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Abstract: Evaluating large numbers of hackathon submissions quickly, fairly, and at scale is 

a persistent challenge. Existing automated grading systems often struggle with bias, limited 

scalability, and a lack of transparency. In this paper, we present a novel hybrid evaluation 

framework that leverages large language models (LLMs) and a weighted scoring mechanism 

to address these issues. Our approach classifies hackathon submissions using LLMs, converts 

Jupyter notebooks to markdown for consistent analysis, and integrates multiple evaluation 

factors—from technical quality to video presentations—into a single, balanced score. Through 

dynamic prompt engineering and iterative refinement against manually benchmarked 

evaluations, we mitigate prompt design biases and ensure stable, fair outcomes. We validate 

our method in a multi-campus GenAI and Cybersecurity hackathon, demonstrating improved 

scalability, reduced evaluator workload, and transparent feedback. Our results highlight the 

potential of hybrid AI-driven frameworks to enhance fairness, adaptability, and efficiency in 

large-scale educational and competitive environments. 
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1. Introduction 

Kaggle competitions have gained popularity for hosting hackathon-style events, 

challenging participants to tackle real-world problems under time constraints, often 

involving cutting-edge technologies and complex scenarios, as noted by Gama et al. 

[1] and Steglich et al. [2]. However, as highlighted by Porras et al. [3], assessing a 

large number of submissions within strict deadlines remains a significant challenge. 

Traditional grading methods, while effective, often struggle with scalability according 

to Kumalakov et al. [4], are susceptible to bias as noted by Sadovykh et al. [5] and 

Steglich et al. [6], and can be exceedingly time-consuming for evaluators, as discussed 

by Gama et al. [7] and Farazouli et al. [8]. 

In recent years, integrating large language models (LLMs) into automated 

grading systems has attracted significant attention in educational research. Lagakis et 

al. [9] explore the application of LLMs in evaluating programming assignments, 

highlighting the challenges of manual grading in large-scale educational settings. They 

demonstrate how LLMs can provide accurate and timely feedback to students, 

improving the overall learning experience. 

Another LLM-powered automated grading system was explored by Yousef et al. 

[10], which investigates the use of LLMs to provide detailed feedback on student 

submissions. Yousef demonstrates that LLMs can offer personalized and constructive 

critiques. For example, instead of simply labeling the solution as “incorrect” or 

“suboptimal”, the LLM offered a revised version of the code. The revised code 
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features an iterative binary search algorithm and includes detailed comments 

explaining each change helping students improve their coding skills. 

Although LLM-based grading systems offer considerable advantages in terms of 

efficiency and scalability, they also give rise to concerns regarding ethical 

considerations. A study by Farazouli et al. [8] addresses issues related to fairness, 

transparency, and potential biases in automated assessments, emphasizing the 

necessity for ethical guidelines and oversight in the implementation of such 

technologies. 

All the studies above focus on grading systems for programming assignments, 

highlighting the utility of AI-powered systems in automating assessments and 

providing detailed feedback. However, a common concern across these works is the 

potential for ethical and bias-related issues in automated grading, particularly in 

ensuring fairness and transparency. 

In contrast, instead of using LLMs purely for automated grading, we leverage 

LLMs to classify hackathon submissions and integrate a weighted scoring mechanism. 

This hybrid approach surpasses traditional AI-powered grading systems by combining 

the efficiency of automated classification with the fairness of manual review for top-

performing submissions, as suggested by Mosqueira-Rey et al. [11]. The weighted 

scoring mechanism ensures a balanced evaluation by addressing potential biases and 

ethical concerns, providing a more transparent and reliable assessment process. 

In this work, we have developed an automated evaluation system powered by 

large language models (LLMs). This system streamlines grading, reduces bias, saves 

time, and provides clear feedback, ultimately enhancing the overall competition 

experience. We demonstrate how LLMs can make hackathon grading faster, more 

reliable, and more transparent. By incorporating automated evaluations, we efficiently 

manage large volumes of submissions and offer feedback that earns participants’ trust. 

Our approach effortlessly adapts to various hackathon themes, assisting organizers in 

maintaining a fair and supportive environment. 

Our primary contribution is a hybrid, weighted scoring methodology that 

integrates several evaluative factors, including technical quality, LLM-generated 

analysis, and video presentations, into a unified, balanced score. This approach refines 

traditional automated grading by carefully adjusting the impact of each component 

and refining prompt design for the LLM. Consequently, the evaluations maintain 

robustness and flexibility, meeting the diverse requirements of hackathon challenges. 

