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Abstract: This research work studies the performance and management of the internet 

services of institutions of higher learning in Nigeria. Data were collated from a federal, state, 

and private university designated as FEDERAL1, STATE1, and PRIVATE1, respectively, in 

this research study. The reinforcement learning-based internet data bandwidth allocation 

model was developed for bandwidth allocation and prediction to enhance balanced quality of 

service (QoS) and quality of experience (QoE) of the users. The linear Lagrange’s method of 

interpolation, the LILARINT model, was developed and implemented to predict and allocate 

effective internet data bandwidth for the significantly increasing number of internet users in 

each of the institutions. The problem of inability to predict and allocate acceptable internet 

data bandwidth with the corresponding number of internet users was solved by the 

LILARINT model. The Allen’s PRESS regression, R2 of the LILARINT models, was very 

close to unity, which is an indication that the models developed stood at the very best fit. In 

this research work, it is clear that PRESS regressions, R2 for the selected institutions, were 

better than the regression, R2 obtained from Nielsen’s institution. Using the measured and 

simulated results, we found out that PRESS regression, R2 has significantly performed best in 

the LILARINT model developed. In the overall comparative analysis, the FEDERAL1 

LILARINT model emerged as the most reliable model developed and implemented. The 

model has a regression, R2 of 0.9999, mean squared error (MSE) of 1.455, mean absolute 

deviation (MAD) of 122.6920, Standard Deviation (σ) of 8.2975, and mean absolute 

percentage error (MAPE) of 0.6274%.  

Keywords: reinforcement learning-based; quality of service (QoS); quality of experience 

(QoE); internet data bandwidth; allocation; prediction; linear Lagrange’s interpolation model 

1. Introduction 

The Internet has already made a tremendous impact in many countries all over 

the world, but it is only the beginning. The internet will dominate as the resource for 

sharing data within devices and networks of the communities, hotels, campuses, 

corporate organizations, and exotic homes that become more powerful and robust. 

There are many aspects of active seamless Internet of Things communications 

systems, which include Radio Frequency Identification (RFIDs), Wireless Sensor 

Networks (WSNs), Mobile Ad-Hoc Networks (MANETs), and Vehicular Ad-Hoc 

Networks (VANETs). Today, internet connectivity and reliability are the heart of 

every business operation. The campus environment is even of more paramount 

importance than any other establishment. Corporate organizations rely on it to run 

mission-critical business applications that drive productivity and profits. Campuses 
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rely on it to promote academic knowledge, research, and intellectualism. Actually, 

internet access is no longer a luxury but a critical component of the overall network 

infrastructure that must be highly reliable and always available [1–10]. 

ICT-based institutions are facing a lot of challenges, which include poor 

internet data bandwidth optimization, prediction, and allocation. In this research 

work, the problem of ineffective Internet bandwidth optimization and allocation, 

which has resulted in a high level of service downtime in the availability of Internet 

access, was sufficiently addressed. The problem of poor Internet bandwidth 

optimization, which has resulted in a high level of service downtime in the 

availability of Internet access, was equally addressed. One of the greatest problems 

affecting the ICT-based institution is the inability to predict or allocate. 

The required acceptable internet data bandwidth with the corresponding number 

of internet users was addressed. However, the problem of poor quality of service 

(QoS) and quality of experience (QoE) among internet bandwidth users was 

proffered solutions [11–17]. 

The concept of event-triggered reinforcement learning-based internet data 

bandwidth prediction, allocation, and control basically involves the following: 

a. The change in the limit of bandwidth reservation in the Windows operating 

system, which could enhance internet data bandwidth speed [18]. 

b. The control or limit of internet bandwidth speed of individual users by the 

administrator [19]. 

c. The installation and management of Employee Bandwidth Management 

and Bandwidth Control Applications [20]. 

d. The act of limiting the speed of internet data bandwidth using software 

programs [21,22]. 

e. The means of linking internet data bandwidth with SONICWALL 

Bandwidth Management using Firewalls [23–25]. 

f. The management and prediction of average number of users and acceptable 

internet data bandwidth [26]. 

This paper is organized as follows: Section 2 broadly enumerated the recently 

reviewed related works and research gaps. Section 3 clearly discusses the research 

considerations on internet data bandwidth prediction methodology. Section 4 

discusses the results of internet bandwidth measurement in a federal, state, and 

private university designated as FEDERAL1, STATE1, and PRIVATE1, 

respectively. The various sustainable comparative statistical performance evaluation 

analyses were fully enumerated in Section 5. Finally, we conclude this paper in 

Section 6. 

2. Recent reviewed related works and research gaps 

The recent reviewed related works and research gaps are shown in Table 1. 
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Table 1. Recent reviewed related works and research gaps. 

Publication Work Done Results Obtained Research Gap 

[27] 

Discussed and classified the literature on ML-enabled 

IoT upon three perspectives: Application, data, and 

industry. 

No specific result was obtained in 

IoT ML- and DL-based 

environments. 

It was just a survey without 

suggestion(s) for challenge(s) and 

solution(s). 

[28] 

Proposed a dynamic algorithm for internet bandwidth 

allocation. In addition, used a neural network to predict 

and improve the polling mechanism. 

The bandwidth allocation was 

adequate and efficient. 

The simulation infrastructure for the 

Virtual Passive Optical Network 

(VPON) was inaccurate. 

[29] 

Proposed a technique to reduce the energy consumption 

for IoT nodes and increase the network efficiency to 

route adjustment schemes. 

There was no specific result 

obtained through this technique. 

The simulation infrastructure was 

inaccurate due to the missing 

important specifications of IoT 

devices. 

[30] 

Presented an optimal control system that minimizes the 

closed loop of the physical system and reduces the data 

bandwidth cost. 

This special optimal control 

system did not produce 

appreciable results. 

The work neglected most IoT 

specifications. 

[31] 
Introduced a bandwidth trading framework to utilize 

blockchain software-defined networks. 

This special bandwidth trading 

framework did not produce 

appreciable results. 

There was limited implementation 

infrastructure, which affects the 

accuracy of results. 

[32] 
Proposed a novel concept based on statistical detection 

and monitoring of sensing signals. 

There was no provable and 

verifiable result obtained. 

There was limited implementation 

infrastructure. 

[33] 

Presented a novel quality of service (QoS) scheduling 

system to undertake the semi-automatic bandwidth 

slicing for processing of critical traffic in edge or cloud 

environments. 

There were provable results on the 

edge/cloud servers. 
It only applied to edge/cloud servers. 

[34] 

Presented the results that highlighted the strengths and 

weaknesses in the DL and ML techniques that were 

related to IoT technology. 

There was no verifiable result 

obtained. 

It was just a survey without 

suggestion(s) for challenge(s) and 

solution(s). 

[35] 
Predicted the network performance in the IoT systems 

by applying the LSTM algorithm. 

There was no provable and 

verifiable result obtained. 

It used long short-term memory 

(LSTM) without considering the IoT 

nature and specifications. 

[36] 
Surveyed and summarized the major efforts that were 

achieved in the field of DL for IoT technology. 

There was no 

verifiable result obtained. 

It was just a survey 

without suggestion(s) for challenge(s) 

and solution(s). 

[37] 

Proposed a bandwidth prediction methodology 

to enhance the quality of experience (QoE) in 4G and 

5G networks. 

The results obtained were not 

provable and verifiable. 

Many performance metrics, such as 

energy consumption, were not 

considered. 

[38] 

Designed an antenna to enhance the bandwidth and 

communication in numerous wireless body area 

networks (WBAN). 

There were appreciable results in 

the wireless body area network 

(WBANs). 

The solution is proposed for wireless 

body area networks (WBANs) only. 

[39] 

Proposed a bandwidth adjustment technique that 

considered the sensitivity of applications using a 

queuing system in fog/cloud environments. 

