
Computer and Telecommunication Engineering 2025, 3(1), 3166.

https://doi.org/10.54517/cte3166

1

Article

Automated leaderboard system for hackathon evaluation using large

language models

Bowen Li, Bohan Cheng, Patrick D. Taylor, Dale A. Osborne, Fengling Han*, Robert Shen, Iqbal Gondal

Royal Melbourne Institute of Technology, Melbourne 3001, Australia

* Corresponding author: Fengling Han, fengling.han@rmit.edu.au

Abstract: Evaluating large numbers of hackathon submissions quickly, fairly, and at scale is

a persistent challenge. Existing automated grading systems often struggle with bias, limited

scalability, and a lack of transparency. In this paper, we present a novel hybrid evaluation

framework that leverages large language models (LLMs) and a weighted scoring mechanism

to address these issues. Our approach classifies hackathon submissions using LLMs, converts

Jupyter notebooks to markdown for consistent analysis, and integrates multiple evaluation

factors—from technical quality to video presentations—into a single, balanced score. Through

dynamic prompt engineering and iterative refinement against manually benchmarked

evaluations, we mitigate prompt design biases and ensure stable, fair outcomes. We validate

our method in a multi-campus GenAI and Cybersecurity hackathon, demonstrating improved

scalability, reduced evaluator workload, and transparent feedback. Our results highlight the

potential of hybrid AI-driven frameworks to enhance fairness, adaptability, and efficiency in

large-scale educational and competitive environments.

Keywords: artificial intelligence; LLM-driven assessment; prompt engineering

1. Introduction

Kaggle competitions have gained popularity for hosting hackathon-style events,

challenging participants to tackle real-world problems under time constraints, often

involving cutting-edge technologies and complex scenarios, as noted by Gama et al.

[1] and Steglich et al. [2]. However, as highlighted by Porras et al. [3], assessing a

large number of submissions within strict deadlines remains a significant challenge.

Traditional grading methods, while effective, often struggle with scalability according

to Kumalakov et al. [4], are susceptible to bias as noted by Sadovykh et al. [5] and

Steglich et al. [6], and can be exceedingly time-consuming for evaluators, as discussed

by Gama et al. [7] and Farazouli et al. [8].

In recent years, integrating large language models (LLMs) into automated

grading systems has attracted significant attention in educational research. Lagakis et

al. [9] explore the application of LLMs in evaluating programming assignments,

highlighting the challenges of manual grading in large-scale educational settings. They

demonstrate how LLMs can provide accurate and timely feedback to students,

improving the overall learning experience.

Another LLM-powered automated grading system was explored by Yousef et al.

[10], which investigates the use of LLMs to provide detailed feedback on student

submissions. Yousef demonstrates that LLMs can offer personalized and constructive

critiques. For example, instead of simply labeling the solution as “incorrect” or

“suboptimal”, the LLM offered a revised version of the code. The revised code

CITATION

Li B, Cheng B, Taylor PD, et al.

Automated leaderboard system for

hackathon evaluation using large

language models. Computer and

Telecommunication Engineering.

2025; 3(1): 3166.

https://doi.org/10.54517/cte3166

ARTICLE INFO

Received: 18 December 2024

Accepted: 17 February 2025

Available online: 24 February 2025

COPYRIGHT

Copyright © 2025 by author(s).

Computer and Telecommunication

Engineering is published by Asia

Pacific Academy of Science Pte. Ltd.

This work is licensed under the

Creative Commons Attribution (CC

BY) license.

https://creativecommons.org/licenses/

by/4.0/

Computer and Telecommunication Engineering 2025, 3(1), 3166.

2

features an iterative binary search algorithm and includes detailed comments

explaining each change helping students improve their coding skills.

Although LLM-based grading systems offer considerable advantages in terms of

efficiency and scalability, they also give rise to concerns regarding ethical

considerations. A study by Farazouli et al. [8] addresses issues related to fairness,

transparency, and potential biases in automated assessments, emphasizing the

necessity for ethical guidelines and oversight in the implementation of such

technologies.