2. Case study design 

An in-person generative AI (GenAI) and Cyber Security hackathon [12] was 

organized by the School of Computing Technologies at RMIT University, taking place 

simultaneously at the RMIT Melbourne campus in Australia, Saigon South Campus 

in Vietnam, and Hanoi campus in Vietnam from the 8th to the 10th of November 2024. 

Entry was open to both RMIT and non-RMIT students. Participants were required to 

be full-time students enrolled in a bachelor’s, master’s, or PhD program. 

The challenge tasks were developed using the SkywardAI platform, an open-

source community providing local AI solutions. Competition teams were required to 
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implement their defined functions and submit all work to the Kaggle [13] platform. 

Each team consisted of a maximum of 4 members, with one submission per team. 

There were four challenge tasks the participants were required to complete. 

1) Cloud environment deployment: Deploy an open-source local AI project to 

Amazon EC2. 

2) Encryption and decryption implementation: Implement encryption and 

decryption mechanisms for the deployed open-source AI project. 

3) Model fine-tuning for harmful web traffic detection: Refining a model [14] to 

effectively identify malicious web traffic. 

4) Adversarial Attacks on large language models (LLMs): Employ adversarial 

techniques to challenge and test the robustness of LLMs. 

In addition to the above main challenges, three additional mock tasks were 

provided for the participants to familiarize themselves with the AWS environments 

prior to the hackathon, ensuring the participants could focus on the main challenges 

themselves, rather than navigating a new environment. 

2.1. Environment requirements 

Table 1. This table outlines the compute configurations provided to each team, including the number of vCPUs, 

system memory, GPU memory (if available), and storage capacity. Amazon EC2 is used to deploy AI services, while 

amazon sagemaker offers a jupyter notebook-like environment for fine-tuning LLMs. 

AWS Instance Type vCPUs Memory (GB) GPU Memory (GB) Storage (GB) 

EC2 16 32 - 100 

EC2 (GPU) 16 32 16 100 

SageMaker 16 32 - 100 

SageMaker (GPU) 16 32 16 100 

2.2. LLM-based classification and weighted scoring 

Our system uses a large language model (LLM) to classify the quality of 

hackathon submissions before applying a weighted scoring method to determine final 

grades. By converting Jupyter notebooks into markdown format, which included both 

code and documentation as solutions for hackathon tasks executed in the environment 

in Table 1, we ensure that the retrieval-augmented evaluation process, as 

demonstrated by González-Carrillo et al. [14] remains consistent and organized. 

Tailored prompts guide the LLM to focus on challenge-specific criteria, producing 

quality classifications that feed into our weighted scoring system. This approach 

boosts efficiency, scales easily, and delivers structured, transparent assessments that 

adapt to diverse hackathon settings. 

2.3. Submission data overview 

In our study, the data were obtained directly from our hackathon platform hosted 

on Kaggle. As shown in Table 2, 80 valid submissions were collected concurrently 

from three different cities across two countries. This diverse sample of 80 submissions 

provides a robust basis for evaluating our automated grading and feedback system, 
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ensuring that our approach is effective across varied regional contexts and participant 

backgrounds. 

Table 2. Valid hackathon submissions were collected from our Kaggle platform 

across three cities. Out of 80 submissions, 27 were received from Saigon, while 

Hanoi and Melbourne each contributed 25 submissions. 

The Name of Cities Submissions 

SGS 27 

Hanoi 25 

Melbourne 25 

2.4. Identified bias concerns 

1) Prompt design bias: Prompts that are not carefully crafted may inadvertently 

emphasize certain aspects of submissions over others, leading to skewed 

evaluations. 

2) Output variability: The probabilistic nature of LLMs can result in inconsistent 

grading outcomes for similar submissions, challenging the reliability of the 

evaluation process. 

2.5. Mitigation strategies 

To address these concerns, we implemented the following measures: 

1) Dynamic prompt engineering: We developed a system that constructs long-

context prompts, dynamically appending specific challenge criteria as system 

instructions. This approach ensures that all relevant aspects of each challenge are 

considered during evaluation, promoting comprehensive and balanced 

assessments. 