There were no provable and 

verifiable results on the queuing 

system in a fog/cloud 

environment. 

The proof research claim was 

inaccurate. 

[40] 

Designed a new voltage regulator called Low Drop-Out 

(LDO). The regulator was used to enhance bandwidth in 

IoT applications. 

There were appreciable results in 

the IoT applications. 

The model used a special 

communication circuit. 

[41] 
Presented and proposed a mechanism to predict the 

bandwidth and connectivity between mobile devices. 

The data bandwidth prediction 

was successful only among 

mobile devices. 

The implementation infrastructure 

comprised only mobile devices. 

[42] 
Proposed a mechanism to maximize the number of tasks 

for the IoT-based 5G network environments. 

The results obtained were not 

provable and verifiable. 

The technique may struggle to reduce 

the computing tasks when data enters 

the coverage of 4G 

networks. 
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Table 1. (Continued). 

Publication Work Done Results Obtained Research Gap 

[43] 
Proposed a method to predict the bandwidth that was 

available for video streaming over HTTP. 

The DL- and ML-based system 

could not achieve the video 

streaming over HTTP. 

He did not consider different varieties 

of video size and type in addition to 

other data 

types. 

[44] 
Presented and proposed a method for predicting 

bandwidth in network links. 

There was no provable and 

verifiable result obtained. 

There was missing important data in 

the result evaluation 

process. 

[45] 
Predicted and allocated the bandwidth in mobile 

broadband networks. 

There were no provable results 

due to the complexity of the 

networks. 

It has a very high complexity. 

[46] 
Proposed a scheme to achieve real-time routing of traffic 

that is time-sensitive. 

There were provable 

results obtained on the optical 

networks only. 

There was utilization of optical 

networks only. 

[48] 
Proposed a learning methodology for software agents to 

control the sending rate of internet video calls. 

There were no provable results 

due to the complexity of the 

methodology. 

The structure of the agent increased 

the complexity of the proposed 

methodology. 

[49] 
Investigated a survey about resource allocation 

algorithms and methods in the IoT environments. 

There was no provable and 

verifiable result obtained. 

It was just a survey without 

suggestion(s) for challenge(s) and 

solution(s). 

[50] 
Analyzed bottleneck performance in a cloud rendering 

system. 

There was no provable and 

verifiable result obtained. 

He did not guarantee the required 

bandwidth for data transmission. 

[51] 
Proposed a multi-objective approach to guide the routing 

process in mixed IoT traffic. 

There were provable results 

obtained in the health and care 

scenario. 

The approach was tested using only 

an elderly health and care scenario. 

[52] 
Proposed a data communication trial to enhance the 

bandwidth for IoT-based applications. 

There were provable results 

obtained in the bandwidth 

enhancement. 

The trial was achieved only from a 

communication perspective. 

3. Research considerations on internet data bandwidth prediction 

methodology 

The research method for Internet data bandwidth prediction and allocation is a 

metric for evaluating effective internet data bandwidth management and quality of 

service (QoS) in higher institutions of learning [53–57]. In this research, the 

University of Lagos, Lagos State, Nigeria; Lagos State University of Science and 

Technology; and Covenant University were selected as the case studies for federal, 

state, and private universities, respectively. The concept of internet data bandwidth 

allocation and prediction is simply availability of data for users to enhance effective 

quality of experience (QoE) [58–63]. A careful study of ICT infrastructures which 

support the development and implementation of the Internet of Things and 5G 

broadband networks provided the basis of the assumptions utilized in this research 

work [64–66]. All internet users were all expected to be on 5G broadband 

technology in order to adequately utilize the allocated data bandwidth. 

There are certain unique and classic precautions that were made in the process 

of collation of data in FEDERAL1, STATE1, and PRIVATE1. The case study of this 

research work, which includes the categorization of Internet users, is as follows: 

a. Staff that stay On-line (SSO1); 

b. Staff that live On-line (SLO1); 
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c. Students that stay On-line (SSO2); 

d. Students that live On-line (SLO2). 

This methodology employed in this study is the mathematical analysis of the 

linear Lagrange’s interpolation for predicting and allocating the annual total number 

of internet users and corresponding acceptable internet data bandwidth [67–71]. 

The FEDERAL1, STATE1, and PRIVATE1 as the case study of this research 

work have the following data shown in Tables 2–10. This is the most recent 

numerical data of the total number of Internet users on the campus. Figures 1–18 

clearly show the distribution of the total number of internet users in 2021, 2022, and 

2023. In the process of evaluating and estimating the internet data bandwidth for 

individual users, it was equally presumed that all users possessed 5G devices to 

ensure sustainable long-term optimization, prediction and allocation [72–76]. 

Table 2. FEDERAL1 internet bandwidth usage in 2021. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 95 450 23 568 5.7867 

February 102 470 29 601 4.0067 

March 98 515 22 635 4.2333 

April 90 1651 27 1,768 11.7867 

May 117 410 22 549 3.6600 

June 99 640 19 758 5.0533 

July 111 505 21 637 4.4067 

August 80 409 22 511 3.4067 

September 107 1440 35 1,582 10.5467 

October 106 450 23 579 3.8600 

November 101 460 30 591 3.9400 

December 94 100 27 221 1.4733 

TOTAL 1200 7500 300 9000 60.0020 

Table 3. State1 internet bandwidth usage in 2021. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 20 20 7 47 0.8488 

February 21 15 8 44 0.7946 

March 40 252 8 300 5.4182 

April 50 750 10 810 14.6292 

May 22 36 41 112 2.20228 

June 60 33 15 108 1.9505 

July 66 38 11 115 2.0769 

August 71 39 13 123 2.2214 

September 60 36 15 111 2.0047 

October 51 40 14 105 1.8963 

November 67 36 13 116 2.0950 

December 2 5 2 9 0.1625 

TOTAL 530 1300 170 2000 36.1209 
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Table 4. PRIVATE1 internet bandwidth usage in 2021. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 16 133 11 160 1.14286 

February 18 130 15 163 1.16428 

March 15 126 13 154 1.10000 

April 16 975 11 1,002 7.15714 

May 19 135 10 164 1.17142 

June 17 139 16 172 1.22857 

July 12 137 14 163 1.16428 

August 15 140 14 169 1.20714 

September 20 855 18 893 6.37857 

October 16 126 15 157 1.12142 

November 16 134 17 167 1.19286 

December 10 120 6 136 0.97143 

TOTAL 190 3150 160 3500 24.99997 

Table 5. FEDERAL1 internet bandwidth usage in 2022. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 102 735 27 864 5.7597 

February 101 733 31 865 5.7665 

March 97 634 22 753 5.0198 

April 110 2,650 33 2,793 18.6193 

May 101 635 28 764 5.0932 

June 98 737 28 863 5.7531 

July 113 836 27 976 6.5064 

August 83 839 30 952 6.3464 

September 118 2,450 31 2,599 17.3260 

October 104 733 32 869 5.7931 

November 102 748 21 871 5.8065 

December 101 710 20 831 5.5398 

TOTAL 1230 12,440 330 14,000 93.3329 

Table 6. State1 internet bandwidth usage in 2022. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 27 29 15 71 1.3002 

February 25 21 18 64 1.1720 

March 56 270 3 329 6.0496 

April 55 900 2 957 17.5255 

May 46 52 12 110 2.0144 

June 66 53 16 135 2.4612 

July 56 51 14 121 2.2128 
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Table 6. (Continued). 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

August 68 55 10 133 2.4356 

September 57 51 12 120 2.1905 

October 53 52 13 118 2.1609 

November 50 56 11 117 2.1426 

December 11 10 4 25 0.4578 

TOTAL 570 1,600 130 2,300 42.1231 

Table 7. PRIVATE1 internet bandwidth usage in 2022. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 17 186 10 213 1.52129 