All the studies above focus on grading systems for programming assignments,

highlighting the utility of AI-powered systems in automating assessments and

providing detailed feedback. However, a common concern across these works is the

potential for ethical and bias-related issues in automated grading, particularly in

ensuring fairness and transparency.

In contrast, instead of using LLMs purely for automated grading, we leverage

LLMs to classify hackathon submissions and integrate a weighted scoring mechanism.

This hybrid approach surpasses traditional AI-powered grading systems by combining

the efficiency of automated classification with the fairness of manual review for top-

performing submissions, as suggested by Mosqueira-Rey et al. [11]. The weighted

scoring mechanism ensures a balanced evaluation by addressing potential biases and

ethical concerns, providing a more transparent and reliable assessment process.

In this work, we have developed an automated evaluation system powered by

large language models (LLMs). This system streamlines grading, reduces bias, saves

time, and provides clear feedback, ultimately enhancing the overall competition

experience. We demonstrate how LLMs can make hackathon grading faster, more

reliable, and more transparent. By incorporating automated evaluations, we efficiently

manage large volumes of submissions and offer feedback that earns participants’ trust.

Our approach effortlessly adapts to various hackathon themes, assisting organizers in

maintaining a fair and supportive environment.

Our primary contribution is a hybrid, weighted scoring methodology that

integrates several evaluative factors, including technical quality, LLM-generated

analysis, and video presentations, into a unified, balanced score. This approach refines

traditional automated grading by carefully adjusting the impact of each component

and refining prompt design for the LLM. Consequently, the evaluations maintain

robustness and flexibility, meeting the diverse requirements of hackathon challenges.

2. Case study design

An in-person generative AI (GenAI) and Cyber Security hackathon [12] was

organized by the School of Computing Technologies at RMIT University, taking place

simultaneously at the RMIT Melbourne campus in Australia, Saigon South Campus

in Vietnam, and Hanoi campus in Vietnam from the 8th to the 10th of November 2024.

Entry was open to both RMIT and non-RMIT students. Participants were required to

be full-time students enrolled in a bachelor’s, master’s, or PhD program.

The challenge tasks were developed using the SkywardAI platform, an open-

source community providing local AI solutions. Competition teams were required to

Computer and Telecommunication Engineering 2025, 3(1), 3166.

3

implement their defined functions and submit all work to the Kaggle [13] platform.

Each team consisted of a maximum of 4 members, with one submission per team.

There were four challenge tasks the participants were required to complete.

1) Cloud environment deployment: Deploy an open-source local AI project to

Amazon EC2.

2) Encryption and decryption implementation: Implement encryption and

decryption mechanisms for the deployed open-source AI project.

3) Model fine-tuning for harmful web traffic detection: Refining a model [14] to

effectively identify malicious web traffic.

4) Adversarial Attacks on large language models (LLMs): Employ adversarial

techniques to challenge and test the robustness of LLMs.

In addition to the above main challenges, three additional mock tasks were

provided for the participants to familiarize themselves with the AWS environments

prior to the hackathon, ensuring the participants could focus on the main challenges

themselves, rather than navigating a new environment.

2.1. Environment requirements

Table 1. This table outlines the compute configurations provided to each team, including the number of vCPUs,

system memory, GPU memory (if available), and storage capacity. Amazon EC2 is used to deploy AI services, while

amazon sagemaker offers a jupyter notebook-like environment for fine-tuning LLMs.

AWS Instance Type vCPUs Memory (GB) GPU Memory (GB) Storage (GB)

EC2 16 32 - 100

EC2 (GPU) 16 32 16 100

SageMaker 16 32 - 100

SageMaker (GPU) 16 32 16 100

2.2. LLM-based classification and weighted scoring

Our system uses a large language model (LLM) to classify the quality of

hackathon submissions before applying a weighted scoring method to determine final

grades. By converting Jupyter notebooks into markdown format, which included both

code and documentation as solutions for hackathon tasks executed in the environment

in Table 1, we ensure that the retrieval-augmented evaluation process, as

demonstrated by González-Carrillo et al. [14] remains consistent and organized.