2) Manual benchmarking and iterative refinement: We manually labeled high-

performing submissions for each challenge, assigning scores based on expert 

evaluation. These scores served as a benchmark for testing the marking tool. The 

top three submissions for each challenge were then graded using the LLM-based 

system, and the results were compared to the manual scores. Through this 

iterative process, we refined the prompts and evaluation process until the 

automated scores closely aligned with the manual benchmarks, ensuring both 

stability and fairness in the marking system. 

2.6. Marking strategy for hackathon 

The top three teams from the Melbourne campus, the top three teams from the 

Saigon South campus, and the top two teams from the Hanoi campus were invited to 

create and submit a video proposing a solution for a startup focused on GenAI. The 

teams were evaluated using three distinct mechanisms. Figure 1 shows how the entire 

system works. 
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Figure 1. The flowchart shows the entire workflow of how the system works. 

2.6.1. Automated LLM-based evaluation 

Submissions are automatically downloaded using the Kaggle Competition API 

[15] and then converted into Markdown format. These Markdown files are forwarded 

to AWS Bedrock—a serverless LLM hosting service [16]—along with carefully 

designed system prompts that detail every aspect of the evaluation criteria. Through a 

multi-stage process, the LLM assigns a mark and provides a detailed rationale for each 

team’s submission. The results, including the team’s name, assigned mark, rationale, 

and a unique hash number (to ensure reliability and uniqueness), are then stored in our 
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database. This evaluation focuses on assessing the functionality implemented, the 

supporting mechanisms, and the overall accuracy of the work. 

2.6.2. Expert submission review 

A panel of experts reviews the top three submissions with the highest automated 

marks. These experts assign additional scores based on our established assessment 

policy. The expert review serves as a validation step for the LLM-based evaluation: If 

the expert-assigned scores fall within a predetermined range, the LLM-based mark is 

confirmed as valid. 

2.6.3. Expert video review 

In addition to the submission reviews, a separate panel of experts evaluates the 

video submissions using a standardized rubric. This rubric is designed to assess key 

factors such as clarity, creativity, feasibility, and presentation quality. The video 

review process ensures that the overall evaluation captures not only the technical and 

functional aspects of the submission but also the effectiveness of its communication 

and presentation. 

In our system, the technical score, LLM score, and video score have ranges of 

400, 400, and 10, respectively. We designed an algorithm to calculate the final mark: 

1) Convert each score to a percentage: Calculate each component’s percentage 

relative to its maximum possible score. The Technical Percentage is computed as 

(Technical Score ÷ 400) × 100. The LLM Percentage is computed as (LLM Score 

÷ 400) × 100. The Video Percentage is computed as (Video Score ÷ 10) × 100. 

2) Apply weights: Assign weights to each percentage based on its relative 

importance to the final score. The weights are: Technical at 50%, LLM at 35%, 

and Video at 15%. 

3) Calculate weighted score for each component: Multiply each percentage by its 

respective weight. The Weighted Technical score equals Technical Percentage × 

0.5, the Weighted LLM score equals LLM Percentage × 0.35, and the Weighted 

Video score equals Video Percentage × 0.15. 

4) Compute final total score: Sum the weighted scores of each component to obtain 

the final score, using the formula: 

Total Score = Weighted Technical + Weighted LLM + Weighted Video 

Let T be the technical score, L be the LLM score, and V be the video score. The 

final mathematical representation sees below: 

𝐹 =
𝑇

8
+ 0.0875 × 𝐿 + 1.5 × 𝑉 

2.7. Challenge designing 

Each task was marked out of 100 points. A live scoreboard was provided during 

the challenge and updated every hour during the main challenge day. The teams were 

issued a certificate upon successfully passing challenge 1 in recognition of their skills 

utilizing AWS EC2. This aligns with the AWS Certified Cloud Practitioner exam [17]. 

Challenge 2 was designed to test the participants knowledge in their understanding of 

cloud security to protect communications while using LLMs for inference on the 

public internet. Challenge 3 involved fine-tuning an AI model for binary classification 
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to detect harmful web traffic logs. The model performance was evaluated using F1 

metrics. 

Challenge 4 was designed to analyze the impact of adversarial attacks on AI 

models by implementing attack techniques, comparing responses using cosine 

similarity, and providing a quantitative evaluation of the differences. 

3. System design 

The entire system architecture, shown in Figure 2, includes the frontend and a 

backend database for storing scores and reasons. 

 

Figure 2. Overview of the system architecture illustrating the processing pipeline of 

the Jupyter notebook submissions, from initial raw data intake to the final predicted 

results. For the complete GitHub repository, see the Appendix. 