February 18 190 16 224 1.59985 

March 19 180 14 213 1.52129 

April 21 900 15 1.246 8.89921 

May 16 1210 17 218 1.55700 

June 17 200 14 231 1.64985 

July 18 180 16 214 1.52844 

August 19 187 18 224 1.59985 

September 20 1050 17 1,087 7.76359 

October 16 189 18 223 1.59271 

November 19 198 10 227 1.62128 

December 10 160 10 180 1.28560 

TOTAL 210 4115 175 4500 32.13996 

Table 8. FEDERAL1 internet bandwidth usage in 2023. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 110 1010 29 1149 7.66020 

February 117 1025 32 1174 7.82687 

March 98 995 25 1118 7.45352 

April 112 3750 37 3899 25.99401 

May 107 1028 30 1165 7.76687 

June 101 970 29 1100 7.33352 

July 120 989 28 1137 7.58019 

August 103 1020 32 1155 7.70020 

September 121 3635 30 3786 25.24066 

October 108 997 33 1138 7.58686 

November 98 1081 24 11,203 8.02021 

December 55 900 21 976 6.50683 

TOTAL 1250 17,400 350 19,000 126.66994 
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Table 9. State1 internet bandwidth usage in 2023. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 32 35 17 84 1.5546 

February 30 31 20 81 1.4990 

March 58 290 4 352 6.5145 

April 58 1100 3 1161 21.4870 

May 54 60 12 126 2.3320 

June 58 74 9 141 2.6095 

July 59 41 10 110 2.0357 

August 56 60 14 130 2.4090 

September 58 64 12 134 2.4800 

October 59 61 8 128 2.3690 

November 49 61 10 120 2.2210 

December 14 13 6 33 0.6107 

TOTAL 585 1890 125 2600 48.1221 

Table 10. PRIVATE1 internet bandwidth usage in 2023. 

Month Number of Staff Number of Student Number of Visitor Sub-total of Internet Users 
Internet Data Bandwidth 

(Terabytes) 

January 20 198 16 234 1.67118 

February 18 200 14 232 1.65900 

March 15 196 15 226 1.61405 

April 24 1,650 18 1692 12.08396 

May 19 197 15 231 1.64976 

June 17 202 11 230 1.64262 

July 20 190 20 230 1.64262 

August 18 208 14 240 1.71404 

September 20 1,450 21 1491 10.64845 

October 17 199 18 234 1.67118 

November 19 200 16 231 1.64976 

December 18 195 12 225 1.60691 

TOTAL 225 5,085 190 5500 39.28067 
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Figure 1. FEDERAL1 internet data bandwidth users in 2021—Bar chart. 

 

Figure 2. FEDERAL1 internet data bandwidth users in 2021—Pie chart. 

 
Figure 3. State1 internet data bandwidth users in 2021—Bar chart. 



Computer and Telecommunication Engineering 2024, 2(4), 3135. 
 

10 

 
Figure 4. State1 internet data bandwidth users in 2021—Pie chart. 

 

Figure 5. PRIVATE1 internet data bandwidth users in 2021—Bar chart. 

 
Figure 6. PRIVATE1 internet data bandwidth users in 2021—Pie chart. 
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Figure 7. FEDERAL1 internet data bandwidth users in 2022—Bar chart. 

 

Figure 8. FEDERAL1 internet data bandwidth users in 2022—Pie chart. 

 

Figure 9. State1 internet data bandwidth users in 2022—Bar chart. 
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Figure 10. State1 internet data bandwidth users in 2022—Pie chart. 

 
Figure 11. PRIVATE1 internet data bandwidth users in 2022—Bar chart. 

 
Figure 12. PRIVATE1 internet data bandwidth users in 2022—Pie chart. 
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Figure 13. FEDERAL1 internet data bandwidth users in 2023—Bar chart. 

 
Figure 14. FEDERAL1 internet data bandwidth users in 2023—Pie chart. 

 

Figure 15. State1 internet data bandwidth users in 2023—Bar chart. 
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Figure 16. State1 internet data bandwidth users in 2023—Pie chart. 

 
Figure 17. PRIVATE1 internet data bandwidth users in 2023—Bar chart. 

 

Figure 18. PRIVATE1 internet data bandwidth users in 2023—Pie chart. 
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A section of the data tables above was obtained from the Network 

Administrator’s Users Record attached to the office of the Director of ICT in 

FEDERAL1, at which the overall ISPs Internet Data Bandwidth measured is 60.00 

Terabytes in the year 2021, 93.33 Terabytes in the year 2022, and 126.67 Terabytes 

in the year 2023. Another section of these tables showed that the records from the 

Director of ICT in STATE1 measured 36.1209 Terabytes in the year 2021, 42.1231 

Terabytes in the year 2022, and 48.1221 Terabytes in the year 2023. The last section 

of these tables showed that the record attached to the office of the Director of ICT in 

PRIVATE1is 25.0000 Terabytes in the year 2021, 32.1400 Terabytes in the year 

2022 and 39.2800 Terabytes the year 2023. The measurements were based on total 

annual internet data bandwidth usage from the SNMP and Solaris Bandwidth 

Manager Program installed on the Internet Server [77–94]. The research also showed 

that FEDERAL1, STATE1, and PRIVATE1 have the following measured annual 

Internet data bandwidth in the tables hereunder. 

In the last three years, we have three measured and estimated data points that 

can be interpolated so as to predict the effective internet data bandwidth and the 

acceptable number of internet users for the Internet access in the entire campus 

community. For better analysis, we used the following representations hereunder: 

xi: Represents the Average Number of Internet users (‘000) 

F(xi): Represents the effective annual internet data bandwidth (Terabytes). The 

measured and estimated data points are tabulated in Tables 11–13. 

Table 11. Acceptable internet data bandwidth with annual total number of 

internet users for FEDERAL1. 

xi (‘000) F(xi) (Terabytes) 

9.00 60.00 

14.00 93.33 

19.00 126.67 

Table 12. Acceptable internet data bandwidth with annual total number of internet 

users in state1. 

xi (‘000) F(xi) (Terabytes) 

2.00 36.12 

2.30 42.12 

2.60 48.12 

Table 13. Acceptable internet data bandwidth with annual total number of internet 

users for PRIVATE1. 

xi (‘000) F(xi) (Terabytes) 

3.500 25.00 

4.500 32.14 

5.500 39.28 

Using the first three data points, we can apply Lagrange’s interpolation for the 

prediction. The Linear Lagrange’s interpolation (LILARINT) model is a polynomial 
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that represented the internet data bandwidth [95–100]. The LILARINT model is a 

mathematical model generated from the three data points measured and estimated in 

the tables above. The LILARINT model polynomial is as follows: 

𝑃𝑛(𝑥) = 𝐿0(𝑥0) + 𝐿1(𝑥1)𝑓(𝑥1) + 𝐿2(𝑥2)𝑓(𝑥2) (1) 

where: 

𝐿0(𝑥0) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
 (2) 

𝐿1(𝑥1) =
(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
 (3) 

𝐿2(𝑥2) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 (4) 

From the available data points, 

𝐿0(𝑥0) =
(𝑥 − 14)(𝑥 − 19)

(9 − 14)(9 − 19)
 (5) 

𝐿1(𝑥1) =
(𝑥 − 9)(𝑥 − 19)

(14 − 9)(14 − 19)
 (6) 

𝐿2(𝑥2) =
(𝑥 − 14)(𝑥 − 14)

(19 − 9)(19 − 14)
 (7) 

In the case of FEDERAL1, we can now obtain values for the expected number 

of internet users and the corresponding effective internet data bandwidth. For 20,000 

internet users, the corresponding effective internet bandwidth will be calculated as 

follows: 

𝑃𝑛(20) = 𝐿0(𝑥0) + 𝐿1(𝑥1)𝑓(𝑥1) + 𝐿2(𝑥2)𝑓(𝑥2) 