Tailored prompts guide the LLM to focus on challenge-specific criteria, producing

quality classifications that feed into our weighted scoring system. This approach

boosts efficiency, scales easily, and delivers structured, transparent assessments that

adapt to diverse hackathon settings.

2.3. Submission data overview

In our study, the data were obtained directly from our hackathon platform hosted

on Kaggle. As shown in Table 2, 80 valid submissions were collected concurrently

from three different cities across two countries. This diverse sample of 80 submissions

provides a robust basis for evaluating our automated grading and feedback system,

Computer and Telecommunication Engineering 2025, 3(1), 3166.

4

ensuring that our approach is effective across varied regional contexts and participant

backgrounds.

Table 2. Valid hackathon submissions were collected from our Kaggle platform

across three cities. Out of 80 submissions, 27 were received from Saigon, while

Hanoi and Melbourne each contributed 25 submissions.

The Name of Cities Submissions

SGS 27

Hanoi 25

Melbourne 25

2.4. Identified bias concerns

1) Prompt design bias: Prompts that are not carefully crafted may inadvertently

emphasize certain aspects of submissions over others, leading to skewed

evaluations.

2) Output variability: The probabilistic nature of LLMs can result in inconsistent

grading outcomes for similar submissions, challenging the reliability of the

evaluation process.

2.5. Mitigation strategies

To address these concerns, we implemented the following measures:

1) Dynamic prompt engineering: We developed a system that constructs long-

context prompts, dynamically appending specific challenge criteria as system

instructions. This approach ensures that all relevant aspects of each challenge are

considered during evaluation, promoting comprehensive and balanced

assessments.

2) Manual benchmarking and iterative refinement: We manually labeled high-

performing submissions for each challenge, assigning scores based on expert

evaluation. These scores served as a benchmark for testing the marking tool. The

top three submissions for each challenge were then graded using the LLM-based

system, and the results were compared to the manual scores. Through this

iterative process, we refined the prompts and evaluation process until the

automated scores closely aligned with the manual benchmarks, ensuring both

stability and fairness in the marking system.

2.6. Marking strategy for hackathon

The top three teams from the Melbourne campus, the top three teams from the

Saigon South campus, and the top two teams from the Hanoi campus were invited to

create and submit a video proposing a solution for a startup focused on GenAI. The

teams were evaluated using three distinct mechanisms. Figure 1 shows how the entire

system works.

Computer and Telecommunication Engineering 2025, 3(1), 3166.

5

Figure 1. The flowchart shows the entire workflow of how the system works.

2.6.1. Automated LLM-based evaluation

Submissions are automatically downloaded using the Kaggle Competition API

[15] and then converted into Markdown format. These Markdown files are forwarded

to AWS Bedrock—a serverless LLM hosting service [16]—along with carefully

designed system prompts that detail every aspect of the evaluation criteria. Through a

multi-stage process, the LLM assigns a mark and provides a detailed rationale for each

team’s submission. The results, including the team’s name, assigned mark, rationale,

and a unique hash number (to ensure reliability and uniqueness), are then stored in our

Computer and Telecommunication Engineering 2025, 3(1), 3166.

6

database. This evaluation focuses on assessing the functionality implemented, the

supporting mechanisms, and the overall accuracy of the work.

2.6.2. Expert submission review

A panel of experts reviews the top three submissions with the highest automated

marks. These experts assign additional scores based on our established assessment

policy. The expert review serves as a validation step for the LLM-based evaluation: If

the expert-assigned scores fall within a predetermined range, the LLM-based mark is

confirmed as valid.

