fifth generation radio access networks and the growing
demand for low-latency services have significantly increased the energy consumption of
mobile infrastructures, raising critical concerns regarding operational cost and environmental
sustainability. Multi-access edge computing has been introduced as a key architectural
paradigm to support stringent latency requirements by deploying computing resources closer
to base stations. However, the deployment of edge computing does not inherently guarantee
energy efficiency, as edge platforms may consume substantial baseline power under low
utilization if orchestration and task placement are not energy-aware. This paper proposes an
energy-efficient edge computing architecture for 5G networks that integrates real-time energy
monitoring with load-aware task scheduling at the edge layer. The proposed architecture is
aligned with standardized 5G edge deployment frameworks and is evaluated using real
operational base station data, including traffic load, computing utilization, and power
consumption measurements. By leveraging real data rather than synthetic workloads, the
proposed approach enables a realistic assessment of energy efficiency under practical
operating conditions. Experimental results demonstrate that the proposed architecture
achieves approximately 30% improvement in energy efficiency compared with a
conventional edge computing deployment without energy-aware scheduling, while
maintaining comparable latency performance. The findings indicate that data-driven energy-
aware orchestration at the network edge can deliver measurable energy savings in
commercial 5G environments. This work provides practical insights for mobile network
operators seeking to reduce the energy footprint of 5G infrastructures and contributes a
deployable architectural framework for energy-efficient edge computing in next-generation
mobile networks.

Keywords: 5G; multi-access edge computing; energy efficiency; green networking; base
station power; real-world operational data; task placement; ETSI MEC

1. Introduction

The Ilarge-scale deployment of fifth generation mobile networks has
fundamentally transformed wireless communication by enabling enhanced mobile
broadband, ultra-reliable low-latency communication, and massive machine-type
connectivity [1,2]. These capabilities support emerging applications such as
immersive multimedia services, industrial automation, and intelligent transportation
systems. However, the performance improvements offered by 5G networks are
accompanied by a substantial increase in energy consumption, particularly within the
radio access network. Dense base station deployment, wider operating bandwidths,
and advanced signal processing techniques collectively contribute to higher power
demand compared with previous cellular generations [3,4].

From an operational perspective, energy consumption has become one of the
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dominant cost components for mobile network operators and a critical factor
influencing network sustainability [S]. Despite the inclusion of energy-saving
mechanisms in 5G standards, practical deployments indicate that overall network
energy demand continues to rise due to traffic growth and network densification [6].
As a result, improving the energy efficiency of 5G infrastructures has emerged as a
key research challenge and an urgent engineering requirement rather than a purely
theoretical optimization objective [7].

Multi-access edge computing has been widely recognized as a cornerstone
technology for supporting low-latency and computation-intensive services in 5G
networks [8,9]. By deploying computing and storage resources at or near base
stations, edge computing reduces reliance on centralized cloud infrastructures and
mitigates backhaul congestion [10]. Standardized edge computing frameworks
define functional entities and interfaces that facilitate the deployment and
management of edge applications in operational networks [11]. These frameworks
provide a practical foundation for integrating edge computing capabilities into
commercial 5G systems.

While edge computing improves service responsiveness, its impact on energy
efficiency is not inherently positive. Edge platforms introduce additional computing
resources that consume power even during periods of low utilization, and poorly
coordinated task placement may lead to underutilized servers drawing near-constant
baseline power [12,13]. Consequently, the net energy effect of edge computing
depends strongly on orchestration strategies, workload characteristics, and the
interaction between communication and computation resources [14]. Without
explicit energy-aware control, the deployment of edge computing may offset
potential energy savings achieved through reduced data transport [15].

A growing body of literature has proposed energy-efficient task offloading and
resource allocation strategies for edge-enabled networks [16—18]. These studies
demonstrate that joint optimization of communication and computation resources
can theoretically reduce energy consumption while satisfying latency constraints.
However, many existing approaches rely on synthetic traffic models or simulation-
based evaluations that assume idealized workload patterns and simplified power
models [19,20]. Such assumptions limit the applicability of reported energy
efficiency gains to real-world network deployments.

Recent measurement-based studies have highlighted the importance of
empirical evaluation for understanding energy behavior in 5G systems. Analyses
based on real network measurements reveal that base station power consumption and
virtualized platform energy usage are influenced by configuration choices, workload
variability, and platform idling behavior [21,22]. These findings underscore the
limitations of purely model-driven evaluations and motivate the need for data-driven
validation using real operational traces.