𝑃𝑛(20) =
(20 − 14)(20 − 19)(60)

(9 − 14)(9 − 19)
+
(20 − 9)(20 − 19)(93.33)

(14 − 9)(14 − 19)
+
(20 − 9)(20 − 14)(126.67)

(19 − 9)(19 − 14)

=
(6)(1)(60)

(−5)(−10)
+
(11)(1)(93.33)

(5)(−5)
+
(11)(6)(126.67)

(10)(5)
= 7.2 − 44.0652 + 167.2044 

Pn(20) = 133.33 Terabytes 

For 25,000 Internet users, the corresponding effective internet data 

bandwidth will be evaluated as follows: 

𝑃𝑛(25) =
(25 − 14)(25 − 19)(60)

(9 − 14)(9 − 19)
+
(25 − 9)(25 − 19)(93.33)

(14 − 9)(14 − 19)
+
(25 − 9)(25 − 14)(126.67)

(19 − 9)(19 − 14)

=
(11)(6)(60)

50
−
(16)(6)(93.33)

25
+
(16)(11)(126.67)

50
= (1.32)(60) − (3.84)(93.33) + 3.52(126.67) = 79.2 − 358.3872 + 445.8784 

Pn(25) = 166.67 Terabytes 

Further calculations show that: 
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Pn(30) = 200.01 Terabytes, Pn(35)= 233.35 Terabytes, Pn(40) = 266.70 

Terabytes, Pn(45) = 300.04 Terabytes, Pn(50) = 333.38 Terabytes, Pn(55) = 366.72 

Terabytes, Pn(60) = 400.06 Terabytes, Pn(65) = 433.40 Terabytes, Pn(70) = 466.74 

Terabytes, Pn(75) = 500.08 Terabytes, Pn(80) = 533.42 Terabytes and Pn (85) = 566.76 

Terabytes. 

In the case of STATE1, we have the followings: 

Pn(2.75) = 51.12 Terabytes, Pn(2.90) = 54.12 Terabytes, Pn(3.05) = 57.12 

Terabytes, Pn(3.20) = 60.12 Terabytes, Pn(3.275) = 61.62 Terabytes, Pn(3.350)= 

63.12 Terabytes, Pn(3.425) = 64.62 Terabytes, Pn(3.500) = 66.12 Terabytes, 

Pn(3.575) = 67.62 Terabytes, Pn(3.650) = 69.12 Terabytes, Pn(3.725) = 70.62 

Terabytes, Pn(3.8) = 72.12 Terabytes, Pn(3.875) = 73.62 Terabytes, Pn(3.950) = 

75.12 Terabytes, and Pn(4.025) = 76.62 Terabytes. 

In the case of PRIVATE1, we have the followings: 

Pn (6.5) = 46.42 Terabytes, Pn(7.5) = 53.56 Terabytes, Pn(8.5) = 60.70 

Terabytes, Pn(9.5)= 67.84 Terabytes, Pn(10.5) = 74.98 Terabytes, Pn(11.5) = 82.12 

Terabytes, Pn(12.5) = 89.26 Terabytes, Pn(13.5) = 96.40 Terabytes, Pn(14.5) = 103.54 

Terabytes, Pn(15.5) = 110.68 Terabytes, Pn(16.5) = 117.82 Terabytes, Pn(17.5) = 

124.96 Terabytes and Pn(18.5) = 132.10 Terabytes. 

4. Results of internet bandwidth measurement in FEDERAL1, 

state1 and PRIVATE1 

The Linear Lagrange’s Interpolation (LILARINT) model was used on the three 

data points measured from the ICT department of FEDERAL1, STATE1, and 

PRIVATE1. The simulated or predicted result of the MATLAB program developed 

for the FEDERAL1, STATE1, and PRIVATE1 LILARINT models is found in 

Figures 19–24. The table of the measured internet bandwidth versus the acceptable 

number of users in FEDERAL1, STATE1, and PRIVATE1 is found in Tables 14–

16, respectively. The graph of the measured internet bandwidth versus the 

acceptable number of users is found in Figures 25–27, respectively. The table of the 

measured and simulated internet bandwidth versus acceptable users is also found in 

Tables 17–19, respectively. The graph of the measured and simulated data 

bandwidth and acceptable users is found in Figures 28–30, respectively. 

 

Figure 19. Simulated internet data bandwidth versus number of internet users for 

short-term prediction for FEDERAL1. 
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Figure 20. Simulated internet data bandwidth versus number of internet users for 

long-term prediction for FEDERAL1. 

 

Figure 21. Simulated internet data bandwidth versus number of internet users for 

short-term prediction for state1. 

 

Figure 22. Simulated internet data bandwidth versus number of internet users for 

long-term prediction for state1. 
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Figure 23. Simulated internet data bandwidth versus number of internet users for 

short-term prediction for PRIVATE1. 

 
Figure 24. Simulated internet data bandwidth versus number of internet users for 

long-term prediction for PRIVATE1. 

 
Figure 25. Measured internet data bandwidth versus number of internet users for 

FEDERAL1. 
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Figure 26. Measured internet data bandwidth versus number of internet users for 

state1. 

  

Figure 27. Measured internet data bandwidth versus number of internet users for 

PRIVATE1. 

 
Figure 28. Measured and simulated internet data bandwidth versus number of 

internet users for FEDERAL1. 
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Figure 29. Measured and simulated internet data bandwidth versus number of 

internet users for state1. 

 

Figure 30. Measured and simulated internet data bandwidth versus number of 

internet users for PRIVATE1. 

Table 14. Measured internet data bandwidth versus annual total number of 

internet users for FEDERAL1. 

xi (‘000) F(xi) (Terabyte) 

9.0000 60.00 

14.0000 93.33 

19.0000 126.67 

20.0000 133.33 

25.0000 166.67 

30.0000 200.01 

35.0000 233.35 

40.0000 266.70 

45.0000 300.04 
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Table 14. (Continued). 

xi (‘000) F(xi) (Terabyte) 

50.0000 333.38 

55.0000 366.72 

60.0000 400.06 

65.0000 433.40 

70.0000 466.74 

75.0000 500.08 

80.0000 533.42 

85.0000 566.76 

Table 15. Measured internet data bandwidth versus annual total number of 

internet users for state1. 

xi (‘000) F(xi) (Terabyte) 

2.0000 36.1200 

2.3000 42.1200 

2.6000 48.1200 

2.7500 51.1200 

2.8250 52.6200 

2.9000 54.1200 

2.9750 55.6200 

3.0500 57.1200 

3.1250 58.6200 

3.2000 60.1200 

3.2750 61.6200 

3.3500 63.1200 

3.4250 64.6200 

3.5000 66.1200 

3.5750 67.6200 

3.6500 69.1200 

3.7250 70.6200 

Table 16. Measured internet data bandwidth versus annual total number of 

internet users for PRIVATE1. 

xi (‘000) F(xi) (Terabyte) 

3.5000 25.00 

4.5000 32.14 

5.5000 39.28 

6.5000 46.42 

7.5000 53.56 

8.5000 60.70 

9.5000 67.84 

10.5000 74.98 
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Table 16. (Continued). 

xi (‘000) F(xi) (Terabyte) 

11.5000 82.12 

12.5000 89.26 

13.5000 96.40 

14.5000 103.54 

15.5000 110.68 

16.5000 117.82 

17.5000 124.96 

18.5000 132.10 

19.5000 139.24 

Table 17. Measured and simulated internet data bandwidth versus annual total number of internet users for 

FEDERAL1. 