2.6.3. Expert video review

In addition to the submission reviews, a separate panel of experts evaluates the

video submissions using a standardized rubric. This rubric is designed to assess key

factors such as clarity, creativity, feasibility, and presentation quality. The video

review process ensures that the overall evaluation captures not only the technical and

functional aspects of the submission but also the effectiveness of its communication

and presentation.

In our system, the technical score, LLM score, and video score have ranges of

400, 400, and 10, respectively. We designed an algorithm to calculate the final mark:

1) Convert each score to a percentage: Calculate each component’s percentage

relative to its maximum possible score. The Technical Percentage is computed as

(Technical Score ÷ 400) × 100. The LLM Percentage is computed as (LLM Score

÷ 400) × 100. The Video Percentage is computed as (Video Score ÷ 10) × 100.

2) Apply weights: Assign weights to each percentage based on its relative

importance to the final score. The weights are: Technical at 50%, LLM at 35%,

and Video at 15%.

3) Calculate weighted score for each component: Multiply each percentage by its

respective weight. The Weighted Technical score equals Technical Percentage ×

0.5, the Weighted LLM score equals LLM Percentage × 0.35, and the Weighted

Video score equals Video Percentage × 0.15.

4) Compute final total score: Sum the weighted scores of each component to obtain

the final score, using the formula:

Total Score = Weighted Technical + Weighted LLM + Weighted Video

Let T be the technical score, L be the LLM score, and V be the video score. The

final mathematical representation sees below:

𝐹 =
𝑇

8
+ 0.0875 × 𝐿 + 1.5 × 𝑉

2.7. Challenge designing

Each task was marked out of 100 points. A live scoreboard was provided during

the challenge and updated every hour during the main challenge day. The teams were

issued a certificate upon successfully passing challenge 1 in recognition of their skills

utilizing AWS EC2. This aligns with the AWS Certified Cloud Practitioner exam [17].

Challenge 2 was designed to test the participants knowledge in their understanding of

cloud security to protect communications while using LLMs for inference on the

public internet. Challenge 3 involved fine-tuning an AI model for binary classification

Computer and Telecommunication Engineering 2025, 3(1), 3166.

7

to detect harmful web traffic logs. The model performance was evaluated using F1

metrics.

Challenge 4 was designed to analyze the impact of adversarial attacks on AI

models by implementing attack techniques, comparing responses using cosine

similarity, and providing a quantitative evaluation of the differences.

3. System design

The entire system architecture, shown in Figure 2, includes the frontend and a

backend database for storing scores and reasons.

Figure 2. Overview of the system architecture illustrating the processing pipeline of

the Jupyter notebook submissions, from initial raw data intake to the final predicted

results. For the complete GitHub repository, see the Appendix.

4. Evaluation outcomes and impact

The AI-powered platform is designed to categorize submissions based on quality,

ensuring unbiased initial evaluations. In our system, each category is defined by an

LLM-driven rubric that assess key factors such innovation, practicality, technical

implementation, enabling the platform to objectively assign each submission to a

distinct quality tier. To address ethical concerns, we introduced a weighted scoring

mechanism that combined automated scoring, manual review of top submissions, and

evaluation of video presentations. This approach ensured fairness, stability, and

comprehensive assessment by balancing AI efficiency with human oversight.

The results demonstrate that our real-time leaderboard system provides scalable

and unbiased grading for hackathons, enabling consistent scoring and simplifying the

tracking and analysis of participant performance across multiple campuses. The

impact extends beyond hackathons, showcasing the potential of hybrid grading

systems to accelerate evaluation processes in large-scale events and revolutionize

educational assessments with scalable, transparent, and fair solutions.

Computer and Telecommunication Engineering 2025, 3(1), 3166.

8

Table 3. The evaluation of eight submissions is based on three scoring criteria:

Technical Score, LLM Score, and Video Score, along with the calculated Gap (%)

and Final Score. The Technical Score reflects human-assessed performance, while

the LLM Score represents AI-based evaluation. The Video Score assesses the

multimedia component of each submission. The Gap (%) column indicates the

percentage difference between the Technical Score and the LLM Score, showing the

level of agreement between human and AI assessments. Finally, the Final Score is a

weighted combination of the three scores, providing an overall assessment of each

submission.