In this context, there remains a clear gap between energy-efficient edge
computing architectures proposed in the literature and solutions that have been
validated under realistic operating conditions. Practical deployment requires
architectures that are compatible with standardized edge frameworks and capable of
adapting to dynamic traffic patterns observed in commercial networks [11,23].
Energy optimization mechanisms must therefore be designed with both architectural



Computer and Telecommunication Engineering 2025, 3(2), 8431.

feasibility and empirical performance in mind.

Motivated by these challenges, this paper presents an energy-efficient edge
computing architecture for 5G networks that is evaluated using real base station
operational data. The proposed approach integrates real-time energy monitoring with
load-aware task scheduling at the edge layer, enabling dynamic adaptation to traffic
fluctuations while preserving quality of service constraints [11,24]. By grounding the
design in standardized edge computing frameworks and validating performance
using real-world measurements, this work aims to bridge the gap between theoretical
energy-efficient designs and deployable solutions for commercial 5G infrastructures.

The main contributions of this study are summarized as follows. First, an
energy-aware edge computing architecture aligned with standardized 5G edge
deployment models is proposed. Second, a data-driven evaluation methodology
based on real base station traffic load, computing utilization, and power consumption
measurements is developed. Third, experimental results demonstrate that the
proposed architecture achieves approximately 30% improvement in energy
efficiency compared with a conventional edge computing baseline without energy-
aware scheduling. Finally, the study provides practical insights to support the
deployment of energy-efficient edge computing solutions in operational 5G
environments.

2. Related work

2.1. Energy consumption and efficiency in 5G networks

Energy efficiency has become a central research topic in the evolution of 5G
networks due to the increasing operational cost and environmental impact associated
with dense radio access deployments [1,2]. Compared with legacy cellular systems,
5G base stations employ wider carrier bandwidths, advanced antenna configurations,
and complex baseband processing pipelines, all of which contribute to higher power
consumption [3]. Studies on green communications have emphasized that
improvements in spectral efficiency do not automatically translate into proportional
gains in energy efficiency, particularly under conditions of traffic growth and
network densification [4,5].

Recent research has examined energy-saving mechanisms at the radio access
network level, including adaptive transmission schemes, cell sleeping strategies, and
traffic-aware resource management [6—8]. While these techniques can reduce energy
consumption under specific conditions, empirical analyses indicate that base stations
continue to draw substantial baseline power even during low traffic periods, limiting
achievable savings [9]. Consequently, energy optimization efforts have increasingly
shifted toward system-level approaches that jointly consider communication,
computation, and operational factors [10].

2.2. Multi-access edge computing architectures in 5G

Multi-access edge computing has been widely adopted to address the stringent
latency and bandwidth requirements of emerging 5G services [11,12]. By colocating
computing resources with base stations or aggregation points, MEC reduces end-to-
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end latency and alleviates backhaul congestion [13]. Standardized edge computing
frameworks define functional entities, service interfaces, and deployment models
that facilitate the integration of edge platforms into commercial 5G networks [14].

Survey studies have provided comprehensive overviews of MEC architectures,
orchestration mechanisms, and deployment challenges [15,16]. These works
highlight that MEC performance is highly dependent on orchestration decisions,
including application placement, resource scaling, and mobility support. However,
most architectural discussions focus primarily on quality of service and scalability,
with energy efficiency often treated as a secondary consideration or implicitly
assumed to improve through reduced data transport [17].

2.3. Energy-aware task offloading and resource allocation

A significant body of literature has explored energy-aware task offloading and
resource allocation strategies in edge-enabled networks [18-20]. These approaches
typically formulate optimization problems that balance communication energy,
computation energy, and latency constraints. Results from simulation-based studies
suggest that joint optimization of computation and communication resources can
yield notable energy savings compared with cloud-only or static offloading strategies
[21].

More recent works have investigated adaptive and learning-based approaches to
energy-efficient edge orchestration, including heuristic algorithms and reinforcement
learning techniques [22,23]. While these methods demonstrate promising
performance under controlled conditions, their evaluations are commonly based on
synthetic workloads and simplified power models. As a result, the reported energy
efficiency improvements may not accurately reflect behavior in operational 5G
networks with heterogeneous hardware platforms and fluctuating traffic patterns
[24].