Total Annual Internet 

Users, xi (‘000) 

Measured Internet Data 

Bandwidth, Yi (Terabytes) 

Simulated Internet Data 

Bandwidth, Ýi (Terabytes) 

9.00 60.00 59.00 

14.00 93.33 92.00 

19.00 126.67 125,50 

20.00 133.33 132.00 

25.00 166.67 165.50 

30.00 200.01 199.00 

35.00 233.35 232.00 

40.00 266.70 265.50 

45.00 300.04 299.00 

50.00 333.38 332.00 

55.00 366.72 365.50 

60.00 400.06 399.00 

65.00 433.40 432.00 

70.00 466.74 465.50 

75.00 500.08 499.00 

Table 18. Measured and simulated internet data bandwidth versus annual total number of internet users for state1. 

Total Annual Internet 

Users, xi (‘000) 

Measured Internet Data 

Bandwidth, Yi (Terabytes) 

Simulated Internet Data 

Bandwidth, Ýi (Terabytes) 

2.000 36.12 34.50 

2.300 42.12 40.60 

2.600 48.12 46.40 

2.750 51.12 49.70 

2.825 52.62 50.50 

2.900 54.12 52.60 

2.975 55.62 54.45 

3.050 57.12 55.60 
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Table 18. (Continued). 

Total Annual Internet 

Users, xi (‘000) 

Measured Internet Data 

Bandwidth, Yi (Terabytes) 

Simulated Internet Data 

Bandwidth, Ýi (Terabytes) 

3.125 58.62 57.00 

3.200 60.12 58.40 

3.275 61.62 60.20 

3.350 63.12 61.55 

3.425 64.62 62.70 

3.500 66.12 64.65 

3.575 67.62 65.65 

Table 19. Measured and simulated internet data bandwidth versus annual total number of internet users for 

PRIVATE1. 

Total Annual Internet 

Users, xi (‘000) 

Measured Internet Data 

Bandwidth, Yi (Terabytes) 

Simulated Internet Data 

Bandwidth, Ýi (Terabytes) 

3.50 25.00 24.00 

4.50 32.14 31.00 

5.50 39.28 38.00 

6.50 46.42 45.00 

7.50 53.56 52.50 

8.50 60.70 59.50 

9.50 67.84 66.50 

10.50 74.98 73.50 

11.50 82.12 81.00 

12.50 89.26 88.00 

13.50 96.40 95.00 

14.50 103.54 102.00 

15.50 110.68 109.50 

16.50 117.82 116.50 

17.50 124.96 123.50 

4.1. Reinforcement Learning-based system 

The reinforcement learning-based system is quite a unique programming system 

that handles simulation of mathematical functions and variables. This is the popular 

MATLAB application. It accepts data and provides a robust mathematical analysis 

which includes prediction. The source codes of the reinforcement learning used in 

this research work are highlighted hereunder. 

4.1.1. MATLAB program of linear Lagrange’s interpolation (LILARINT) model 

for FEDERAL1 short term prediction 

clc clear 

x=linspace(0,50,200); 

A=60.*(x-14.0).*(x-19.0)./(50.0); 

B=93.33.*(x-9.0).*(x-19.0)./(-25); 

C=126.67.*(x-9.0).*(x-14.0)./(50.0); P=A+B+C; 
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figure, plot(x,P,'*-'),axis([0,50,0,300]); 

xlabel('Number of internet users(''000)'); 

ylabel('Effective Data Internet Bandwidth (Terabytes)'); 

title('SHORT TERM PREDICTION OF LILARINT MODEL FOR 

FEDERAL1') 

grid on 

4.1.2. MATLAB program of linear Lagrange’s interpolation (LILARINT) model 

for FEDERAL1 long term prediction 

clc 

clear 

x=linspace(0,1500,1000); 

A=60.*(x-14.0).*(x-19.0)./(50.0); 

B=93.33.*(x-9.0).*(x-19.0)./(-25); 

C=126.67.*(x-9.0).*(x-14.0)./(50.0);  

P=A+B+C; 

figure, plot(x,P,'*-'),axis([0,250,0,1500]);  

xlabel('Number of internet users(''000)');  

ylabel('Effective Data Internet Bandwidth (Terabytes)'); 

title('LONG TERM PREDICTION OF LILARINT MODEL FOR 

FEDERAL1'); 

grid on 

4.1.3. MATLAB program of linear Lagrange’s interpolation (LILARINT) 

model for state1 short term prediction 

clc clear 

x=linspace(0,10.0,200); 

A=36.12.*(x-2.30).*(x-2.60)./(0.18); 

B=42.12.*(x-2.00).*(x-2.60)./(-0.09); 

C=48.12.*(x-2.00).*(x-2.30)./(0.18); P=A+B+C; 

figure, plot(x,P,'*-'),axis([0,10.0,0,200]); 

xlabel('Number of Internet Users(''000)'); 

ylabel('Effective Internet Data Bandwidth (Terabytes)'); 

title('SHORT TERM PREDICTION OF LILARINT MODEL FOR STATE1') 

grid on 

4.1.4. MATLAB program of linear Lagrange’s interpolation (LILARINT) 

model for state1 long term prediction 

clc clear 

x=linspace(0,50.0,200); 

A=36.12.*(x-2.30).*(x-2.60)./(0.18); 

B=42.12.*(x-2.00).*(x-2.60)./(-0.09); 

C=48.12.*(x-2.00).*(x-2.30)./(0.18); P=A+B+C; 

figure, plot(x,P,'*-'),axis([0,50.0,0,1000]); 

xlabel('Number of Internet Users(''000)'); 

ylabel('Effective Internet Data Bandwidth (Terabytes)'); 

title('LONG TERM PREDICTION OF LILARINT MODEL FOR STATE1'); 
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grid on 

4.1.5. MATLAB program of linear Lagrange’s interpolation (LILARINT) 

model for PRIVATE1 short term prediction 

clc clear 

x=linspace(0,50,200); A=25.*(x-4.5).*(x-5.5)./(2); 

B=32.14.*(x-3.5).*(x-5.5)./(-1); 

C=39.28.*(x-3.5).*(x-4.5)./(2); P=A+B+C; 

figure, plot(x,P,'*-'),axis([0,15,0,100]); 

xlabel('Number of internet users(''000)'); 

ylabel('Effective actual Internet Bandwidth in Terabytes'); 

title('SHORT TERM PREDICTION OF LILARINT MODEL FOR 

PRIVATE1'); 

grid on 

4.1.6. MATLAB program of linear Lagrange’s interpolation (LILARINT) 

model for PRIVATE1 long term prediction 

clc clear 

x=linspace(0,50,200); A=25.*(x-4.5).*(x-5.5)./(2); 

B=32.14.*(x-3.5).*(x-5.5)./(-1); 

C=39.28.*(x-3.5).*(x-4.5)./(2); P=A+B+C; 

figure, plot(x,P,'*-'),axis([0,50,0,400]); xlabel('Number of internet users(''000)'); 

ylabel('Effective actual Internet Bandwidth in Terabytes'); title('LONG TERM 

PREDICTION OF LILARINT MODEL FOR PRIVATE1'); 

grid on 

4.2. Comparative measured and simulated internet data bandwidth 

with total annual internet users for FEDERAL1 

The table of the comparative of both measured and simulated internet data 

bandwidth with total annual internet users for FEDERAL1, STATE1, and PRIVATE1 

is also found in Tables 17–19, respectively. The graph of both measured and 

simulated data bandwidth and acceptable users is found in Figures 28–30, 

respectively. 

5. Discussion on internet data bandwidth optimization and 

prediction for FEDERAL1 

The analysis of Linear Lagrange’s Interpolation (LILARINT) model is one of 

the parameterization metrics for evaluating the efficiency, quality of service (QoS), 

and quality of experience (QoE) of ICT-based institutions. A MATLAB program 

was developed for this crucial objective of this research. We represent Effective 

Internet Data Bandwidth (Terabyte) as B and the Annual Total Number of Internet 

Users (‘000) as U. 