Submission Technical Score LLM Score Video Score Gap (%) Final Score

1 350 355 8 1.25 86.81

2 320 350 9 7.50 84.13

3 290 345 7 13.75 77.94

4 350 370 7 5.00 86.63

5 360 365 8 1.25 88.94

6 340 365 3 6.25 78.94

7 330 370 7 10.00 84.13

8 330 370 0 10.00 73.63

Percentage Gap: The relative difference mathematical formula:

Gap = (
𝐿𝐿𝑀 𝑆𝑐𝑜𝑟𝑒 − 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑆𝑐𝑜𝑟𝑒

400
) × 100

Based on data in Table 3, we derive Figure 3, which shows a mean difference

(bias) of 27.5 points—indicating that on average the LLM scores are 27.5 points higher

than the technical scores—can be seen as acceptable in the context of automated

grading ([18,19]). The 95% limits of agreement, ranging from approximately −6.85 to

61.85, show that for most submissions the difference between the two scoring methods

falls within a span of about 68.66 points. Although the evidence from these studies is

not definitive, our results suggest that the variability between the LLM and technical

scores is comparable to the inter-rater variability typically observed in manual grading,

thereby supporting the reliability of our hybrid evaluation approach.

Computer and Telecommunication Engineering 2025, 3(1), 3166.

9

Figure 3. Bland-Altman analysis [20] table reveals a mean difference (bias) of 27.5

points—meaning the LLM scores are, on average, 27.5 points higher than the

technical scores and represent roughly 6.9% of the maximum technical score. The

95% limits of agreement (−6.83 to 61.83) indicate that most differences fall within a

68.66-point range, which aligns with typical inter-rater variability in manual grading

and supports the reliability of our hybrid evaluation approach.

As shown in Table 4, the results indicate the LLM-based marking system is more

efficient than humans.

Table 4. A table shows eight submissions with the time taken for technical scoring

and LLM scoring.

Submission Technical Score Time (min) LLM Score Time (min)

1 25 1.1

2 22 1.2

3 25 1.0

4 30 0.9

5 20 1.0

6 23 1.5

7 25 1.2

8 30 1.3

5. Discussion

In summary, our work demonstrates a novel hybrid evaluation framework that

leverages LLM-driven classification and a weighted scoring mechanism to assess

hackathon submissions fairly and transparently. By integrating automated analysis

with expert reviews, our approach addresses challenges in scalability and bias while

providing clear, constructive feedback. The successful validation of our system in a

multi-campus hackathon setting highlights its potential to enhance the efficiency and

fairness of evaluation processes in both educational and competitive environments.

Computer and Telecommunication Engineering 2025, 3(1), 3166.

10

Author contributions: Conceptualization, FH and RS; methodology, BL; software,

BC; validation, BL, PDT and DAO; formal analysis, BL; investigation, BL; resources,

BL; data curation, BL; writing—original draft preparation, BL; writing—review and

editing, PDT; visualization, DAO; supervision, FH; project administration, IG;

funding acquisition, IG. All authors have read and agreed to the published version of

the manuscript.

Conflict of interest: The authors declare no conflict of interest.

References

1. Gama K, Valença G, Alessio P, et al. The Developers’ Design Thinking Toolbox in Hackathons: A Study on the Recurring

Design Methods in Software Development Marathons. Software Engineering. 2022.

2. Steglich C, Marczak S, Guerra L, et al. An Online Educational Hackathon to Foster Professional Skills and Intense

Collaboration on Software Engineering Students. In: Proceedings of the XXXV Brazilian Symposium on Software

Engineering; 27 September–1 October 2021; Joinville, Brazil. pp. 388–397.