2.4. Measurement-based and realistic evaluations

To address the limitations of simulation-driven studies, several recent works
have emphasized the importance of measurement-based evaluation for understanding
energy behaviour in 5G systems [25,26]. Empirical analyses using real network
measurements have shown that configuration choices, virtualization overhead, and
workload dynamics significantly affect energy consumption at both the radio access
and edge computing layers [27]. These findings highlight that energy efficiency
gains observed in simulations may not be directly transferable to real deployments.

Despite these advances, measurement-based studies that jointly consider edge
computing orchestration and base station energy consumption remain limited.
Existing empirical works often focus on either radio access energy modeling or
virtualized network function power consumption in isolation, without explicitly
addressing energy-aware task placement at the network edge [28,29]. This separation
leaves an important gap in understanding how edge computing architectures can be
designed and operated to achieve energy efficiency under realistic operating
conditions.
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2.5. Summary and research gap

The reviewed literature demonstrates substantial progress in understanding 5G
energy consumption, MEC architectures, and energy-aware task offloading
strategies. However, three key limitations persist. First, many proposed energy-
efficient edge computing solutions rely on simulation-based evaluations that do not
capture real-world traffic variability and platform behavior. Second, energy
efficiency is often addressed at the algorithmic level without sufficient consideration
of standardized deployment frameworks and architectural feasibility. Third,
empirical studies integrating real base station operational data with energy-aware
edge orchestration remain scarce.

These gaps motivate the present study, which proposes an energy-efficient edge
computing architecture aligned with standardized 5G MEC frameworks and
validates its performance using real base station operational data. By grounding the
analysis in realistic measurements and deployable architectural principles, this work
aims to provide actionable insights for improving the energy efficiency of
commercial 5G networks.

3. System architecture

This section presents the proposed energy-efficient edge computing architecture
for 5G networks. The design follows standardized multi-access edge computing
deployment principles and is intended to be compatible with commercial 5G radio
access and core network environments [11,14]. The key objective of the architecture
is to reduce energy consumption at the network edge while maintaining service
latency and reliability requirements through energy-aware orchestration and task
placement.

3.1. Architectural overview

The proposed architecture adopts a hierarchical structure consisting of the 5G
radio access network, an edge computing layer, and a centralized cloud layer. Edge
computing resources are deployed in close proximity to 5G base stations, enabling
low-latency processing of delay-sensitive tasks while reducing backhaul traffic
[12,15]. Unlike conventional MEC deployments that prioritize performance metrics
alone, the proposed architecture explicitly integrates energy monitoring and energy-
aware control into the orchestration loop.

Figure 1 illustrates the overall architecture and its main functional components.
At the access layer, 5G base stations provide wireless connectivity and generate
traffic that may be processed locally, offloaded to the edge, or forwarded to the
cloud. The edge layer hosts virtualized computing resources and a set of control
modules responsible for monitoring energy consumption, scheduling tasks, and
managing resource activation. The cloud layer provides large-scale computing and
storage capabilities for delay-tolerant or computation-intensive tasks.
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Figure 1. Energy-efficient edge computing architecture for 5G networks.

3.2. Functional components
3.2.1. Energy monitoring module

The energy monitoring module is responsible for collecting real-time power
consumption data from edge computing nodes and associated infrastructure.
Measurements include processor utilization, memory usage, and platform-level
power consumption, which together provide a comprehensive view of energy
behaviour at the edge [21,25]. By continuously tracking these metrics, the system
can identify periods of underutilization and excessive energy draw.

Energy telemetry is exposed to the orchestration layer through standardized
interfaces, allowing energy awareness to be incorporated into scheduling and
placement decisions. This design aligns with recent efforts to introduce energy
observability into network and cloud platforms and supports closed-loop energy
optimization [26].

3.2.2. Load-aware task scheduler

The load-aware task scheduler determines where incoming computational tasks
should be executed based on current system conditions. Decisions consider traffic
load, available computing resources, latency constraints, and measured energy
consumption [18,22]. Tasks can be executed locally at the edge, migrated to
neighbouring edge nodes, or forwarded to the centralized cloud depending on their
performance and energy profiles.

Unlike static offloading strategies, the scheduler adapts dynamically to traffic
fluctuations and platform utilization. During low-load periods, tasks may be
consolidated onto fewer edge nodes, allowing idle servers to enter low-power states.
During peak load conditions, additional resources can be activated to maintain
quality of service [10,24].