Mathematically, we can deduce the relation governing the two parameters. The 

relation is given as: B = mU + C0 
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where: m = Gradient of the straight line and C0 = Constant of the linear 

equation. Collating data from Figures 7 and 8, the gradient can be evaluated as 

follows. 

Therefore, m = ∆B/∆U = (166.67 − 126.67)/(25.00 − 20.00) = 40.00/5.00 =8. 

Now, m = 8. 

B = 8U + C0. From the graph in Figures 7 and 8, when B = 0, U = 0. Therefore, 

C0 = 0, the final relation could be written as: 

B = 8U (8) 

The Equation (8) governs the relationship between the effective internet data 

bandwidth (B) and annual total number of internet users (U) in FEDERAL1 as the 

case study of this research. 

In the case of STATE1, the equation is deduced as: 

B = 20U − 5 (9) 

In the case of PRIVATE1, the equation is deduced as: 

B = 7.14U (10) 

5.1. Validation of internet data bandwidth prediction model using 

Nielsen’s law for FEDERAL1, state1 and PRIVATE1 

The Equation (8) that governs the relationship between the effective internet 

data bandwidth and the annual total number of users in FEDERAL1 is expected to 

agree with Nielsen’s law of internet bandwidth prediction at a global level. It is the 

law mostly used for internet data bandwidth globally because Edholm’s law did not 

provide adequate information to authenticate its validity. 

According to Nielsen’s law, expressed in a simplified approach that clearly 

states that there will always be a few super-users who have advanced equipment that 

runs really fast. This confirms the present availability of Internet of Things 

technology. Nielsen’s law addresses the more normal high-end users who are willing 

to pay a premium but still want well-tested equipment that can be bought in a regular 

shop. This is the kind of user that he may have had on an ISDN line in 1998. In 2010, 

another upgrade was made, which stands at 31 Mbps data bandwidth. This new data 

point also fits the prediction of 1998. In 2013, the line was upgraded to deliver 58 

Mbps of internet bandwidth without the need for a new cable modem. This upgrade 

was a bit below the predicted trend, so we certainly hope for better next time. In 

2014, the line was upgraded to 120 Mbps. The differential between 2013 and 2014 is 

somewhat better than the law predicted, so some of the catch-up we called for last 

year did in fact happen. In 2016, the line was upgraded to 240 Mbps. It was almost 

exactly on the trend. In 2018, it was upgraded to 300 Mbps, which was slightly 

below the prediction. In 2019, it was now 325 Mbps. The regression line has R2 = 

0.9900, meaning that Nielsen’s law explains 99% of the variability in the data. 

Beyond any form of ambiguity, one small change is that when he first wrote about 

this in 1998, the best-fit growth rate from 1984 to 1998 data was 53%, which can be 

rounded up to 50%, whereas the best-fit growth rate for the larger data set of 1984 to 

2019 was 49% per year, which still rounds up to 50%. In 2023, the line was 
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upgraded to 1120 Mbps. This is a little lower than the predicted, but still very close 

to the regression line as shown in the Nielsen’s law exponential growth diagram. The 

conclusion is that Nielsen’s law has held true throughout a 40-year period. 

In 2024, in order to validate the LILARINT model in the ICT unit of 

FEDERAL1, the unit used this model to subscribe for 190 Terabytes of annual data 

bandwidth for 29,500 total internet users. In 2023, the measured data bandwidth was 

126 Terabytes to 19,000 total internet users. The annual internet data bandwidth 

increase was 49.99%, which can be rounded up to 50%. There was no significant 

complaint of insufficient internet data bandwidth throughout this year. This 

expressly shows that this prediction really agrees with Nielsen’s law. 

In 2024, in order to validate the LILARINT model in the ICT unit of STATE1, 

the unit used this model to subscribe for 72 Terabytes of annual data bandwidth for 

3850 total internet users. In 2023, the estimated data bandwidth was 48.12 Terabytes 

for 2600 total internet users. The annual internet data bandwidth increase was 

49.68%, which can be rounded up to 50%. In this case, there was no significant 

complaint of insufficient internet data bandwidth for the whole year. This equally 

shows that this prediction completely agrees with Nielsen’s law. 

In 2024, in order to validate the LILARINT model in the ICT unit of 

PRIVATE1, the unit used this model to subscribe for 59.12 Terabytes of annual data 

bandwidth for 6600 total number of internet users. In 2023, the estimated data 

bandwidth was 39.28 Terabytes to 5500 total internet users. The annual internet data 

bandwidth increase was 50.50%, which can be rounded up to 50%. There was no 

significant complaint of insufficient internet data bandwidth throughout this year. 

This also shows that this prediction really agrees with Nielsen’s law [101–112]. 

With this information, it is clear that the LILARINT model is 100% reliable and 

efficient in its internet data bandwidth prediction. Corresponding results from the 

empirical data analysis from the Linear Lagrange’s Interpolation (LILARINT) 

predictor model showed that it was well defined and modeled. The detailed results 

were comprehensively enumerated in the Tables 20–29. 

Table 20. Effective internet data bandwidth with annual total number of internet users for FEDERAL1. 

Year Annual Total Number of Internet users Effective Internet Data Bandwidth (Terabytes) 

2021 9000 60.00 

2022 14,000 93.33 

2023 19,000 126.67 

2024 29,500 190.00 

Table 21. Effective internet data bandwidth with annual total number of internet users for state1. 

Year Annual Total Number of Internet users Effective Internet Data Bandwidth (Terabytes) 

2021 2000 36.12 

2022 2300 42.12 

2023 2600 48.12 

2024 3850 72.00 

 



Computer and Telecommunication Engineering 2024, 2(4), 3135. 
 

29 

Table 22. Effective internet data bandwidth with annual total number of internet users for PRIVATE1. 

Year Annual Total Number of Internet users Effective Internet Data Bandwidth (Terabytes) 

2021 3500 25.00 

2022 4500 32.14 

2023 5500 39.28 

2024 6600 59.12 

Table 23. PRESS regression data table for FEDERAL1 LILARINT model. 

xi (‘000) Yi Ýi (Yi – Y) (Yi – Y)2 [Yi − Ýi]/Yi (Yi − Ýi) (Yi − Ýi)2 

9.00 60.00 59.00 −212.032 44,957.56 0.0166666 1.0000 1.0000 

14.00 93.33 92.00 −178.702 31,934.40 0.0142505 1.3300 1.7689 

19.00 126.67 125,50 −145.362 21,130.11 0.0093600 1.1700 1.3589 

20.00 133.33 132.00 −138.702 19,238.24 0.0099752 1.3300 1.7689 

25.00 166.67 165.50 −105.362 11,101.15 0.0070198 1.1700 1.3689 

30,00 200.01 199.00 −72.022 5187.17 0.0050497 1.0100 1.0201 

35.00 233.35 232.00 −38.682 1496.30 0.0057850 1.3500 1.8225 

40.00 266.70 265.50 −53.32 28.43 0.0044994 1.2000 1.4400 

45.00 300.04 299.00 28.008 784.45 0.0034662 1.0400 1.0816 

50.00 333.38 332.00 61.348 3763.58 0.0041394 1.3800 1.9044 

55.00 366.72 365.50 94.688 8965.82 0.0033267 1.2200 1.4884 

60.00 400.06 399.00 128.028 16,391.17 0.0026496 1.0600 1.1236 

65.00 433.40 432.00 161.368 26,039.63 0.0032303 1.4000 1.9600 

70.00 466.74 465.50 194.708 37,911.20 0.0026567 1.2400 1.5376 

75.00 500.08 499.00 228.048 52,005.89 0.0021596 1.0800 1.1664 

Total 4080.48 4060.50 1840.38 280,935.10  17.9800 21.8202 

Table 24. PRESS regression data table for state1 LILARINT model. 