3. Porras J, Khakurel J, Ikonen J, et al. Hackathons in Software Engineering Education: Lessons Learned from a Decade of

Events. In: Proceedings of the 2nd International Workshop on Software Engineering Education for Millennials; 27 May–3

June 2018; Gothenburg, Sweden. pp. 40–47.

4. Kumalakov B, Kim A, Mukhtarova S, et al. Hackathon as a Project-Based Teaching Tool: Employing Programming

Challenge in the Class. In: Proceedings of the 2018 IEEE 12th International Conference on Application of Information and

Communication Technologies (AICT); 17–19 October 2018; Almaty, Kazakhstan. pp. 1–5.

5. Sadovykh A, Beketova M, Khazeev M. Hackathons as a Part of Software Engineering Education: Case in Tools Example. In:

Proceedings of the Frontiers in Software Engineering Education: First International Workshop; 11–13 November 2019;

Villebrumier, France. pp. 232–245.

6. Steglich C, Salerno L, Fernandes T, et al. Hackathons as a Pedagogical Strategy to Engage Students to Learn and to Adopt

Software Engineering Practices. In: Proceedings of the XXXIV Brazilian Symposium on Software Engineering; 21–23

October 2020; Natal, Brazil. pp. 670–679.

7. Gama K, Alencar B, Calegario F, et al. A Hackathon Methodology for Undergraduate Course Projects. In: Proceedings of

the 2018 IEEE Frontiers in Education Conference (FIE); 3–6 October 2018; San Jose, CA, USA. pp. 1–9.

8. Farazouli A. Automation and Assessment: Exploring Ethical Issues of Automated Grading Systems from a Relational Ethics

Approach. Springer; 2024.

9. Lagakis P, Demetriadis S, Psathas G. Automated Grading in Coding Exercises Using Large Language Models. Springer;

2024.

10. Yousef M, Mohamed K, Medhat W, et al. BeGrading: Large Language Models for Enhanced Feedback in Programming

Education. Neural Computing and Applications. 2024.

11. Mosqueira-Rey E, Hernández-Pereira E, Alonso-Ríos D, et al. Human-in-the-Loop Machine Learning: A State of the Art.

Artificial Intelligence Review. 2023; 56; 3005–3054.

12. RMIT GenAI and Cyber Security Hackathon. Available online: https://www.kaggle.com/competitions/rmit-gen-ai-and-

cyber-security-hackathon (accessed on 2 December 2024).

13. Kaggle. Available online: https://www.kaggle.com/ (accessed on 2 December 2024).

14. González-Carrillo CD, Restrepo-Calle F, Ramírez-Echeverry JJ, González FA. Automatic Grading Tool for Jupyter

Notebooks in Artificial Intelligence Courses. Sustainability. 2021; 13(21): 12050.
15. Kaggle. Kaggle API Documentation. Available online: https://www.kaggle.com/docs/api (accessed on 2 December 2024).

16. Amazon Bedrock. Amazon Bedrock Documentation. Available online: https://docs.aws.amazon.com/bedrock/ (accessed on 4

December 2024).

17. Amazon Web Services. AWS Certified Cloud Practitioner. Available online: https://aws.amazon.com/certification/certified-

cloud-practitioner/ (accessed on 4 December 2024).

18. Guskey TR. Special Topic/The Case Against Percentage Grades. Educational Leadership. 2013; 71(1): 68–72.

Computer and Telecommunication Engineering 2025, 3(1), 3166.

11

19. National Center for Education Statistics, 2025. Scale Scores and NAEP Achievement Levels. Available online:

https://nces.ed.gov/nationsreportcard/guides/scores_achv.aspx (accessed on 4 December 2024).

20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. The

Lancet. 1986; 327(8476): 307–310.

Computer and Telecommunication Engineering 2025, 3(1), 3166.

12

Appendix

To access the code associated with this research, please visit the following repository:

https://github.com/SkywardAI/hackathon-leaderboard.

https://github.com/SkywardAI/hackathon-leaderboard