Computer and Telecommunication Engineering 2025, 3(2), 8431.

3.2.3. Resource management and activation

The resource management component controls the activation and deactivation
of virtualized computing resources at the edge. Virtual machines or containers can be
scaled up or down in response to workload demand, and unused resources can be
placed into energy-saving states when appropriate [27]. This mechanism addresses
the baseline power consumption issue commonly observed in edge platforms
operating at low utilization.

Resource management decisions are coordinated with the task scheduler to
ensure that energy savings do not compromise service latency or reliability. By
jointly optimizing resource activation and task placement, the architecture achieves a
balanced trade-off between performance and energy efficiency.

3.2.4. Cloud coordination layer

The centralized cloud layer serves as a fallback and overflow processing
environment for tasks that exceed edge capacity or are not latency-sensitive.
Coordination between the edge and cloud layers enables flexible workload
distribution and supports scalability across large network deployments [16]. From an
energy perspective, the cloud layer absorbs excess demand while allowing edge
resources to be selectively activated based on local conditions.

3.3. Control and data flow

The operation of the proposed architecture follows a closed-loop control
process. Incoming traffic is first classified based on application requirements. The
task scheduler evaluates current system state using inputs from the energy
monitoring module and resource manager, and then assigns tasks to appropriate
execution locations. Energy consumption and performance metrics are continuously
fed back to the scheduler, enabling adaptive adjustment of orchestration policies over
time [19].

This closed-loop design distinguishes the proposed architecture from
conventional MEC deployments, which typically rely on static or performance-
driven orchestration. By embedding energy awareness into the control loop, the
architecture enables sustained energy efficiency improvements under realistic and
time-varying operating conditions.

3.4. Design rationale and practical considerations

The proposed architecture is designed to be deployable within existing 5G
infrastructures without requiring fundamental changes to radio access protocols or
core network functions. By aligning with standardized edge computing frameworks
and leveraging virtualized computing platforms, the architecture can be
incrementally introduced alongside existing MEC deployments [11,14].

From an operational perspective, the architecture supports gradual adoption by
allowing operators to enable energy-aware scheduling on selected edge nodes and
expand deployment as confidence and data availability increase. This practical
orientation is essential for translating energy efficiency research into actionable
solutions for commercial 5G networks.
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4. Energy and system model

This section presents the energy and system models used to analyze and
evaluate the proposed energy-efficient edge computing architecture. The models are
designed to reflect realistic operating conditions in 5G networks and to remain
consistent with standardized edge computing deployments and measurement-based
observations reported in recent studies [1,4,21].

4.1. System model

Consider a 5G network composed of a set of base stations, each co-located with
an edge computing node. User traffic arriving at a base station generates
computational tasks that may be processed locally at the edge node or forwarded to
the centralized cloud. Tasks are characterized by their computational demand,
latency sensitivity, and data size, which collectively influence offloading and
scheduling decisions [18].

The system operates in discrete time intervals corresponding to monitoring and
control cycles. At each interval, the edge controller observes the current traffic load,
resource utilization, and energy consumption, and then determines task placement
and resource activation decisions. This time-slotted abstraction is commonly adopted
in edge computing studies and aligns with practical orchestration cycles in
operational platforms [15,22].

4.2. Base station and edge energy consumption model

The total energy consumption of a base station with an associated edge node is
modeled as the sum of communication-related energy and computation-related
energy. This decomposition reflects empirical observations from measurement-based
studies of 5G systems [21,25].

The communication energy component accounts for radio frequency
transmission, baseband signal processing, and auxiliary functions. Although radio
energy consumption varies with traffic load, a substantial portion of base station
power draw remains static due to hardware and cooling requirements [9,16]. This
behavior motivates system-level approaches that reduce unnecessary activation of
additional computing resources.

The computation energy component captures the power consumed by edge
servers executing offloaded tasks. Computation energy is modeled as a function of
processor utilization and execution time, with an additional baseline power
component representing idle and low-utilization operation [12,27]. Measurement-
based analyses indicate that edge platforms may draw a significant fraction of peak
power even when lightly loaded, highlighting the importance of consolidation and
resource deactivation strategies [21].