xi (‘000) Yi Ýi (Yi – Y) (Yi – Y)2 [Yi − Ýi]/Yi (Yi − Ýi) (Yi − Ýi)2 

2.000 36.12 34.50 −19.80 39,204.00 0.0448505 1.6200 2.6244 

2.300 42.12 40.60 −13.80 190.44 0.0360874 1.5200 2.3104 

2.600 48.12 46.40 −7.80 60.84 0.0357439 1.7200 2.9584 

2.750 51.12 49.70 −4.80 23.04 0.0277778 1.4200 2.0164 

2.825 52.62 50.50 −3.30 10.89 0.0402889 2.1200 4.4944 

2.900 54.12 52.60 −1.80 3.24 0.0280857 1.5200 2.3104 

2.975 55.62 54.45 −0.30 0.09 0.0210356 1.1700 1.3689 

3.050 57.12 55.60 1.20 1.44 0.0266106 1.5200 2.3104 

3.125 58.62 57.00 2.70 7.29 0.0276356 1.6200 2.6244 

3.200 60.12 58.40 4.20 17.64 0.0286094 1.7200 2.9584 

3.275 61.62 60.20 5.70 32.49 0.0230447 1.4200 2.0164 

3.350 63.12 61.55 7.20 51.84 0.0248733 1.5700 2.4649 

3.425 64.62 62.70 8.70 75.69 0.0219746 1.4200 2.0164 

3.500 66.12 64.65 10.20 104.04 0.0222232 1.4700 2.1609 

3.575 67.62 65.65 11.70 136.89 0.0291334 1.9700 3.8809 

Total 838.80 814.50 103.20 39,919.86  23.8000 38.5160 
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Table 25. PRESS regression data table for PRIVATE1 LILARINT model. 

xi (‘000) Yi Ýi (Yi – Y) (Yi – Y)2 [Yi − Ýi] /Yi (Yi − Ýi) (Yi − Ýi)2 

3.50 25.00 24.00 −50.015 2,501.53 0.040000 1.0000 1.000 

4.50 32.14 31.00 −43.015 1,838.29 0.035470 1.1400 1.2996 

5.50 39.28 38,00 −35.735 1,277.01 0.032587 1.2800 1.6384 

6.50 46.42 45.00 −28.595 817.69 0.030590 1.4200 2.0164 

7.50 53.56 52.50 −21.455 460.33 0.019791 1.0600 1.1236 

8.50 60.70 59.50 −14.315 208.89 0.019769 1.2000 1.4400 

9.50 67.84 66.50 −7.175 51.48 0.019752 1.3400 1.7956 

10.50 74.98 73.50 −0.035 0.00146 0.019739 1.4800 2.1904 

11.50 82.12 81.00 7.105 50.48 0.013639 1.1200 1.2544 

12.50 89.26 88.00 14.245 202.91 0.014116 1.2600 1.5876 

13.50 96.40 95.00 21.385 457.30 0.014523 1.4000 1.9600 

14.50 103.54 102.00 28.525 813.66 0.014873 1.5400 2.3716 

15.50 110.68 109.50 35.805 1271.97 0.010661 1.1800 1.3924 

16.50 117.82 116.50 42.805 1832.24 0.011204 1.3200 1.7424 

17.50 124.96 123.50 49.945 2494.47 0.011684 1.4600 2.1316 

Total 1125.23 1105.50 400.155 14,278.25  19.2000 23.9440 

Table 26. Mean absolute percentage error (MAPE) data table for FEDERAL1 LILARINT model. 

xi (‘000) Yi Actual Ýi Predicted 
(Yi – Ýi) 

Difference 

%(Yi − Ýi) 

% Difference 

[Yi − Ýi] 

Absolute Difference 
(Yi − Ýi)/Yi 

9.00 60.00 59.00 1.0000 1.666666667 1.0000 0.01666666 

14.00 93.33 92.00 1.3300 1.425050895 1.3300 0.01425051 

19.00 126.67 125.50 1.1700 0.923659903 1.1700 0.00923660 

20.00 133.33 132.00 1.3300 0.997524938 1.3300 0.00997525 

25.00 166.67 165.50 1.1700 0.701985960 1.1700 0.00701986 

30,00 200.01 199.00 1.0100 0.504974751 1.0100 0.00504975 

35.00 233.35 232.00 1.3500 0.578530105 1.3500 0.00578530 

40.00 266.70 265.50 1.2000 0.449937570 1.2000 0.00449943 

45.00 300.04 299.00 1.0400 0.346620450 1.0400 0.00346620 

50.00 333.38 332.00 1.3800 0.413942048 1.3800 0.00413942 

55.00 366.72 365.50 1.2200 0.332678883 1.2200 0.00332679 

60.00 400.06 399.00 1.0600 0.264960256 1.0600 0.00264960 

65.00 433.40 432.00 1.4000 0.323027226 1.4000 0.00323027 

70.00 466.74 465.50 1.2400 0.265672537 1.2400 0.00265673 

75.00 500.08 499.00 1.0800 0.215965445 1.0800 0.00215965 

Total 4080.48 4060.50 17.9800  17.9800 0.09411201 
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Table 27. Mean absolute percentage error (MAPE) data table for STATE1 LILARINT model. 

xi (‘000) Yi Actual Ýi Predicted 
(Yi –Ýi) 

Difference 

%(Yi − Ýi) 

% Difference 

[Yi − Ýi] 

Absolute Difference 
(Yi − Ýi)/Yi 

2.000 36.12 34.50 1.6200 4.48505 1.6200 0.0448505 

2.300 42.12 40.60 1.5200 3.60873 1.5200 0.0360874 

2.600 48.12 46.40 1.7200 3.57440 1.7200 0.0357440 

2.750 51.12 49.70 1.4200 2.77778 1.4200 0.0277778 

2.825 52.62 50.50 2.1200 4.02889 2.1200 0.0402889 

2.900 54.12 52.60 1.5200 2.80857 1.5200 0.0280857 

2.975 55.62 54.45 1.1700 2.10356 1.1700 0.0210356 

3.050 57.12 55.60 1.5200 2.66106 1.5200 0.0266106 

3.125 58.62 57.00 1.6200 2.76356 1.6200 0.0276356 

3.200 60.12 58.40 1.7200 2.86094 1.7200 0.0286094 

3.275 61.62 60.20 1.4200 2.30445 1.4200 0.0230445 

3.350 63.12 61.55 1.5700 2.48733 1.5700 0.0248733 

3.425 64.62 62.70 1.4200 2.19746 1.4200 0.0219746 

3.500 66.12 64.65 1.4700 2.22323 1.4700 0.0222323 

3.575 67.62 65.65 1.9700 2.91334 1.9700 0.0291334 

Total 838.80 814.50 23.8000  23.8000 0.4379836 

Table 28. Mean absolute percentage error (MAPE) data table for PRIVATE1 LILARINT model. 

xi (‘000) Yi Actual Ýi Predicted 
(Yi –Ýi) 

Difference 

%(Yi − Ýi) 

% Difference 

[Yi − Ýi] 

Absolute Difference 
(Yi − Ýi)/Yi 

3.50 25.00 24.00 1.0000 4.00000 1.0000 0.040000 

4.50 32.14 31.00 1.1400 3.54670 1.1400 0.035470 

5.50 39.28 38,00 1.2800 3.25867 1.2800 0.032587 

6.50 46.42 45.00 1.4200 3.05903 1.4200 0.030590 

7.50 53.56 52.50 1.0600 1.97912 1.0600 0.019791 

8.50 60.70 59.50 1.2000 1.97683 1.2000 0.019769 

9.50 67.84 66.50 1.3400 1.97524 1.3400 0.019752 

10.50 74.98 73.50 1.4800 1.97390 1.4800 0.019739 

11.50 82.12 81.00 1.1200 1.36393 1.1200 0.013639 

12.50 89.26 88.00 1.2600 1.41163 1.2600 0.014116 

13.50 96.40 95.00 1.4000 1.45234 1.4000 0.014523 

14.50 103.54 102.00 1.5400 1.48732 1.5400 0.014873 

15.50 110.68 109.50 1.1800 1.06614 1.1800 0.010661 

16.50 117.82 116.50 1.3200 1.12042 1.3200 0.011204 

17.50 124.96 123.50 1.4600 1.16843 1.4600 0.011684 

Total 1125.23 1105.50 19.2000  19.2000 0.409303 
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Table 29. Comparative statistical performance evaluation analysis. 