4. Evaluation outcomes and impact 

The AI-powered platform is designed to categorize submissions based on quality, 

ensuring unbiased initial evaluations. In our system, each category is defined by an 

LLM-driven rubric that assess key factors such innovation, practicality, technical 

implementation, enabling the platform to objectively assign each submission to a 

distinct quality tier. To address ethical concerns, we introduced a weighted scoring 

mechanism that combined automated scoring, manual review of top submissions, and 

evaluation of video presentations. This approach ensured fairness, stability, and 

comprehensive assessment by balancing AI efficiency with human oversight. 

The results demonstrate that our real-time leaderboard system provides scalable 

and unbiased grading for hackathons, enabling consistent scoring and simplifying the 

tracking and analysis of participant performance across multiple campuses. The 

impact extends beyond hackathons, showcasing the potential of hybrid grading 

systems to accelerate evaluation processes in large-scale events and revolutionize 

educational assessments with scalable, transparent, and fair solutions. 
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Table 3. The evaluation of eight submissions is based on three scoring criteria: 

Technical Score, LLM Score, and Video Score, along with the calculated Gap (%) 

and Final Score. The Technical Score reflects human-assessed performance, while 

the LLM Score represents AI-based evaluation. The Video Score assesses the 

multimedia component of each submission. The Gap (%) column indicates the 

percentage difference between the Technical Score and the LLM Score, showing the 

level of agreement between human and AI assessments. Finally, the Final Score is a 

weighted combination of the three scores, providing an overall assessment of each 

submission. 

Submission Technical Score LLM Score Video Score Gap (%) Final Score 

1 350 355 8 1.25 86.81 

2 320 350 9 7.50 84.13 

3 290 345 7 13.75 77.94 

4 350 370 7 5.00 86.63 

5 360 365 8 1.25 88.94 

6 340 365 3 6.25 78.94 

7 330 370 7 10.00 84.13 

8 330 370 0 10.00 73.63 

Percentage Gap: The relative difference mathematical formula: 

Gap = (
𝐿𝐿𝑀 𝑆𝑐𝑜𝑟𝑒 − 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑆𝑐𝑜𝑟𝑒

400
) × 100 

Based on data in Table 3, we derive Figure 3, which shows a mean difference 

(bias) of 27.5 points—indicating that on average the LLM scores are 27.5 points higher 

than the technical scores—can be seen as acceptable in the context of automated 

grading ([18,19]). The 95% limits of agreement, ranging from approximately −6.85 to 

61.85, show that for most submissions the difference between the two scoring methods 

falls within a span of about 68.66 points. Although the evidence from these studies is 

not definitive, our results suggest that the variability between the LLM and technical 

scores is comparable to the inter-rater variability typically observed in manual grading, 

thereby supporting the reliability of our hybrid evaluation approach. 
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Figure 3. Bland-Altman analysis [20] table reveals a mean difference (bias) of 27.5 

points—meaning the LLM scores are, on average, 27.5 points higher than the 

technical scores and represent roughly 6.9% of the maximum technical score. The 

95% limits of agreement (−6.83 to 61.83) indicate that most differences fall within a 

68.66-point range, which aligns with typical inter-rater variability in manual grading 

and supports the reliability of our hybrid evaluation approach. 

As shown in Table 4, the results indicate the LLM-based marking system is more 

efficient than humans. 

Table 4. A table shows eight submissions with the time taken for technical scoring 

and LLM scoring. 

Submission Technical Score Time (min) LLM Score Time (min) 

1 25 1.1 

2 22 1.2 

3 25 1.0 

4 30 0.9 

5 20 1.0 

6 23 1.5 

7 25 1.2 

8 30 1.3 

5. Discussion 

In summary, our work demonstrates a novel hybrid evaluation framework that 

leverages LLM-driven classification and a weighted scoring mechanism to assess 

hackathon submissions fairly and transparently. By integrating automated analysis 

with expert reviews, our approach addresses challenges in scalability and bias while 

providing clear, constructive feedback. The successful validation of our system in a 

multi-campus hackathon setting highlights its potential to enhance the efficiency and 

fairness of evaluation processes in both educational and competitive environments. 
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Appendix 

To access the code associated with this research, please visit the following repository: 

https://github.com/SkywardAI/hackathon-leaderboard. 

https://github.com/SkywardAI/hackathon-leaderboard