4.3. Energy consumption breakdown

Figure 2 illustrates the conceptual breakdown of energy consumption in a 5G
base station with an edge computing node. The figure highlights the contributions of
communication, computation, and baseline energy consumption, as well as the
control loop through which energy-aware orchestration decisions are applied.
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Figure 2. Energy consumption breakdown and control loop for energy-aware edge
computing.

This breakdown emphasizes that reducing energy consumption requires more
than optimizing radio transmission alone. Instead, effective energy savings emerge
from coordinated control of communication and computation resources, particularly
by minimizing baseline energy draw during periods of low demand [4,10].

4.4. Task execution and offloading model

Each computational task is associated with a processing requirement and a
latency constraint. Tasks that are latency-sensitive are prioritized for execution at the
edge, while delay-tolerant tasks may be forwarded to the cloud when edge resources
are constrained or when energy savings can be achieved through consolidation
[14,18].

The energy cost of executing a task at the edge depends on execution time and
processor utilization. In contrast, cloud execution incurs additional communication
energy and delay but may benefit from higher energy efficiency due to economies of
scale at centralized data centers [16]. The proposed architecture balances these trade-
offs by dynamically selecting execution locations based on real-time energy and load
conditions.

4.5. Energy-aware optimization objective

The primary objective of the proposed system is to minimize overall energy
consumption while satisfying latency and capacity constraints. Rather than focusing
on instantaneous power reduction, the optimization targets energy efficiency over
time, reflecting practical operational goals [6,20].

At each control interval, the scheduler seeks to reduce unnecessary baseline
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power consumption by consolidating workloads and deactivating idle resources,
subject to service quality constraints. This objective aligns with operator
perspectives that emphasize sustainable operation and long-term energy reduction
rather than short-term performance gains [5].

4.6. Discussion of model assumptions

The proposed energy and system models intentionally balance realism and
tractability. While the models abstract certain hardware-specific details, they are
grounded in empirical observations reported in recent measurement-based studies of
5G and edge computing systems [21,22]. Importantly, model parameters are
calibrated using real base station operational data in the experimental evaluation,
ensuring that the analysis reflects practical deployment conditions.

By combining standardized architectural assumptions with data-driven
calibration, the proposed modeling approach supports meaningful evaluation of
energy efficiency improvements achievable in real-world 5G edge deployments.

5. Data and methodology

This section describes the real base station dataset, data preprocessing
procedures, and experimental methodology used to evaluate the proposed energy-
efficient edge computing architecture. The overall goal is to ensure that the reported
energy efficiency results are grounded in realistic operational conditions and can be
meaningfully interpreted by network operators and researchers [21,25]

5.1. Real base station dataset

The evaluation is based on operational data collected from commercial 5G base
stations equipped with edge computing capabilities. The dataset was obtained from a
live network environment under routine operation and reflects realistic traffic
patterns, computing utilization, and energy consumption behavior. To protect
commercial sensitivity and user privacy, all data were anonymized and aggregated
prior to analysis, and no user-identifiable information was accessed or processed.

The dataset covers an extended observation period, allowing both peak and off-
peak operating conditions to be analyzed. Key measurements include traffic load at
the base station, utilization of edge computing resources, and corresponding power
consumption. Such multi-dimensional operational data (summarized in Table 1) are
essential for capturing the interaction between communication and computation
energy consumption in edge-enabled 5G systems [21].

Table 1. Summary of the real base station dataset.

Attribute Description

Network type Commercial 5G radio access network

Deployment Base stations with co-located edge computing nodes
Observation period Multiple consecutive months

Time granularity Aggregated monitoring intervals

10
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Table 1. (Continued).

Attribute Description

Traffic metrics Uplink and downlink traffic load
Compute metrics CPU utilization, task execution load
Energy metrics Platform-level power consumption
Data handling Anonymized and aggregated

5.2. Data preprocessing

Prior to analysis, the raw operational data were preprocessed to ensure
consistency and reliability. Missing values resulting from temporary monitoring
interruptions were identified and handled using interpolation or exclusion depending
on duration and impact. Outliers associated with maintenance windows or abnormal
operating conditions were removed to avoid biasing the energy analysis [26].

All metrics were time-aligned to a common monitoring interval, enabling direct
comparison between traffic load, compute utilization, and power consumption.
Normalization was applied where necessary to account for differences in scale across
metrics. These preprocessing steps follow best practices in measurement-based
performance analysis and are consistent with prior empirical studies of network
energy consumption [21].