UNIVERSITY Regression, (R2) MSE MAD Standard Deviation (σ) MAPE (%) 

FEDERAL1 0.9999 1.455 122.6920 8.2975 0.6274 

STATE1 0.9990 2.567 6.8800 6.8987 2.9199 

PRIVATE1 0.9983 1.596 26.6770 3.5622 2.7287 

5.2. Performance evaluation analysis using Allen’s press for 

FEDERAL1, state1 and PRIVATE1 LILARINT model 

The detail about the statistical data analysis is found in Table 23. The PRESS 

regression is given as: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 (11) 

where: SSE = Sum of the squared differences between the actual or measured 

internet data bandwidth, Yi and predicted or simulated internet data bandwidth value 

Ýi. 

SSE = Ʃ (Yi − Ýi)2 (12) 

where: i = 1, 2, 3, …, 15. 

SST = Sum of squared differences between actual or measured internet data 

bandwidth, Yi and the average of Yi values. 

SST = Ʃ (Yi –Y)2 (13) 

where: i = 1, 2, 3, …, 15. 

R2 < 1; R2 must be less than UNITY. 

From Table 23, we have the following representations: 

Yi = Actual or measured Internet data bandwidth. Ýi = Predicted or simulated 

Internet data bandwidth 

Y = Average actual or measured Internet data bandwidth. 

From Equations (12) and (13), we have the following representations: 

SSE = The sum of the squared differences between the actual or measured 

Internet data bandwidth, Yi and the predicted or simulated Internet data bandwidth, 

Ýi 

SST = The sum of the squared differences between the actual or measured 

Internet data bandwidth, Yi and the average actual measured Internet data bandwidth, 

Y. 

From Table 23, the average empirical actual or measured internet data 

bandwidth is computed as: 

Y = (60.00 + 93.33 + 126.67 + 133.33 + 166.67 + 200.01 + 233.35 + 266.70 + 

300.04 + 333.74 + 366.72 + 400.06 + 433.40 +466.74 + 500.08)/15 

= (580 + 1000.10 + 1533.56 + 966.82)/15 

 = (4080.48)/15 

Y = 272.032 

Using Table 23 and Equation (13), we have: 
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SST = (44,957.56 + 31,934.40 + 21,130.11 + 19,238.24 + 11,101.15 + 5,187.17 + 

1496.30 + 28.43 + 785.45 + 3763.58 + 8965.82 + 16,391.17 + 26,039.63 + 

37,911.20 + 52,005.89) 

= 98,022.07 + 37,022.86 + 13,542.28 + 132,347.89 

SST = 280,935.10 

Using Table 23 and Equation (12), we have: 

SSE = (1.0000 + 1.7689 + 1.3689 + 1.7689 + 1.3689 + 1.0201 + 1.8225 + 1.4400 + 

1.0816 + 1.4884 + 1.1236 + 1.9600 + 1.5376 + 1.1664) 

= 7.2756 + 7.2686 + 7.276 

SSE = 21.8202 

The PRESS Regression, R2 of FEDERAL1 LILARINT model can be 

computed as follows. Using Table 23, we have: 

PRESS R2 = 1 – (21.8202)/(280,935.10) 

= 1 − 0.00007669896 

R2 = 0.9999 

In the case of STATE1, Using Table 24, R2 = 0.9990 

In the case of PRIVATE1, Using Table 25, R2 = 0.9983 

Recall, the Nielsen’s Regression, R2 = 0.9900. 

It is obvious that the statistical performance regression of the LILARINT model 

in FEDERAL1, STATE1, and PRIVATE1 is better than that of Nielsen’s. 

5.3. Performance evaluation analysis using mean squared error 

(MSE) for FEDERAL1 LILARINT model 

From Table 23, the mean squared error (MSE) can be computed as follows: 

MSE = (21.8202)/(15) 

MSE = 1.455 

The MSE for the FEDERAL1 LILARINT model is 1.455. 

From Table 24, the MSE for the STATE1 LILARINT model is 2.567 From 

Table 25, the MSE for the PRIVATE1 LILARINT model is 1.596. 

5.4. Performance evaluation analysis using mean absolute deviation 

(MAD) for FEDERAL1 LILARINT model 

From Table 23, the mean absolute deviation (MAD) can be computed as 

follows: 

MAD = (212.032 + 178.702 + 145.362 + 138.702 + 105.362 + 72.022 + 38.682 + 

53.32 + 28.008 + 61.348 + 94.688 + 128.028 + 161.368 + 194.708 + 228.048)/15 

= (780.16 + 253.58 + 806.84)/15 

= (1840.38)/15 

MAD = 122.692 

The MAD for the FEDERAL1 LILARINT model is 122.692. 

From Table 24, the MAD for the STATE1 LILARINT model is 6.8800. From 

Table 25, the MAD for the PRIVATE1 LILARINT model is 26.6770. 
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5.5. Performance evaluation analysis using Standard Deviation (σ) for 

FEDERAL1 LILARINT model 

From Table 23, the mean Standard Deviation (σ) can be computed as follows: 

Standard Deviation, 

σ = √ (280,935.10)/(4080.48) 

= √68.8485 

σ = 8.2975 

The Standard Deviation, σ for the FEDERAL1 LILARINT model is 8.2975. 

From Table 24, the Standard Deviation, σ for the STATE1 LILARINT model is 

6.8987. From Table 25, the Standard Deviation, σ for the PRIVATE1 

LILARINT model is 3.5622. 

5.6. Performance evaluation analysis using mean absolute percentage 

error (MAPE) for FEDERAL1 LILARINT model 

We considered Table 26 for the computation of mean absolute percentage error 

(MAPE) for FEDERAL1 LILARINT model. 

From Table 26, the mean absolute percentage error can be computed as follows:  

MAPE= (0.09411201)/15 

= 0.006274 (100) 

MAPE = 0.6274% 

The mean absolute percentage error (MAPE) for FEDERAL1 LILARINT 

model is 0.6274%. 

From Table 27, the mean absolute percentage error (MAPE) for STATE1 

LILARINT model is 2.9199%. 

From Table 28, the mean absolute percentage error (MAPE) for PRIVATE1 

LILARINT model is 2.7287%. 

6. Conclusion 

In this paper, the reinforcement learning-based platform was considered; the 

Linear Lagrange’s Interpolation (LILARINT) model was well-designed and 

implemented. The potential limitation of this model is that a very huge surge in the 

number of internet users within a year could weaken the predictability and allocation 

of data bandwidth. In other words, an astronomical increase in the number of internet 

users could become a brick wall against the performance of the model. Whenever 

this scenario occurs, it is recommended that the model has to be redesigned. In this 

analysis, the FEDERAL1 LILARINT model happened to be much better than other 

models and that of Nielsen’s. The model has a regression R2 of 0.9999, mean square 

error (MSE) of 1.455, mean absolute deviation (MAD) of 122.6920, Standard 

Deviation (σ) of 8.2975, and a minimum mean absolute percentage error (MAPE) of 

0.6274%. Since the regression R2 of FEDERAL1, STATE1 and PRIVATE1 is very 

close to unity, it implies that the model is highly reliable and it is in its best fit. With 

this information, it is clear that the LILARINT models are 100% reliable and 

efficient in their internet data bandwidth prediction and allocation. 
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