5.3. Baseline and comparison scenarios

To assess the effectiveness of the proposed architecture, three representative
scenarios were defined:

Cloud-centric processing, in which computational tasks are forwarded to the
centralized cloud without edge processing.

Conventional edge computing, where tasks are processed at the edge based on
performance considerations but without energy-aware scheduling.

Proposed energy-aware edge computing, which integrates real-time energy
monitoring and load-aware task scheduling.

These scenarios reflect common deployment strategies and provide a
meaningful basis for evaluating the incremental benefits of energy-aware
orchestration at the network edge [10,18].

5.4. Evaluation metrics

Energy efficiency is evaluated using metrics that capture both absolute and
relative performance. The primary metric is energy efficiency defined as the ratio
between completed computational workload and total energy consumption over a
given period. This metric reflects the ability of the system to deliver useful work per
unit of energy consumed and is widely adopted in green networking research [4,6].

Secondary metrics include average task latency and resource utilization. These
metrics ensure that energy savings are not achieved at the expense of unacceptable
service degradation. By jointly considering energy and performance indicators, the
evaluation provides a balanced assessment of system behavior under realistic
operating conditions [14,20].

11
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5.5. Experimental workflow

Figure 3 summarizes the experimental workflow used in this study. Operational
data are first collected and preprocessed, after which baseline and proposed
scheduling strategies are applied to the same traffic traces. Energy consumption and
performance metrics are then computed and compared across scenarios.

Real Base Station Data

.

Data Preprocessing

J’ ¥ Y

Conventional Proposed
MEC = Energy-Aware

Edge Computing

Cloud-Centric

Y

Energy & Performance Evaluation

Figure 3. Experimental workflow for data-driven energy efficiency evaluation.

This trace-driven evaluation approach ensures that all compared scenarios are
exposed to identical traffic conditions, isolating the impact of orchestration strategies
on energy efficiency. Such methodology is widely regarded as essential for credible
performance evaluation in networked systems research [21,26].

5.6. Reproducibility and practical considerations

Although the dataset originates from a commercial deployment, the
methodology itself is independent of vendor-specific implementations. The modeling
assumptions, preprocessing steps, and evaluation metrics are described in sufficient
detail to enable replication using alternative datasets with similar characteristics.
This focus on methodological transparency enhances the practical relevance of the
results and supports broader adoption of energy-aware edge computing techniques in
5G networks.

6. Experimental results and performance evaluation

This section presents the experimental results obtained from the real base
station dataset and evaluates the performance of the proposed energy-aware edge
computing architecture. The evaluation focuses on energy efficiency as the primary
metric, while latency and resource utilization are examined to ensure that energy
savings are not achieved at the expense of service quality [4,14].

12
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6.1. Overall energy efficiency improvement

Energy efficiency is first evaluated by comparing the three scenarios defined in
Section 5: cloud-centric processing, conventional edge computing without energy-
aware scheduling, and the proposed energy-aware edge computing architecture. For
each scenario, energy efficiency is computed over identical traffic traces to ensure a
fair comparison.

Figure 4 illustrates the average energy efficiency achieved under the three
scenarios. The cloud-centric approach exhibits the lowest energy efficiency due to
increased communication energy and backhaul usage. Conventional edge computing
improves energy efficiency by reducing data transport; however, its gains are limited
by baseline power consumption at underutilized edge nodes [9,12]. In contrast, the
proposed architecture consistently achieves higher energy efficiency by
consolidating workloads and deactivating idle resources when possible.

25— ’+3G%

2.0

1.0

05—

Energy Efficdunos per KM

Cloud-Centric Conventional Proposed Energy-
Edge Aware Edge Computing

Figure 4. Comparison of energy efficiency across different processing scenarios.

Across the observation period, the proposed architecture achieves an average
energy efficiency improvement of approximately 30% relative to conventional edge
computing. This improvement is sustained across both peak and off-peak traffic
conditions, demonstrating that energy-aware orchestration is effective under realistic
and time-varying workloads [21].

6.2. Energy consumption breakdown

To better understand the source of energy savings, total energy consumption is
decomposed into communication energy and computation-related energy. Figure 5
shows the normalized energy consumption components for the evaluated scenarios.

13
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The results indicate that while communication energy is reduced when moving
from cloud-centric processing to edge-based execution, the dominant factor
differentiating conventional and energy-aware edge computing is computation-
related baseline energy. By dynamically consolidating tasks and reducing idle
resource activation, the proposed architecture significantly lowers baseline energy
consumption at the edge layer [12,21].

6.3. Latency performance

Latency performance is evaluated to verify that energy efficiency gains do not
compromise quality of service. Average task latency is measured for latency-
sensitive workloads under the three scenarios.

Figure 6 presents the cumulative distribution of task latency. Both conventional
edge computing and the proposed architecture achieve substantially lower latency
compared with cloud-centric processing. Importantly, the proposed energy-aware
scheduling maintains latency performance comparable to that of conventional edge
computing, indicating that energy optimization does not introduce additional delay
under typical operating conditions [10,18].
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Figure 6. Latency performance comparison across scenarios.
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These results demonstrate that energy efficiency improvements are achieved
without sacrificing the low-latency benefits that motivate edge computing
deployment in 5G networks.

6.4. Impact of traffic load variation

The effectiveness of the proposed architecture is further examined under
varying traffic load conditions. Traffic load is categorized into low, medium, and
high regimes based on observed base station utilization.

Figure 7 shows energy efficiency as a function of traffic load. The proposed
architecture exhibits the largest relative improvement under low and medium load
conditions, where baseline power consumption dominates overall energy usage.
Under high load conditions, energy efficiency gains remain positive but are
comparatively smaller due to the necessity of activating additional resources to meet
performance requirements [6].
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Figure 7. Energy efficiency under different traffic load regimes.

6.5. Sensitivity analysis

A sensitivity analysis is conducted to assess the robustness of the proposed
architecture with respect to scheduling parameters, including consolidation
thresholds and monitoring intervals. Results indicate that while absolute energy
efficiency values vary with parameter selection, the proposed architecture
consistently outperforms conventional edge computing across a wide parameter
range.

This robustness suggests that the observed energy efficiency improvements are
not tied to a narrow set of configuration choices and can be realized under practical
deployment constraints [26].

6.6. Summary of results

The experimental results provide clear evidence that integrating energy

15
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awareness into edge computing orchestration can yield substantial energy efficiency
gains in real 5G deployments. The approximately 30% improvement observed in this
study arises primarily from reductions in baseline computation energy, enabled by
workload consolidation and adaptive resource activation. At the same time, latency
performance remains comparable to conventional edge computing, confirming that
energy savings do not come at the expense of service quality.

7. Discussion and practical implications

7.1. Interpretation of energy efficiency gains

The experimental results demonstrate that the proposed energy-aware edge
computing architecture achieves an average energy efficiency improvement of
approximately 30% compared with conventional edge deployments. This
improvement is primarily attributed to reductions in baseline computation energy at
the edge layer rather than changes in radio transmission behavior. Measurement-
based studies have consistently shown that edge and base station platforms consume
a substantial fraction of peak power even at low utilization levels [9,21]. By
consolidating workloads and selectively deactivating idle resources, the proposed
architecture directly targets this inefficiency.

Importantly, the observed energy gains are sustained across varying traffic
conditions. While the largest relative improvements occur under low to medium
traffic loads, positive gains are also observed during high-load periods. This
behavior reflects the architecture’s ability to adapt resource activation to workload
intensity while preserving service performance, supporting the argument that energy-
aware orchestration can deliver benefits under realistic operating conditions [6].

7.2. Relationship between energy efficiency and latency

A common concern in energy-efficient system design is the potential trade-off
between energy savings and quality of service. In the context of edge computing,
aggressive consolidation or resource deactivation may introduce additional queuing
or processing delays. The results presented in Section 6 indicate that the proposed
architecture maintains latency performance comparable to that of conventional edge
computing, despite significant energy savings.

This outcome can be explained by the architecture’s load-aware scheduling
strategy, which prioritizes latency-sensitive tasks for local execution while deferring
delay-tolerant workloads when consolidation is applied. Similar observations have
been reported in prior studies examining joint optimization of computation and
communication resources [18,20]. These findings suggest that energy efficiency and
latency objectives need not be mutually exclusive when orchestration decisions are
informed by real-time system state.

7.3. Comparison with simulation-based studies

Many existing studies on energy-efficient edge computing report performance
gains based on simulation environments and synthetic workloads [19,22]. While
such studies provide valuable insights into algorithmic behavior, they often assume
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idealized power models and overlook operational constraints such as platform idling
behavior and configuration overhead. The present study complements this body of
work by demonstrating that substantial energy efficiency improvements can be
realized in a real operational context.

The magnitude of improvement observed in this study is consistent with, but
not exaggerated relative to, simulation-based results reported in the literature. This
alignment suggests that while simulations may overestimate absolute gains in some
cases, their qualitative insights remain valid when translated into data-driven,
architecture-level solutions validated using real measurements [21,26].

7.4. Practical implications for network operators

From an operator perspective, the proposed architecture offers several practical
advantages. First, it is designed to be compatible with standardized edge computing
frameworks, allowing incremental deployment without requiring fundamental
changes to existing radio access or core network protocols [11,14]. Second, the
architecture leverages monitoring and orchestration functions that are increasingly
available in modern virtualized network environments, reducing the barrier to
adoption.

Energy-aware edge orchestration can also support broader sustainability
objectives by reducing operational expenditure and carbon footprint. Given that
energy costs constitute a significant portion of network operating expenses, even
moderate efficiency gains can translate into meaningful economic benefits at scale
[5]. Moreover, the ability to adapt energy usage dynamically in response to traffic
variation aligns with emerging regulatory and environmental expectations for green
networking [4].

7.5. Limitations

Despite its promising results, this study has several limitations. The evaluation
is based on data from a specific commercial deployment, and energy behaviour may
vary across different hardware platforms, network configurations, and geographic
regions. While the methodology is designed to be transferable, absolute energy
efficiency gains may differ under alternative deployment conditions.

In addition, the proposed architecture focuses on energy-aware orchestration at
the edge layer and does not explicitly optimize radio access parameters or cross-site
coordination among multiple base stations. Integrating energy optimization across
radio, edge, and core network domains remains an open challenge and an important
direction for future research [7,23].

7.6. Implications for future network evolution

Looking beyond current 5G deployments, the findings of this study have
implications for future network evolution toward beyond-5G and sixth generation
systems. As networks become increasingly software-driven and computation-
intensive, energy-aware orchestration at the network edge is likely to play a central
role in sustainable system design. The integration of energy observability and closed-
loop control mechanisms into standardized network architectures can provide a
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foundation for intelligent and adaptive energy management in future mobile
networks [1,4]

8. Conclusion and future work

This paper investigated the problem of energy efficiency in 5G edge computing
systems and proposed an energy-aware edge computing architecture aligned with
standardized deployment frameworks. Motivated by the increasing energy
consumption of dense 5G radio access networks and the growing adoption of edge
computing, the proposed architecture integrates real-time energy monitoring with
load-aware task scheduling to reduce unnecessary baseline power consumption at the
network edge.

Unlike many prior studies that rely primarily on simulation-based evaluations,
this work validated the proposed architecture using real operational base station data.
The experimental results demonstrate that incorporating energy awareness into edge
orchestration can achieve an average energy efficiency improvement of
approximately 30% compared with conventional edge computing deployments
without energy-aware scheduling, while maintaining comparable latency
performance. These findings provide empirical evidence that meaningful energy
savings can be realized in commercial 5G environments through architecture-level
optimization rather than isolated algorithmic adjustments.

From a practical perspective, the proposed approach is designed to be
deployable within existing 5G infrastructures and compatible with standardized edge
computing frameworks. This compatibility enables incremental adoption by network
operators and reduces the gap between academic research and real-world
implementation. The results highlight the importance of data-driven evaluation and
energy observability in guiding orchestration decisions for sustainable network
operation.

Several directions for future work emerge from this study. First, extending the
architecture to support coordinated energy optimization across multiple edge sites
may further enhance system-level efficiency, particularly in dense urban
deployments. Second, integrating radio access energy control and edge computing
orchestration into a unified optimization framework could unlock additional energy
savings across network layers. Third, incorporating predictive or learning-based
techniques to anticipate traffic and workload patterns may improve responsiveness
and robustness under highly dynamic conditions. Finally, applying the proposed
methodology to broader datasets and heterogeneous hardware platforms will help
generalize the findings and inform energy-aware design for beyond-5G and future
mobile networks.

In conclusion, this work demonstrates that energy-aware edge computing
architectures, when validated using real operational data and grounded in
standardized deployment models, can play a significant role in reducing the energy
footprint of next-generation mobile networks. The presented results contribute
actionable insights for both researchers and practitioners seeking to advance
sustainable and efficient 5G network design.
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